• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/mips/pci/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009, 2010 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/msi.h>
11#include <linux/spinlock.h>
12#include <linux/interrupt.h>
13
14#include <asm/octeon/octeon.h>
15#include <asm/octeon/cvmx-npi-defs.h>
16#include <asm/octeon/cvmx-pci-defs.h>
17#include <asm/octeon/cvmx-npei-defs.h>
18#include <asm/octeon/cvmx-pexp-defs.h>
19#include <asm/octeon/pci-octeon.h>
20
21/*
22 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
23 * in use.
24 */
25static u64 msi_free_irq_bitmask[4];
26
27/*
28 * Each bit in msi_multiple_irq_bitmask tells that the device using
29 * this bit in msi_free_irq_bitmask is also using the next bit. This
30 * is used so we can disable all of the MSI interrupts when a device
31 * uses multiple.
32 */
33static u64 msi_multiple_irq_bitmask[4];
34
35/*
36 * This lock controls updates to msi_free_irq_bitmask and
37 * msi_multiple_irq_bitmask.
38 */
39static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
40
41/*
42 * Number of MSI IRQs used. This variable is set up in
43 * the module init time.
44 */
45static int msi_irq_size;
46
47/**
48 * Called when a driver request MSI interrupts instead of the
49 * legacy INT A-D. This routine will allocate multiple interrupts
50 * for MSI devices that support them. A device can override this by
51 * programming the MSI control bits [6:4] before calling
52 * pci_enable_msi().
53 *
54 * @dev:    Device requesting MSI interrupts
55 * @desc:   MSI descriptor
56 *
57 * Returns 0 on success.
58 */
59int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
60{
61	struct msi_msg msg;
62	u16 control;
63	int configured_private_bits;
64	int request_private_bits;
65	int irq = 0;
66	int irq_step;
67	u64 search_mask;
68	int index;
69
70	/*
71	 * Read the MSI config to figure out how many IRQs this device
72	 * wants.  Most devices only want 1, which will give
73	 * configured_private_bits and request_private_bits equal 0.
74	 */
75	pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
76			     &control);
77
78	/*
79	 * If the number of private bits has been configured then use
80	 * that value instead of the requested number. This gives the
81	 * driver the chance to override the number of interrupts
82	 * before calling pci_enable_msi().
83	 */
84	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85	if (configured_private_bits == 0) {
86		/* Nothing is configured, so use the hardware requested size */
87		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88	} else {
89		/*
90		 * Use the number of configured bits, assuming the
91		 * driver wanted to override the hardware request
92		 * value.
93		 */
94		request_private_bits = configured_private_bits;
95	}
96
97	/*
98	 * The PCI 2.3 spec mandates that there are at most 32
99	 * interrupts. If this device asks for more, only give it one.
100	 */
101	if (request_private_bits > 5)
102		request_private_bits = 0;
103
104try_only_one:
105	/*
106	 * The IRQs have to be aligned on a power of two based on the
107	 * number being requested.
108	 */
109	irq_step = 1 << request_private_bits;
110
111	/* Mask with one bit for each IRQ */
112	search_mask = (1 << irq_step) - 1;
113
114	/*
115	 * We're going to search msi_free_irq_bitmask_lock for zero
116	 * bits. This represents an MSI interrupt number that isn't in
117	 * use.
118	 */
119	spin_lock(&msi_free_irq_bitmask_lock);
120	for (index = 0; index < msi_irq_size/64; index++) {
121		for (irq = 0; irq < 64; irq += irq_step) {
122			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123				msi_free_irq_bitmask[index] |= search_mask << irq;
124				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125				goto msi_irq_allocated;
126			}
127		}
128	}
129msi_irq_allocated:
130	spin_unlock(&msi_free_irq_bitmask_lock);
131
132	/* Make sure the search for available interrupts didn't fail */
133	if (irq >= 64) {
134		if (request_private_bits) {
135			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136			       1 << request_private_bits);
137			request_private_bits = 0;
138			goto try_only_one;
139		} else
140			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141	}
142
143	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144	irq += index*64;
145	irq += OCTEON_IRQ_MSI_BIT0;
146
147	switch (octeon_dma_bar_type) {
148	case OCTEON_DMA_BAR_TYPE_SMALL:
149		/* When not using big bar, Bar 0 is based at 128MB */
150		msg.address_lo =
151			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153	case OCTEON_DMA_BAR_TYPE_BIG:
154		/* When using big bar, Bar 0 is based at 0 */
155		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
156		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
157		break;
158	case OCTEON_DMA_BAR_TYPE_PCIE:
159		/* When using PCIe, Bar 0 is based at 0 */
160		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
161		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
162		break;
163	default:
164		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n");
165	}
166	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
167
168	/* Update the number of IRQs the device has available to it */
169	control &= ~PCI_MSI_FLAGS_QSIZE;
170	control |= request_private_bits << 4;
171	pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
172			      control);
173
174	set_irq_msi(irq, desc);
175	write_msi_msg(irq, &msg);
176	return 0;
177}
178
179int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
180{
181	struct msi_desc *entry;
182	int ret;
183
184	/*
185	 * MSI-X is not supported.
186	 */
187	if (type == PCI_CAP_ID_MSIX)
188		return -EINVAL;
189
190	/*
191	 * If an architecture wants to support multiple MSI, it needs to
192	 * override arch_setup_msi_irqs()
193	 */
194	if (type == PCI_CAP_ID_MSI && nvec > 1)
195		return 1;
196
197	list_for_each_entry(entry, &dev->msi_list, list) {
198		ret = arch_setup_msi_irq(dev, entry);
199		if (ret < 0)
200			return ret;
201		if (ret > 0)
202			return -ENOSPC;
203	}
204
205	return 0;
206}
207
208/**
209 * Called when a device no longer needs its MSI interrupts. All
210 * MSI interrupts for the device are freed.
211 *
212 * @irq:    The devices first irq number. There may be multple in sequence.
213 */
214void arch_teardown_msi_irq(unsigned int irq)
215{
216	int number_irqs;
217	u64 bitmask;
218	int index = 0;
219	int irq0;
220
221	if ((irq < OCTEON_IRQ_MSI_BIT0)
222		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
223		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
224		      "MSI interrupt (%d)", irq);
225
226	irq -= OCTEON_IRQ_MSI_BIT0;
227	index = irq / 64;
228	irq0 = irq % 64;
229
230	/*
231	 * Count the number of IRQs we need to free by looking at the
232	 * msi_multiple_irq_bitmask. Each bit set means that the next
233	 * IRQ is also owned by this device.
234	 */
235	number_irqs = 0;
236	while ((irq0 + number_irqs < 64) &&
237	       (msi_multiple_irq_bitmask[index]
238		& (1ull << (irq0 + number_irqs))))
239		number_irqs++;
240	number_irqs++;
241	/* Mask with one bit for each IRQ */
242	bitmask = (1 << number_irqs) - 1;
243	/* Shift the mask to the correct bit location */
244	bitmask <<= irq0;
245	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
246		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
247		      "interrupt (%d) not in use", irq);
248
249	/* Checks are done, update the in use bitmask */
250	spin_lock(&msi_free_irq_bitmask_lock);
251	msi_free_irq_bitmask[index] &= ~bitmask;
252	msi_multiple_irq_bitmask[index] &= ~bitmask;
253	spin_unlock(&msi_free_irq_bitmask_lock);
254}
255
256static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
257
258static u64 msi_rcv_reg[4];
259static u64 mis_ena_reg[4];
260
261static void octeon_irq_msi_enable_pcie(unsigned int irq)
262{
263	u64 en;
264	unsigned long flags;
265	int msi_number = irq - OCTEON_IRQ_MSI_BIT0;
266	int irq_index = msi_number >> 6;
267	int irq_bit = msi_number & 0x3f;
268
269	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
270	en = cvmx_read_csr(mis_ena_reg[irq_index]);
271	en |= 1ull << irq_bit;
272	cvmx_write_csr(mis_ena_reg[irq_index], en);
273	cvmx_read_csr(mis_ena_reg[irq_index]);
274	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
275}
276
277static void octeon_irq_msi_disable_pcie(unsigned int irq)
278{
279	u64 en;
280	unsigned long flags;
281	int msi_number = irq - OCTEON_IRQ_MSI_BIT0;
282	int irq_index = msi_number >> 6;
283	int irq_bit = msi_number & 0x3f;
284
285	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
286	en = cvmx_read_csr(mis_ena_reg[irq_index]);
287	en &= ~(1ull << irq_bit);
288	cvmx_write_csr(mis_ena_reg[irq_index], en);
289	cvmx_read_csr(mis_ena_reg[irq_index]);
290	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
291}
292
293static struct irq_chip octeon_irq_chip_msi_pcie = {
294	.name = "MSI",
295	.enable = octeon_irq_msi_enable_pcie,
296	.disable = octeon_irq_msi_disable_pcie,
297};
298
299static void octeon_irq_msi_enable_pci(unsigned int irq)
300{
301	/*
302	 * Octeon PCI doesn't have the ability to mask/unmask MSI
303	 * interrupts individually. Instead of masking/unmasking them
304	 * in groups of 16, we simple assume MSI devices are well
305	 * behaved. MSI interrupts are always enable and the ACK is
306	 * assumed to be enough
307	 */
308}
309
310static void octeon_irq_msi_disable_pci(unsigned int irq)
311{
312	/* See comment in enable */
313}
314
315static struct irq_chip octeon_irq_chip_msi_pci = {
316	.name = "MSI",
317	.enable = octeon_irq_msi_enable_pci,
318	.disable = octeon_irq_msi_disable_pci,
319};
320
321/*
322 * Called by the interrupt handling code when an MSI interrupt
323 * occurs.
324 */
325static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
326{
327	int irq;
328	int bit;
329
330	bit = fls64(msi_bits);
331	if (bit) {
332		bit--;
333		/* Acknowledge it first. */
334		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
335
336		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
337		do_IRQ(irq);
338		return IRQ_HANDLED;
339	}
340	return IRQ_NONE;
341}
342
343#define OCTEON_MSI_INT_HANDLER_X(x)					\
344static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
345{									\
346	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
347	return __octeon_msi_do_interrupt((x), msi_bits);		\
348}
349
350/*
351 * Create octeon_msi_interrupt{0-3} function body
352 */
353OCTEON_MSI_INT_HANDLER_X(0);
354OCTEON_MSI_INT_HANDLER_X(1);
355OCTEON_MSI_INT_HANDLER_X(2);
356OCTEON_MSI_INT_HANDLER_X(3);
357
358/*
359 * Initializes the MSI interrupt handling code
360 */
361int __init octeon_msi_initialize(void)
362{
363	int irq;
364	struct irq_chip *msi;
365
366	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
367		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
368		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
369		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
370		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
371		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
372		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
373		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
374		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
375		msi = &octeon_irq_chip_msi_pcie;
376	} else {
377		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
378#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
379		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
380		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
381		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
382		mis_ena_reg[0] = INVALID_GENERATE_ADE;
383		mis_ena_reg[1] = INVALID_GENERATE_ADE;
384		mis_ena_reg[2] = INVALID_GENERATE_ADE;
385		mis_ena_reg[3] = INVALID_GENERATE_ADE;
386		msi = &octeon_irq_chip_msi_pci;
387	}
388
389	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
390		set_irq_chip_and_handler(irq, msi, handle_simple_irq);
391
392	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
393		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
394				0, "MSI[0:63]", octeon_msi_interrupt0))
395			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
396
397		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
398				0, "MSI[64:127]", octeon_msi_interrupt1))
399			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
400
401		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
402				0, "MSI[127:191]", octeon_msi_interrupt2))
403			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
404
405		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
406				0, "MSI[192:255]", octeon_msi_interrupt3))
407			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
408
409		msi_irq_size = 256;
410	} else if (octeon_is_pci_host()) {
411		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
412				0, "MSI[0:15]", octeon_msi_interrupt0))
413			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
414
415		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
416				0, "MSI[16:31]", octeon_msi_interrupt0))
417			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
418
419		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
420				0, "MSI[32:47]", octeon_msi_interrupt0))
421			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
422
423		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
424				0, "MSI[48:63]", octeon_msi_interrupt0))
425			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
426		msi_irq_size = 64;
427	}
428	return 0;
429}
430subsys_initcall(octeon_msi_initialize);
431