• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/powerpc/oprofile/cell/
1/*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: Maynard Johnson <maynardj@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/* The purpose of this file is to handle SPU event task switching
15 * and to record SPU context information into the OProfile
16 * event buffer.
17 *
18 * Additionally, the spu_sync_buffer function is provided as a helper
19 * for recoding actual SPU program counter samples to the event buffer.
20 */
21#include <linux/dcookies.h>
22#include <linux/kref.h>
23#include <linux/mm.h>
24#include <linux/fs.h>
25#include <linux/module.h>
26#include <linux/notifier.h>
27#include <linux/numa.h>
28#include <linux/oprofile.h>
29#include <linux/slab.h>
30#include <linux/spinlock.h>
31#include "pr_util.h"
32
33#define RELEASE_ALL 9999
34
35static DEFINE_SPINLOCK(buffer_lock);
36static DEFINE_SPINLOCK(cache_lock);
37static int num_spu_nodes;
38int spu_prof_num_nodes;
39
40struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
41struct delayed_work spu_work;
42static unsigned max_spu_buff;
43
44static void spu_buff_add(unsigned long int value, int spu)
45{
46	/* spu buff is a circular buffer.  Add entries to the
47	 * head.  Head is the index to store the next value.
48	 * The buffer is full when there is one available entry
49	 * in the queue, i.e. head and tail can't be equal.
50	 * That way we can tell the difference between the
51	 * buffer being full versus empty.
52	 *
53	 *  ASSUPTION: the buffer_lock is held when this function
54	 *             is called to lock the buffer, head and tail.
55	 */
56	int full = 1;
57
58	if (spu_buff[spu].head >= spu_buff[spu].tail) {
59		if ((spu_buff[spu].head - spu_buff[spu].tail)
60		    <  (max_spu_buff - 1))
61			full = 0;
62
63	} else if (spu_buff[spu].tail > spu_buff[spu].head) {
64		if ((spu_buff[spu].tail - spu_buff[spu].head)
65		    > 1)
66			full = 0;
67	}
68
69	if (!full) {
70		spu_buff[spu].buff[spu_buff[spu].head] = value;
71		spu_buff[spu].head++;
72
73		if (spu_buff[spu].head >= max_spu_buff)
74			spu_buff[spu].head = 0;
75	} else {
76		/* From the user's perspective make the SPU buffer
77		 * size management/overflow look like we are using
78		 * per cpu buffers.  The user uses the same
79		 * per cpu parameter to adjust the SPU buffer size.
80		 * Increment the sample_lost_overflow to inform
81		 * the user the buffer size needs to be increased.
82		 */
83		oprofile_cpu_buffer_inc_smpl_lost();
84	}
85}
86
87/* This function copies the per SPU buffers to the
88 * OProfile kernel buffer.
89 */
90void sync_spu_buff(void)
91{
92	int spu;
93	unsigned long flags;
94	int curr_head;
95
96	for (spu = 0; spu < num_spu_nodes; spu++) {
97		/* In case there was an issue and the buffer didn't
98		 * get created skip it.
99		 */
100		if (spu_buff[spu].buff == NULL)
101			continue;
102
103		/* Hold the lock to make sure the head/tail
104		 * doesn't change while spu_buff_add() is
105		 * deciding if the buffer is full or not.
106		 * Being a little paranoid.
107		 */
108		spin_lock_irqsave(&buffer_lock, flags);
109		curr_head = spu_buff[spu].head;
110		spin_unlock_irqrestore(&buffer_lock, flags);
111
112		/* Transfer the current contents to the kernel buffer.
113		 * data can still be added to the head of the buffer.
114		 */
115		oprofile_put_buff(spu_buff[spu].buff,
116				  spu_buff[spu].tail,
117				  curr_head, max_spu_buff);
118
119		spin_lock_irqsave(&buffer_lock, flags);
120		spu_buff[spu].tail = curr_head;
121		spin_unlock_irqrestore(&buffer_lock, flags);
122	}
123
124}
125
126static void wq_sync_spu_buff(struct work_struct *work)
127{
128	/* move data from spu buffers to kernel buffer */
129	sync_spu_buff();
130
131	/* only reschedule if profiling is not done */
132	if (spu_prof_running)
133		schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
134}
135
136/* Container for caching information about an active SPU task. */
137struct cached_info {
138	struct vma_to_fileoffset_map *map;
139	struct spu *the_spu;	/* needed to access pointer to local_store */
140	struct kref cache_ref;
141};
142
143static struct cached_info *spu_info[MAX_NUMNODES * 8];
144
145static void destroy_cached_info(struct kref *kref)
146{
147	struct cached_info *info;
148
149	info = container_of(kref, struct cached_info, cache_ref);
150	vma_map_free(info->map);
151	kfree(info);
152	module_put(THIS_MODULE);
153}
154
155/* Return the cached_info for the passed SPU number.
156 * ATTENTION:  Callers are responsible for obtaining the
157 *	       cache_lock if needed prior to invoking this function.
158 */
159static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
160{
161	struct kref *ref;
162	struct cached_info *ret_info;
163
164	if (spu_num >= num_spu_nodes) {
165		printk(KERN_ERR "SPU_PROF: "
166		       "%s, line %d: Invalid index %d into spu info cache\n",
167		       __func__, __LINE__, spu_num);
168		ret_info = NULL;
169		goto out;
170	}
171	if (!spu_info[spu_num] && the_spu) {
172		ref = spu_get_profile_private_kref(the_spu->ctx);
173		if (ref) {
174			spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
175			kref_get(&spu_info[spu_num]->cache_ref);
176		}
177	}
178
179	ret_info = spu_info[spu_num];
180 out:
181	return ret_info;
182}
183
184
185/* Looks for cached info for the passed spu.  If not found, the
186 * cached info is created for the passed spu.
187 * Returns 0 for success; otherwise, -1 for error.
188 */
189static int
190prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
191{
192	unsigned long flags;
193	struct vma_to_fileoffset_map *new_map;
194	int retval = 0;
195	struct cached_info *info;
196
197	/* We won't bother getting cache_lock here since
198	 * don't do anything with the cached_info that's returned.
199	 */
200	info = get_cached_info(spu, spu->number);
201
202	if (info) {
203		pr_debug("Found cached SPU info.\n");
204		goto out;
205	}
206
207	/* Create cached_info and set spu_info[spu->number] to point to it.
208	 * spu->number is a system-wide value, not a per-node value.
209	 */
210	info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
211	if (!info) {
212		printk(KERN_ERR "SPU_PROF: "
213		       "%s, line %d: create vma_map failed\n",
214		       __func__, __LINE__);
215		retval = -ENOMEM;
216		goto err_alloc;
217	}
218	new_map = create_vma_map(spu, objectId);
219	if (!new_map) {
220		printk(KERN_ERR "SPU_PROF: "
221		       "%s, line %d: create vma_map failed\n",
222		       __func__, __LINE__);
223		retval = -ENOMEM;
224		goto err_alloc;
225	}
226
227	pr_debug("Created vma_map\n");
228	info->map = new_map;
229	info->the_spu = spu;
230	kref_init(&info->cache_ref);
231	spin_lock_irqsave(&cache_lock, flags);
232	spu_info[spu->number] = info;
233	/* Increment count before passing off ref to SPUFS. */
234	kref_get(&info->cache_ref);
235
236	/* We increment the module refcount here since SPUFS is
237	 * responsible for the final destruction of the cached_info,
238	 * and it must be able to access the destroy_cached_info()
239	 * function defined in the OProfile module.  We decrement
240	 * the module refcount in destroy_cached_info.
241	 */
242	try_module_get(THIS_MODULE);
243	spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
244				destroy_cached_info);
245	spin_unlock_irqrestore(&cache_lock, flags);
246	goto out;
247
248err_alloc:
249	kfree(info);
250out:
251	return retval;
252}
253
254/*
255 * NOTE:  The caller is responsible for locking the
256 *	  cache_lock prior to calling this function.
257 */
258static int release_cached_info(int spu_index)
259{
260	int index, end;
261
262	if (spu_index == RELEASE_ALL) {
263		end = num_spu_nodes;
264		index = 0;
265	} else {
266		if (spu_index >= num_spu_nodes) {
267			printk(KERN_ERR "SPU_PROF: "
268				"%s, line %d: "
269				"Invalid index %d into spu info cache\n",
270				__func__, __LINE__, spu_index);
271			goto out;
272		}
273		end = spu_index + 1;
274		index = spu_index;
275	}
276	for (; index < end; index++) {
277		if (spu_info[index]) {
278			kref_put(&spu_info[index]->cache_ref,
279				 destroy_cached_info);
280			spu_info[index] = NULL;
281		}
282	}
283
284out:
285	return 0;
286}
287
288/* The source code for fast_get_dcookie was "borrowed"
289 * from drivers/oprofile/buffer_sync.c.
290 */
291
292/* Optimisation. We can manage without taking the dcookie sem
293 * because we cannot reach this code without at least one
294 * dcookie user still being registered (namely, the reader
295 * of the event buffer).
296 */
297static inline unsigned long fast_get_dcookie(struct path *path)
298{
299	unsigned long cookie;
300
301	if (path->dentry->d_flags & DCACHE_COOKIE)
302		return (unsigned long)path->dentry;
303	get_dcookie(path, &cookie);
304	return cookie;
305}
306
307/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
308 * which corresponds loosely to "application name". Also, determine
309 * the offset for the SPU ELF object.  If computed offset is
310 * non-zero, it implies an embedded SPU object; otherwise, it's a
311 * separate SPU binary, in which case we retrieve it's dcookie.
312 * For the embedded case, we must determine if SPU ELF is embedded
313 * in the executable application or another file (i.e., shared lib).
314 * If embedded in a shared lib, we must get the dcookie and return
315 * that to the caller.
316 */
317static unsigned long
318get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
319			    unsigned long *spu_bin_dcookie,
320			    unsigned long spu_ref)
321{
322	unsigned long app_cookie = 0;
323	unsigned int my_offset = 0;
324	struct file *app = NULL;
325	struct vm_area_struct *vma;
326	struct mm_struct *mm = spu->mm;
327
328	if (!mm)
329		goto out;
330
331	down_read(&mm->mmap_sem);
332
333	for (vma = mm->mmap; vma; vma = vma->vm_next) {
334		if (!vma->vm_file)
335			continue;
336		if (!(vma->vm_flags & VM_EXECUTABLE))
337			continue;
338		app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
339		pr_debug("got dcookie for %s\n",
340			 vma->vm_file->f_dentry->d_name.name);
341		app = vma->vm_file;
342		break;
343	}
344
345	for (vma = mm->mmap; vma; vma = vma->vm_next) {
346		if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
347			continue;
348		my_offset = spu_ref - vma->vm_start;
349		if (!vma->vm_file)
350			goto fail_no_image_cookie;
351
352		pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
353			 my_offset, spu_ref,
354			 vma->vm_file->f_dentry->d_name.name);
355		*offsetp = my_offset;
356		break;
357	}
358
359	*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
360	pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
361
362	up_read(&mm->mmap_sem);
363
364out:
365	return app_cookie;
366
367fail_no_image_cookie:
368	up_read(&mm->mmap_sem);
369
370	printk(KERN_ERR "SPU_PROF: "
371		"%s, line %d: Cannot find dcookie for SPU binary\n",
372		__func__, __LINE__);
373	goto out;
374}
375
376
377
378/* This function finds or creates cached context information for the
379 * passed SPU and records SPU context information into the OProfile
380 * event buffer.
381 */
382static int process_context_switch(struct spu *spu, unsigned long objectId)
383{
384	unsigned long flags;
385	int retval;
386	unsigned int offset = 0;
387	unsigned long spu_cookie = 0, app_dcookie;
388
389	retval = prepare_cached_spu_info(spu, objectId);
390	if (retval)
391		goto out;
392
393	/* Get dcookie first because a mutex_lock is taken in that
394	 * code path, so interrupts must not be disabled.
395	 */
396	app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
397	if (!app_dcookie || !spu_cookie) {
398		retval  = -ENOENT;
399		goto out;
400	}
401
402	/* Record context info in event buffer */
403	spin_lock_irqsave(&buffer_lock, flags);
404	spu_buff_add(ESCAPE_CODE, spu->number);
405	spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
406	spu_buff_add(spu->number, spu->number);
407	spu_buff_add(spu->pid, spu->number);
408	spu_buff_add(spu->tgid, spu->number);
409	spu_buff_add(app_dcookie, spu->number);
410	spu_buff_add(spu_cookie, spu->number);
411	spu_buff_add(offset, spu->number);
412
413	/* Set flag to indicate SPU PC data can now be written out.  If
414	 * the SPU program counter data is seen before an SPU context
415	 * record is seen, the postprocessing will fail.
416	 */
417	spu_buff[spu->number].ctx_sw_seen = 1;
418
419	spin_unlock_irqrestore(&buffer_lock, flags);
420	smp_wmb();	/* insure spu event buffer updates are written */
421			/* don't want entries intermingled... */
422out:
423	return retval;
424}
425
426/*
427 * This function is invoked on either a bind_context or unbind_context.
428 * If called for an unbind_context, the val arg is 0; otherwise,
429 * it is the object-id value for the spu context.
430 * The data arg is of type 'struct spu *'.
431 */
432static int spu_active_notify(struct notifier_block *self, unsigned long val,
433				void *data)
434{
435	int retval;
436	unsigned long flags;
437	struct spu *the_spu = data;
438
439	pr_debug("SPU event notification arrived\n");
440	if (!val) {
441		spin_lock_irqsave(&cache_lock, flags);
442		retval = release_cached_info(the_spu->number);
443		spin_unlock_irqrestore(&cache_lock, flags);
444	} else {
445		retval = process_context_switch(the_spu, val);
446	}
447	return retval;
448}
449
450static struct notifier_block spu_active = {
451	.notifier_call = spu_active_notify,
452};
453
454static int number_of_online_nodes(void)
455{
456        u32 cpu; u32 tmp;
457        int nodes = 0;
458        for_each_online_cpu(cpu) {
459                tmp = cbe_cpu_to_node(cpu) + 1;
460                if (tmp > nodes)
461                        nodes++;
462        }
463        return nodes;
464}
465
466static int oprofile_spu_buff_create(void)
467{
468	int spu;
469
470	max_spu_buff = oprofile_get_cpu_buffer_size();
471
472	for (spu = 0; spu < num_spu_nodes; spu++) {
473		/* create circular buffers to store the data in.
474		 * use locks to manage accessing the buffers
475		 */
476		spu_buff[spu].head = 0;
477		spu_buff[spu].tail = 0;
478
479		/*
480		 * Create a buffer for each SPU.  Can't reliably
481		 * create a single buffer for all spus due to not
482		 * enough contiguous kernel memory.
483		 */
484
485		spu_buff[spu].buff = kzalloc((max_spu_buff
486					      * sizeof(unsigned long)),
487					     GFP_KERNEL);
488
489		if (!spu_buff[spu].buff) {
490			printk(KERN_ERR "SPU_PROF: "
491			       "%s, line %d:  oprofile_spu_buff_create "
492		       "failed to allocate spu buffer %d.\n",
493			       __func__, __LINE__, spu);
494
495			/* release the spu buffers that have been allocated */
496			while (spu >= 0) {
497				kfree(spu_buff[spu].buff);
498				spu_buff[spu].buff = 0;
499				spu--;
500			}
501			return -ENOMEM;
502		}
503	}
504	return 0;
505}
506
507/* The main purpose of this function is to synchronize
508 * OProfile with SPUFS by registering to be notified of
509 * SPU task switches.
510 *
511 * NOTE: When profiling SPUs, we must ensure that only
512 * spu_sync_start is invoked and not the generic sync_start
513 * in drivers/oprofile/oprof.c.	 A return value of
514 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
515 * accomplish this.
516 */
517int spu_sync_start(void)
518{
519	int spu;
520	int ret = SKIP_GENERIC_SYNC;
521	int register_ret;
522	unsigned long flags = 0;
523
524	spu_prof_num_nodes = number_of_online_nodes();
525	num_spu_nodes = spu_prof_num_nodes * 8;
526	INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
527
528	/* create buffer for storing the SPU data to put in
529	 * the kernel buffer.
530	 */
531	ret = oprofile_spu_buff_create();
532	if (ret)
533		goto out;
534
535	spin_lock_irqsave(&buffer_lock, flags);
536	for (spu = 0; spu < num_spu_nodes; spu++) {
537		spu_buff_add(ESCAPE_CODE, spu);
538		spu_buff_add(SPU_PROFILING_CODE, spu);
539		spu_buff_add(num_spu_nodes, spu);
540	}
541	spin_unlock_irqrestore(&buffer_lock, flags);
542
543	for (spu = 0; spu < num_spu_nodes; spu++) {
544		spu_buff[spu].ctx_sw_seen = 0;
545		spu_buff[spu].last_guard_val = 0;
546	}
547
548	/* Register for SPU events  */
549	register_ret = spu_switch_event_register(&spu_active);
550	if (register_ret) {
551		ret = SYNC_START_ERROR;
552		goto out;
553	}
554
555	pr_debug("spu_sync_start -- running.\n");
556out:
557	return ret;
558}
559
560/* Record SPU program counter samples to the oprofile event buffer. */
561void spu_sync_buffer(int spu_num, unsigned int *samples,
562		     int num_samples)
563{
564	unsigned long long file_offset;
565	unsigned long flags;
566	int i;
567	struct vma_to_fileoffset_map *map;
568	struct spu *the_spu;
569	unsigned long long spu_num_ll = spu_num;
570	unsigned long long spu_num_shifted = spu_num_ll << 32;
571	struct cached_info *c_info;
572
573	/* We need to obtain the cache_lock here because it's
574	 * possible that after getting the cached_info, the SPU job
575	 * corresponding to this cached_info may end, thus resulting
576	 * in the destruction of the cached_info.
577	 */
578	spin_lock_irqsave(&cache_lock, flags);
579	c_info = get_cached_info(NULL, spu_num);
580	if (!c_info) {
581		/* This legitimately happens when the SPU task ends before all
582		 * samples are recorded.
583		 * No big deal -- so we just drop a few samples.
584		 */
585		pr_debug("SPU_PROF: No cached SPU contex "
586			  "for SPU #%d. Dropping samples.\n", spu_num);
587		goto out;
588	}
589
590	map = c_info->map;
591	the_spu = c_info->the_spu;
592	spin_lock(&buffer_lock);
593	for (i = 0; i < num_samples; i++) {
594		unsigned int sample = *(samples+i);
595		int grd_val = 0;
596		file_offset = 0;
597		if (sample == 0)
598			continue;
599		file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
600
601		/* If overlays are used by this SPU application, the guard
602		 * value is non-zero, indicating which overlay section is in
603		 * use.	 We need to discard samples taken during the time
604		 * period which an overlay occurs (i.e., guard value changes).
605		 */
606		if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
607			spu_buff[spu_num].last_guard_val = grd_val;
608			/* Drop the rest of the samples. */
609			break;
610		}
611
612		/* We must ensure that the SPU context switch has been written
613		 * out before samples for the SPU.  Otherwise, the SPU context
614		 * information is not available and the postprocessing of the
615		 * SPU PC will fail with no available anonymous map information.
616		 */
617		if (spu_buff[spu_num].ctx_sw_seen)
618			spu_buff_add((file_offset | spu_num_shifted),
619					 spu_num);
620	}
621	spin_unlock(&buffer_lock);
622out:
623	spin_unlock_irqrestore(&cache_lock, flags);
624}
625
626
627int spu_sync_stop(void)
628{
629	unsigned long flags = 0;
630	int ret;
631	int k;
632
633	ret = spu_switch_event_unregister(&spu_active);
634
635	if (ret)
636		printk(KERN_ERR "SPU_PROF: "
637		       "%s, line %d: spu_switch_event_unregister "	\
638		       "returned %d\n",
639		       __func__, __LINE__, ret);
640
641	/* flush any remaining data in the per SPU buffers */
642	sync_spu_buff();
643
644	spin_lock_irqsave(&cache_lock, flags);
645	ret = release_cached_info(RELEASE_ALL);
646	spin_unlock_irqrestore(&cache_lock, flags);
647
648	/* remove scheduled work queue item rather then waiting
649	 * for every queued entry to execute.  Then flush pending
650	 * system wide buffer to event buffer.
651	 */
652	cancel_delayed_work(&spu_work);
653
654	for (k = 0; k < num_spu_nodes; k++) {
655		spu_buff[k].ctx_sw_seen = 0;
656
657		/*
658		 * spu_sys_buff will be null if there was a problem
659		 * allocating the buffer.  Only delete if it exists.
660		 */
661		kfree(spu_buff[k].buff);
662		spu_buff[k].buff = 0;
663	}
664	pr_debug("spu_sync_stop -- done.\n");
665	return ret;
666}
667