• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/ia64/kernel/
1/*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 *	David Mosberger-Tang <davidm@hpl.hp.com>
6 *	Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * 	Rohit Seth <rohit.seth@intel.com>
9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
10 * 	Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 *			Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian	added the support for command line argument
22 * 06/24/99 W.Drummond	added boot_cpu_data.
23 * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24 */
25#include <linux/module.h>
26#include <linux/init.h>
27
28#include <linux/acpi.h>
29#include <linux/bootmem.h>
30#include <linux/console.h>
31#include <linux/delay.h>
32#include <linux/kernel.h>
33#include <linux/reboot.h>
34#include <linux/sched.h>
35#include <linux/seq_file.h>
36#include <linux/string.h>
37#include <linux/threads.h>
38#include <linux/screen_info.h>
39#include <linux/dmi.h>
40#include <linux/serial.h>
41#include <linux/serial_core.h>
42#include <linux/efi.h>
43#include <linux/initrd.h>
44#include <linux/pm.h>
45#include <linux/cpufreq.h>
46#include <linux/kexec.h>
47#include <linux/crash_dump.h>
48
49#include <asm/machvec.h>
50#include <asm/mca.h>
51#include <asm/meminit.h>
52#include <asm/page.h>
53#include <asm/paravirt.h>
54#include <asm/paravirt_patch.h>
55#include <asm/patch.h>
56#include <asm/pgtable.h>
57#include <asm/processor.h>
58#include <asm/sal.h>
59#include <asm/sections.h>
60#include <asm/setup.h>
61#include <asm/smp.h>
62#include <asm/system.h>
63#include <asm/tlbflush.h>
64#include <asm/unistd.h>
65#include <asm/hpsim.h>
66
67#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
68# error "struct cpuinfo_ia64 too big!"
69#endif
70
71#ifdef CONFIG_SMP
72unsigned long __per_cpu_offset[NR_CPUS];
73EXPORT_SYMBOL(__per_cpu_offset);
74#endif
75
76DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
77DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78unsigned long ia64_cycles_per_usec;
79struct ia64_boot_param *ia64_boot_param;
80struct screen_info screen_info;
81unsigned long vga_console_iobase;
82unsigned long vga_console_membase;
83
84static struct resource data_resource = {
85	.name	= "Kernel data",
86	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87};
88
89static struct resource code_resource = {
90	.name	= "Kernel code",
91	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92};
93
94static struct resource bss_resource = {
95	.name	= "Kernel bss",
96	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
97};
98
99unsigned long ia64_max_cacheline_size;
100
101unsigned long ia64_iobase;	/* virtual address for I/O accesses */
102EXPORT_SYMBOL(ia64_iobase);
103struct io_space io_space[MAX_IO_SPACES];
104EXPORT_SYMBOL(io_space);
105unsigned int num_io_spaces;
106
107/*
108 * "flush_icache_range()" needs to know what processor dependent stride size to use
109 * when it makes i-cache(s) coherent with d-caches.
110 */
111#define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
112unsigned long ia64_i_cache_stride_shift = ~0;
113/*
114 * "clflush_cache_range()" needs to know what processor dependent stride size to
115 * use when it flushes cache lines including both d-cache and i-cache.
116 */
117/* Safest way to go: 32 bytes by 32 bytes */
118#define	CACHE_STRIDE_SHIFT	5
119unsigned long ia64_cache_stride_shift = ~0;
120
121/*
122 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
123 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
124 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
125 * address of the second buffer must be aligned to (merge_mask+1) in order to be
126 * mergeable).  By default, we assume there is no I/O MMU which can merge physically
127 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
128 * page-size of 2^64.
129 */
130unsigned long ia64_max_iommu_merge_mask = ~0UL;
131EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
132
133/*
134 * We use a special marker for the end of memory and it uses the extra (+1) slot
135 */
136struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
137int num_rsvd_regions __initdata;
138
139
140/*
141 * Filter incoming memory segments based on the primitive map created from the boot
142 * parameters. Segments contained in the map are removed from the memory ranges. A
143 * caller-specified function is called with the memory ranges that remain after filtering.
144 * This routine does not assume the incoming segments are sorted.
145 */
146int __init
147filter_rsvd_memory (u64 start, u64 end, void *arg)
148{
149	u64 range_start, range_end, prev_start;
150	void (*func)(unsigned long, unsigned long, int);
151	int i;
152
153#if IGNORE_PFN0
154	if (start == PAGE_OFFSET) {
155		printk(KERN_WARNING "warning: skipping physical page 0\n");
156		start += PAGE_SIZE;
157		if (start >= end) return 0;
158	}
159#endif
160	/*
161	 * lowest possible address(walker uses virtual)
162	 */
163	prev_start = PAGE_OFFSET;
164	func = arg;
165
166	for (i = 0; i < num_rsvd_regions; ++i) {
167		range_start = max(start, prev_start);
168		range_end   = min(end, rsvd_region[i].start);
169
170		if (range_start < range_end)
171			call_pernode_memory(__pa(range_start), range_end - range_start, func);
172
173		/* nothing more available in this segment */
174		if (range_end == end) return 0;
175
176		prev_start = rsvd_region[i].end;
177	}
178	/* end of memory marker allows full processing inside loop body */
179	return 0;
180}
181
182/*
183 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
184 * are not filtered out.
185 */
186int __init
187filter_memory(u64 start, u64 end, void *arg)
188{
189	void (*func)(unsigned long, unsigned long, int);
190
191#if IGNORE_PFN0
192	if (start == PAGE_OFFSET) {
193		printk(KERN_WARNING "warning: skipping physical page 0\n");
194		start += PAGE_SIZE;
195		if (start >= end)
196			return 0;
197	}
198#endif
199	func = arg;
200	if (start < end)
201		call_pernode_memory(__pa(start), end - start, func);
202	return 0;
203}
204
205static void __init
206sort_regions (struct rsvd_region *rsvd_region, int max)
207{
208	int j;
209
210	/* simple bubble sorting */
211	while (max--) {
212		for (j = 0; j < max; ++j) {
213			if (rsvd_region[j].start > rsvd_region[j+1].start) {
214				struct rsvd_region tmp;
215				tmp = rsvd_region[j];
216				rsvd_region[j] = rsvd_region[j + 1];
217				rsvd_region[j + 1] = tmp;
218			}
219		}
220	}
221}
222
223/*
224 * Request address space for all standard resources
225 */
226static int __init register_memory(void)
227{
228	code_resource.start = ia64_tpa(_text);
229	code_resource.end   = ia64_tpa(_etext) - 1;
230	data_resource.start = ia64_tpa(_etext);
231	data_resource.end   = ia64_tpa(_edata) - 1;
232	bss_resource.start  = ia64_tpa(__bss_start);
233	bss_resource.end    = ia64_tpa(_end) - 1;
234	efi_initialize_iomem_resources(&code_resource, &data_resource,
235			&bss_resource);
236
237	return 0;
238}
239
240__initcall(register_memory);
241
242
243#ifdef CONFIG_KEXEC
244
245/*
246 * This function checks if the reserved crashkernel is allowed on the specific
247 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
248 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
249 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
250 * in kdump case. See the comment in sba_init() in sba_iommu.c.
251 *
252 * So, the only machvec that really supports loading the kdump kernel
253 * over 4 GB is "sn2".
254 */
255static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
256{
257	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
258		return 1;
259	else
260		return pbase < (1UL << 32);
261}
262
263static void __init setup_crashkernel(unsigned long total, int *n)
264{
265	unsigned long long base = 0, size = 0;
266	int ret;
267
268	ret = parse_crashkernel(boot_command_line, total,
269			&size, &base);
270	if (ret == 0 && size > 0) {
271		if (!base) {
272			sort_regions(rsvd_region, *n);
273			base = kdump_find_rsvd_region(size,
274					rsvd_region, *n);
275		}
276
277		if (!check_crashkernel_memory(base, size)) {
278			pr_warning("crashkernel: There would be kdump memory "
279				"at %ld GB but this is unusable because it "
280				"must\nbe below 4 GB. Change the memory "
281				"configuration of the machine.\n",
282				(unsigned long)(base >> 30));
283			return;
284		}
285
286		if (base != ~0UL) {
287			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
288					"for crashkernel (System RAM: %ldMB)\n",
289					(unsigned long)(size >> 20),
290					(unsigned long)(base >> 20),
291					(unsigned long)(total >> 20));
292			rsvd_region[*n].start =
293				(unsigned long)__va(base);
294			rsvd_region[*n].end =
295				(unsigned long)__va(base + size);
296			(*n)++;
297			crashk_res.start = base;
298			crashk_res.end = base + size - 1;
299		}
300	}
301	efi_memmap_res.start = ia64_boot_param->efi_memmap;
302	efi_memmap_res.end = efi_memmap_res.start +
303		ia64_boot_param->efi_memmap_size;
304	boot_param_res.start = __pa(ia64_boot_param);
305	boot_param_res.end = boot_param_res.start +
306		sizeof(*ia64_boot_param);
307}
308#else
309static inline void __init setup_crashkernel(unsigned long total, int *n)
310{}
311#endif
312
313/**
314 * reserve_memory - setup reserved memory areas
315 *
316 * Setup the reserved memory areas set aside for the boot parameters,
317 * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
318 * see arch/ia64/include/asm/meminit.h if you need to define more.
319 */
320void __init
321reserve_memory (void)
322{
323	int n = 0;
324	unsigned long total_memory;
325
326	/*
327	 * none of the entries in this table overlap
328	 */
329	rsvd_region[n].start = (unsigned long) ia64_boot_param;
330	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
331	n++;
332
333	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
334	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
335	n++;
336
337	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
338	rsvd_region[n].end   = (rsvd_region[n].start
339				+ strlen(__va(ia64_boot_param->command_line)) + 1);
340	n++;
341
342	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
343	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
344	n++;
345
346	n += paravirt_reserve_memory(&rsvd_region[n]);
347
348#ifdef CONFIG_BLK_DEV_INITRD
349	if (ia64_boot_param->initrd_start) {
350		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
351		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
352		n++;
353	}
354#endif
355
356#ifdef CONFIG_CRASH_DUMP
357	if (reserve_elfcorehdr(&rsvd_region[n].start,
358			       &rsvd_region[n].end) == 0)
359		n++;
360#endif
361
362	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
363	n++;
364
365	setup_crashkernel(total_memory, &n);
366
367	/* end of memory marker */
368	rsvd_region[n].start = ~0UL;
369	rsvd_region[n].end   = ~0UL;
370	n++;
371
372	num_rsvd_regions = n;
373	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
374
375	sort_regions(rsvd_region, num_rsvd_regions);
376}
377
378
379/**
380 * find_initrd - get initrd parameters from the boot parameter structure
381 *
382 * Grab the initrd start and end from the boot parameter struct given us by
383 * the boot loader.
384 */
385void __init
386find_initrd (void)
387{
388#ifdef CONFIG_BLK_DEV_INITRD
389	if (ia64_boot_param->initrd_start) {
390		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
391		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
392
393		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
394		       initrd_start, ia64_boot_param->initrd_size);
395	}
396#endif
397}
398
399static void __init
400io_port_init (void)
401{
402	unsigned long phys_iobase;
403
404	/*
405	 * Set `iobase' based on the EFI memory map or, failing that, the
406	 * value firmware left in ar.k0.
407	 *
408	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
409	 * the port's virtual address, so ia32_load_state() loads it with a
410	 * user virtual address.  But in ia64 mode, glibc uses the
411	 * *physical* address in ar.k0 to mmap the appropriate area from
412	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
413	 * cases, user-mode can only use the legacy 0-64K I/O port space.
414	 *
415	 * ar.k0 is not involved in kernel I/O port accesses, which can use
416	 * any of the I/O port spaces and are done via MMIO using the
417	 * virtual mmio_base from the appropriate io_space[].
418	 */
419	phys_iobase = efi_get_iobase();
420	if (!phys_iobase) {
421		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
422		printk(KERN_INFO "No I/O port range found in EFI memory map, "
423			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
424	}
425	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
426	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
427
428	/* setup legacy IO port space */
429	io_space[0].mmio_base = ia64_iobase;
430	io_space[0].sparse = 1;
431	num_io_spaces = 1;
432}
433
434/**
435 * early_console_setup - setup debugging console
436 *
437 * Consoles started here require little enough setup that we can start using
438 * them very early in the boot process, either right after the machine
439 * vector initialization, or even before if the drivers can detect their hw.
440 *
441 * Returns non-zero if a console couldn't be setup.
442 */
443static inline int __init
444early_console_setup (char *cmdline)
445{
446	int earlycons = 0;
447
448#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
449	{
450		extern int sn_serial_console_early_setup(void);
451		if (!sn_serial_console_early_setup())
452			earlycons++;
453	}
454#endif
455#ifdef CONFIG_EFI_PCDP
456	if (!efi_setup_pcdp_console(cmdline))
457		earlycons++;
458#endif
459	if (!simcons_register())
460		earlycons++;
461
462	return (earlycons) ? 0 : -1;
463}
464
465static inline void
466mark_bsp_online (void)
467{
468#ifdef CONFIG_SMP
469	/* If we register an early console, allow CPU 0 to printk */
470	cpu_set(smp_processor_id(), cpu_online_map);
471#endif
472}
473
474static __initdata int nomca;
475static __init int setup_nomca(char *s)
476{
477	nomca = 1;
478	return 0;
479}
480early_param("nomca", setup_nomca);
481
482/*
483 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
484 * is_kdump_kernel() to determine if we are booting after a panic. Hence
485 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
486 */
487#ifdef CONFIG_CRASH_DUMP
488/* elfcorehdr= specifies the location of elf core header
489 * stored by the crashed kernel.
490 */
491static int __init parse_elfcorehdr(char *arg)
492{
493	if (!arg)
494		return -EINVAL;
495
496        elfcorehdr_addr = memparse(arg, &arg);
497	return 0;
498}
499early_param("elfcorehdr", parse_elfcorehdr);
500
501int __init reserve_elfcorehdr(u64 *start, u64 *end)
502{
503	u64 length;
504
505	/* We get the address using the kernel command line,
506	 * but the size is extracted from the EFI tables.
507	 * Both address and size are required for reservation
508	 * to work properly.
509	 */
510
511	if (!is_vmcore_usable())
512		return -EINVAL;
513
514	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
515		vmcore_unusable();
516		return -EINVAL;
517	}
518
519	*start = (unsigned long)__va(elfcorehdr_addr);
520	*end = *start + length;
521	return 0;
522}
523
524#endif /* CONFIG_PROC_VMCORE */
525
526void __init
527setup_arch (char **cmdline_p)
528{
529	unw_init();
530
531	paravirt_arch_setup_early();
532
533	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
534	paravirt_patch_apply();
535
536	*cmdline_p = __va(ia64_boot_param->command_line);
537	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
538
539	efi_init();
540	io_port_init();
541
542#ifdef CONFIG_IA64_GENERIC
543	/* machvec needs to be parsed from the command line
544	 * before parse_early_param() is called to ensure
545	 * that ia64_mv is initialised before any command line
546	 * settings may cause console setup to occur
547	 */
548	machvec_init_from_cmdline(*cmdline_p);
549#endif
550
551	parse_early_param();
552
553	if (early_console_setup(*cmdline_p) == 0)
554		mark_bsp_online();
555
556#ifdef CONFIG_ACPI
557	/* Initialize the ACPI boot-time table parser */
558	acpi_table_init();
559	early_acpi_boot_init();
560# ifdef CONFIG_ACPI_NUMA
561	acpi_numa_init();
562#  ifdef CONFIG_ACPI_HOTPLUG_CPU
563	prefill_possible_map();
564#  endif
565	per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
566		32 : cpus_weight(early_cpu_possible_map)),
567		additional_cpus > 0 ? additional_cpus : 0);
568# endif
569#endif /* CONFIG_APCI_BOOT */
570
571#ifdef CONFIG_SMP
572	smp_build_cpu_map();
573#endif
574	find_memory();
575
576	/* process SAL system table: */
577	ia64_sal_init(__va(efi.sal_systab));
578
579#ifdef CONFIG_ITANIUM
580	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
581#else
582	{
583		unsigned long num_phys_stacked;
584
585		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
586			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
587	}
588#endif
589
590#ifdef CONFIG_SMP
591	cpu_physical_id(0) = hard_smp_processor_id();
592#endif
593
594	cpu_init();	/* initialize the bootstrap CPU */
595	mmu_context_init();	/* initialize context_id bitmap */
596
597#ifdef CONFIG_ACPI
598	acpi_boot_init();
599#endif
600
601	paravirt_banner();
602	paravirt_arch_setup_console(cmdline_p);
603
604#ifdef CONFIG_VT
605	if (!conswitchp) {
606# if defined(CONFIG_DUMMY_CONSOLE)
607		conswitchp = &dummy_con;
608# endif
609# if defined(CONFIG_VGA_CONSOLE)
610		/*
611		 * Non-legacy systems may route legacy VGA MMIO range to system
612		 * memory.  vga_con probes the MMIO hole, so memory looks like
613		 * a VGA device to it.  The EFI memory map can tell us if it's
614		 * memory so we can avoid this problem.
615		 */
616		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
617			conswitchp = &vga_con;
618# endif
619	}
620#endif
621
622	/* enable IA-64 Machine Check Abort Handling unless disabled */
623	if (paravirt_arch_setup_nomca())
624		nomca = 1;
625	if (!nomca)
626		ia64_mca_init();
627
628	platform_setup(cmdline_p);
629#ifndef CONFIG_IA64_HP_SIM
630	check_sal_cache_flush();
631#endif
632	paging_init();
633}
634
635/*
636 * Display cpu info for all CPUs.
637 */
638static int
639show_cpuinfo (struct seq_file *m, void *v)
640{
641#ifdef CONFIG_SMP
642#	define lpj	c->loops_per_jiffy
643#	define cpunum	c->cpu
644#else
645#	define lpj	loops_per_jiffy
646#	define cpunum	0
647#endif
648	static struct {
649		unsigned long mask;
650		const char *feature_name;
651	} feature_bits[] = {
652		{ 1UL << 0, "branchlong" },
653		{ 1UL << 1, "spontaneous deferral"},
654		{ 1UL << 2, "16-byte atomic ops" }
655	};
656	char features[128], *cp, *sep;
657	struct cpuinfo_ia64 *c = v;
658	unsigned long mask;
659	unsigned long proc_freq;
660	int i, size;
661
662	mask = c->features;
663
664	/* build the feature string: */
665	memcpy(features, "standard", 9);
666	cp = features;
667	size = sizeof(features);
668	sep = "";
669	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
670		if (mask & feature_bits[i].mask) {
671			cp += snprintf(cp, size, "%s%s", sep,
672				       feature_bits[i].feature_name),
673			sep = ", ";
674			mask &= ~feature_bits[i].mask;
675			size = sizeof(features) - (cp - features);
676		}
677	}
678	if (mask && size > 1) {
679		/* print unknown features as a hex value */
680		snprintf(cp, size, "%s0x%lx", sep, mask);
681	}
682
683	proc_freq = cpufreq_quick_get(cpunum);
684	if (!proc_freq)
685		proc_freq = c->proc_freq / 1000;
686
687	seq_printf(m,
688		   "processor  : %d\n"
689		   "vendor     : %s\n"
690		   "arch       : IA-64\n"
691		   "family     : %u\n"
692		   "model      : %u\n"
693		   "model name : %s\n"
694		   "revision   : %u\n"
695		   "archrev    : %u\n"
696		   "features   : %s\n"
697		   "cpu number : %lu\n"
698		   "cpu regs   : %u\n"
699		   "cpu MHz    : %lu.%03lu\n"
700		   "itc MHz    : %lu.%06lu\n"
701		   "BogoMIPS   : %lu.%02lu\n",
702		   cpunum, c->vendor, c->family, c->model,
703		   c->model_name, c->revision, c->archrev,
704		   features, c->ppn, c->number,
705		   proc_freq / 1000, proc_freq % 1000,
706		   c->itc_freq / 1000000, c->itc_freq % 1000000,
707		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
708#ifdef CONFIG_SMP
709	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
710	if (c->socket_id != -1)
711		seq_printf(m, "physical id: %u\n", c->socket_id);
712	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
713		seq_printf(m,
714			   "core id    : %u\n"
715			   "thread id  : %u\n",
716			   c->core_id, c->thread_id);
717#endif
718	seq_printf(m,"\n");
719
720	return 0;
721}
722
723static void *
724c_start (struct seq_file *m, loff_t *pos)
725{
726#ifdef CONFIG_SMP
727	while (*pos < nr_cpu_ids && !cpu_online(*pos))
728		++*pos;
729#endif
730	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
731}
732
733static void *
734c_next (struct seq_file *m, void *v, loff_t *pos)
735{
736	++*pos;
737	return c_start(m, pos);
738}
739
740static void
741c_stop (struct seq_file *m, void *v)
742{
743}
744
745const struct seq_operations cpuinfo_op = {
746	.start =	c_start,
747	.next =		c_next,
748	.stop =		c_stop,
749	.show =		show_cpuinfo
750};
751
752#define MAX_BRANDS	8
753static char brandname[MAX_BRANDS][128];
754
755static char * __cpuinit
756get_model_name(__u8 family, __u8 model)
757{
758	static int overflow;
759	char brand[128];
760	int i;
761
762	memcpy(brand, "Unknown", 8);
763	if (ia64_pal_get_brand_info(brand)) {
764		if (family == 0x7)
765			memcpy(brand, "Merced", 7);
766		else if (family == 0x1f) switch (model) {
767			case 0: memcpy(brand, "McKinley", 9); break;
768			case 1: memcpy(brand, "Madison", 8); break;
769			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
770		}
771	}
772	for (i = 0; i < MAX_BRANDS; i++)
773		if (strcmp(brandname[i], brand) == 0)
774			return brandname[i];
775	for (i = 0; i < MAX_BRANDS; i++)
776		if (brandname[i][0] == '\0')
777			return strcpy(brandname[i], brand);
778	if (overflow++ == 0)
779		printk(KERN_ERR
780		       "%s: Table overflow. Some processor model information will be missing\n",
781		       __func__);
782	return "Unknown";
783}
784
785static void __cpuinit
786identify_cpu (struct cpuinfo_ia64 *c)
787{
788	union {
789		unsigned long bits[5];
790		struct {
791			/* id 0 & 1: */
792			char vendor[16];
793
794			/* id 2 */
795			u64 ppn;		/* processor serial number */
796
797			/* id 3: */
798			unsigned number		:  8;
799			unsigned revision	:  8;
800			unsigned model		:  8;
801			unsigned family		:  8;
802			unsigned archrev	:  8;
803			unsigned reserved	: 24;
804
805			/* id 4: */
806			u64 features;
807		} field;
808	} cpuid;
809	pal_vm_info_1_u_t vm1;
810	pal_vm_info_2_u_t vm2;
811	pal_status_t status;
812	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
813	int i;
814	for (i = 0; i < 5; ++i)
815		cpuid.bits[i] = ia64_get_cpuid(i);
816
817	memcpy(c->vendor, cpuid.field.vendor, 16);
818#ifdef CONFIG_SMP
819	c->cpu = smp_processor_id();
820
821	/* below default values will be overwritten  by identify_siblings()
822	 * for Multi-Threading/Multi-Core capable CPUs
823	 */
824	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
825	c->socket_id = -1;
826
827	identify_siblings(c);
828
829	if (c->threads_per_core > smp_num_siblings)
830		smp_num_siblings = c->threads_per_core;
831#endif
832	c->ppn = cpuid.field.ppn;
833	c->number = cpuid.field.number;
834	c->revision = cpuid.field.revision;
835	c->model = cpuid.field.model;
836	c->family = cpuid.field.family;
837	c->archrev = cpuid.field.archrev;
838	c->features = cpuid.field.features;
839	c->model_name = get_model_name(c->family, c->model);
840
841	status = ia64_pal_vm_summary(&vm1, &vm2);
842	if (status == PAL_STATUS_SUCCESS) {
843		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
844		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
845	}
846	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
847	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
848}
849
850/*
851 * Do the following calculations:
852 *
853 * 1. the max. cache line size.
854 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
855 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
856 */
857static void __cpuinit
858get_cache_info(void)
859{
860	unsigned long line_size, max = 1;
861	unsigned long l, levels, unique_caches;
862	pal_cache_config_info_t cci;
863	long status;
864
865        status = ia64_pal_cache_summary(&levels, &unique_caches);
866        if (status != 0) {
867                printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
868                       __func__, status);
869                max = SMP_CACHE_BYTES;
870		/* Safest setup for "flush_icache_range()" */
871		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
872		/* Safest setup for "clflush_cache_range()" */
873		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
874		goto out;
875        }
876
877	for (l = 0; l < levels; ++l) {
878		/* cache_type (data_or_unified)=2 */
879		status = ia64_pal_cache_config_info(l, 2, &cci);
880		if (status != 0) {
881			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
882				"(l=%lu, 2) failed (status=%ld)\n",
883				__func__, l, status);
884			max = SMP_CACHE_BYTES;
885			/* The safest setup for "flush_icache_range()" */
886			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
887			/* The safest setup for "clflush_cache_range()" */
888			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
889			cci.pcci_unified = 1;
890		} else {
891			if (cci.pcci_stride < ia64_cache_stride_shift)
892				ia64_cache_stride_shift = cci.pcci_stride;
893
894			line_size = 1 << cci.pcci_line_size;
895			if (line_size > max)
896				max = line_size;
897		}
898
899		if (!cci.pcci_unified) {
900			/* cache_type (instruction)=1*/
901			status = ia64_pal_cache_config_info(l, 1, &cci);
902			if (status != 0) {
903				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
904					"(l=%lu, 1) failed (status=%ld)\n",
905					__func__, l, status);
906				/* The safest setup for flush_icache_range() */
907				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
908			}
909		}
910		if (cci.pcci_stride < ia64_i_cache_stride_shift)
911			ia64_i_cache_stride_shift = cci.pcci_stride;
912	}
913  out:
914	if (max > ia64_max_cacheline_size)
915		ia64_max_cacheline_size = max;
916}
917
918/*
919 * cpu_init() initializes state that is per-CPU.  This function acts
920 * as a 'CPU state barrier', nothing should get across.
921 */
922void __cpuinit
923cpu_init (void)
924{
925	extern void __cpuinit ia64_mmu_init (void *);
926	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
927	unsigned long num_phys_stacked;
928	pal_vm_info_2_u_t vmi;
929	unsigned int max_ctx;
930	struct cpuinfo_ia64 *cpu_info;
931	void *cpu_data;
932
933	cpu_data = per_cpu_init();
934#ifdef CONFIG_SMP
935	/*
936	 * insert boot cpu into sibling and core mapes
937	 * (must be done after per_cpu area is setup)
938	 */
939	if (smp_processor_id() == 0) {
940		cpu_set(0, per_cpu(cpu_sibling_map, 0));
941		cpu_set(0, cpu_core_map[0]);
942	} else {
943		/*
944		 * Set ar.k3 so that assembly code in MCA handler can compute
945		 * physical addresses of per cpu variables with a simple:
946		 *   phys = ar.k3 + &per_cpu_var
947		 * and the alt-dtlb-miss handler can set per-cpu mapping into
948		 * the TLB when needed. head.S already did this for cpu0.
949		 */
950		ia64_set_kr(IA64_KR_PER_CPU_DATA,
951			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
952	}
953#endif
954
955	get_cache_info();
956
957	/*
958	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
959	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
960	 * depends on the data returned by identify_cpu().  We break the dependency by
961	 * accessing cpu_data() through the canonical per-CPU address.
962	 */
963	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
964	identify_cpu(cpu_info);
965
966#ifdef CONFIG_MCKINLEY
967	{
968#		define FEATURE_SET 16
969		struct ia64_pal_retval iprv;
970
971		if (cpu_info->family == 0x1f) {
972			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
973			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
974				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
975				              (iprv.v1 | 0x80), FEATURE_SET, 0);
976		}
977	}
978#endif
979
980	/* Clear the stack memory reserved for pt_regs: */
981	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
982
983	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
984
985	/*
986	 * Initialize the page-table base register to a global
987	 * directory with all zeroes.  This ensure that we can handle
988	 * TLB-misses to user address-space even before we created the
989	 * first user address-space.  This may happen, e.g., due to
990	 * aggressive use of lfetch.fault.
991	 */
992	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
993
994	/*
995	 * Initialize default control register to defer speculative faults except
996	 * for those arising from TLB misses, which are not deferred.  The
997	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
998	 * the kernel must have recovery code for all speculative accesses).  Turn on
999	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
1000	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1001	 * be fine).
1002	 */
1003	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1004					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1005	atomic_inc(&init_mm.mm_count);
1006	current->active_mm = &init_mm;
1007	BUG_ON(current->mm);
1008
1009	ia64_mmu_init(ia64_imva(cpu_data));
1010	ia64_mca_cpu_init(ia64_imva(cpu_data));
1011
1012	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
1013	ia64_set_itc(0);
1014
1015	/* disable all local interrupt sources: */
1016	ia64_set_itv(1 << 16);
1017	ia64_set_lrr0(1 << 16);
1018	ia64_set_lrr1(1 << 16);
1019	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1020	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1021
1022	/* clear TPR & XTP to enable all interrupt classes: */
1023	ia64_setreg(_IA64_REG_CR_TPR, 0);
1024
1025	/* Clear any pending interrupts left by SAL/EFI */
1026	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1027		ia64_eoi();
1028
1029#ifdef CONFIG_SMP
1030	normal_xtp();
1031#endif
1032
1033	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1034	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1035		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1036		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1037	} else {
1038		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1039		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1040	}
1041	while (max_ctx < ia64_ctx.max_ctx) {
1042		unsigned int old = ia64_ctx.max_ctx;
1043		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1044			break;
1045	}
1046
1047	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1048		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1049		       "stacked regs\n");
1050		num_phys_stacked = 96;
1051	}
1052	/* size of physical stacked register partition plus 8 bytes: */
1053	if (num_phys_stacked > max_num_phys_stacked) {
1054		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1055		max_num_phys_stacked = num_phys_stacked;
1056	}
1057	platform_cpu_init();
1058	pm_idle = default_idle;
1059}
1060
1061void __init
1062check_bugs (void)
1063{
1064	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1065			       (unsigned long) __end___mckinley_e9_bundles);
1066}
1067
1068static int __init run_dmi_scan(void)
1069{
1070	dmi_scan_machine();
1071	return 0;
1072}
1073core_initcall(run_dmi_scan);
1074