• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/arm/plat-s3c24xx/
1/* linux/arch/arm/plat-s3c24xx/s3c2410-iotiming.c
2 *
3 * Copyright (c) 2006-2009 Simtec Electronics
4 *	http://armlinux.simtec.co.uk/
5 *	Ben Dooks <ben@simtec.co.uk>
6 *
7 * S3C24XX CPU Frequency scaling - IO timing for S3C2410/S3C2440/S3C2442
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/errno.h>
17#include <linux/cpufreq.h>
18#include <linux/seq_file.h>
19#include <linux/io.h>
20#include <linux/slab.h>
21
22#include <mach/map.h>
23#include <mach/regs-mem.h>
24#include <mach/regs-clock.h>
25
26#include <plat/cpu-freq-core.h>
27
28#define print_ns(x) ((x) / 10), ((x) % 10)
29
30/**
31 * s3c2410_print_timing - print bank timing data for debug purposes
32 * @pfx: The prefix to put on the output
33 * @timings: The timing inforamtion to print.
34*/
35static void s3c2410_print_timing(const char *pfx,
36				 struct s3c_iotimings *timings)
37{
38	struct s3c2410_iobank_timing *bt;
39	int bank;
40
41	for (bank = 0; bank < MAX_BANKS; bank++) {
42		bt = timings->bank[bank].io_2410;
43		if (!bt)
44			continue;
45
46		printk(KERN_DEBUG "%s %d: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, "
47		       "Tcoh=%d.%d, Tcah=%d.%d\n", pfx, bank,
48		       print_ns(bt->tacs),
49		       print_ns(bt->tcos),
50		       print_ns(bt->tacc),
51		       print_ns(bt->tcoh),
52		       print_ns(bt->tcah));
53	}
54}
55
56/**
57 * bank_reg - convert bank number to pointer to the control register.
58 * @bank: The IO bank number.
59 */
60static inline void __iomem *bank_reg(unsigned int bank)
61{
62	return S3C2410_BANKCON0 + (bank << 2);
63}
64
65/**
66 * bank_is_io - test whether bank is used for IO
67 * @bankcon: The bank control register.
68 *
69 * This is a simplistic test to see if any BANKCON[x] is not an IO
70 * bank. It currently does not take into account whether BWSCON has
71 * an illegal width-setting in it, or if the pin connected to nCS[x]
72 * is actually being handled as a chip-select.
73 */
74static inline int bank_is_io(unsigned long bankcon)
75{
76	return !(bankcon & S3C2410_BANKCON_SDRAM);
77}
78
79/**
80 * to_div - convert cycle time to divisor
81 * @cyc: The cycle time, in 10ths of nanoseconds.
82 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
83 *
84 * Convert the given cycle time into the divisor to use to obtain it from
85 * HCLK.
86*/
87static inline unsigned int to_div(unsigned int cyc, unsigned int hclk_tns)
88{
89	if (cyc == 0)
90		return 0;
91
92	return DIV_ROUND_UP(cyc, hclk_tns);
93}
94
95/**
96 * calc_0124 - calculate divisor control for divisors that do /0, /1. /2 and /4
97 * @cyc: The cycle time, in 10ths of nanoseconds.
98 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
99 * @v: Pointer to register to alter.
100 * @shift: The shift to get to the control bits.
101 *
102 * Calculate the divisor, and turn it into the correct control bits to
103 * set in the result, @v.
104 */
105static unsigned int calc_0124(unsigned int cyc, unsigned long hclk_tns,
106			      unsigned long *v, int shift)
107{
108	unsigned int div = to_div(cyc, hclk_tns);
109	unsigned long val;
110
111	s3c_freq_iodbg("%s: cyc=%d, hclk=%lu, shift=%d => div %d\n",
112		       __func__, cyc, hclk_tns, shift, div);
113
114	switch (div) {
115	case 0:
116		val = 0;
117		break;
118	case 1:
119		val = 1;
120		break;
121	case 2:
122		val = 2;
123		break;
124	case 3:
125	case 4:
126		val = 3;
127		break;
128	default:
129		return -1;
130	}
131
132	*v |= val << shift;
133	return 0;
134}
135
136int calc_tacp(unsigned int cyc, unsigned long hclk, unsigned long *v)
137{
138	/* Currently no support for Tacp calculations. */
139	return 0;
140}
141
142/**
143 * calc_tacc - calculate divisor control for tacc.
144 * @cyc: The cycle time, in 10ths of nanoseconds.
145 * @nwait_en: IS nWAIT enabled for this bank.
146 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
147 * @v: Pointer to register to alter.
148 *
149 * Calculate the divisor control for tACC, taking into account whether
150 * the bank has nWAIT enabled. The result is used to modify the value
151 * pointed to by @v.
152*/
153static int calc_tacc(unsigned int cyc, int nwait_en,
154		     unsigned long hclk_tns, unsigned long *v)
155{
156	unsigned int div = to_div(cyc, hclk_tns);
157	unsigned long val;
158
159	s3c_freq_iodbg("%s: cyc=%u, nwait=%d, hclk=%lu => div=%u\n",
160		       __func__, cyc, nwait_en, hclk_tns, div);
161
162	/* if nWait enabled on an bank, Tacc must be at-least 4 cycles. */
163	if (nwait_en && div < 4)
164		div = 4;
165
166	switch (div) {
167	case 0:
168		val = 0;
169		break;
170
171	case 1:
172	case 2:
173	case 3:
174	case 4:
175		val = div - 1;
176		break;
177
178	case 5:
179	case 6:
180		val = 4;
181		break;
182
183	case 7:
184	case 8:
185		val = 5;
186		break;
187
188	case 9:
189	case 10:
190		val = 6;
191		break;
192
193	case 11:
194	case 12:
195	case 13:
196	case 14:
197		val = 7;
198		break;
199
200	default:
201		return -1;
202	}
203
204	*v |= val << 8;
205	return 0;
206}
207
208/**
209 * s3c2410_calc_bank - calculate bank timing infromation
210 * @cfg: The configuration we need to calculate for.
211 * @bt: The bank timing information.
212 *
213 * Given the cycle timine for a bank @bt, calculate the new BANKCON
214 * setting for the @cfg timing. This updates the timing information
215 * ready for the cpu frequency change.
216 */
217static int s3c2410_calc_bank(struct s3c_cpufreq_config *cfg,
218			     struct s3c2410_iobank_timing *bt)
219{
220	unsigned long hclk = cfg->freq.hclk_tns;
221	unsigned long res;
222	int ret;
223
224	res  = bt->bankcon;
225	res &= (S3C2410_BANKCON_SDRAM | S3C2410_BANKCON_PMC16);
226
227	/* tacp: 2,3,4,5 */
228	/* tcah: 0,1,2,4 */
229	/* tcoh: 0,1,2,4 */
230	/* tacc: 1,2,3,4,6,7,10,14 (>4 for nwait) */
231	/* tcos: 0,1,2,4 */
232	/* tacs: 0,1,2,4 */
233
234	ret  = calc_0124(bt->tacs, hclk, &res, S3C2410_BANKCON_Tacs_SHIFT);
235	ret |= calc_0124(bt->tcos, hclk, &res, S3C2410_BANKCON_Tcos_SHIFT);
236	ret |= calc_0124(bt->tcah, hclk, &res, S3C2410_BANKCON_Tcah_SHIFT);
237	ret |= calc_0124(bt->tcoh, hclk, &res, S3C2410_BANKCON_Tcoh_SHIFT);
238
239	if (ret)
240		return -EINVAL;
241
242	ret |= calc_tacp(bt->tacp, hclk, &res);
243	ret |= calc_tacc(bt->tacc, bt->nwait_en, hclk, &res);
244
245	if (ret)
246		return -EINVAL;
247
248	bt->bankcon = res;
249	return 0;
250}
251
252static unsigned int tacc_tab[] = {
253	[0]	= 1,
254	[1]	= 2,
255	[2]	= 3,
256	[3]	= 4,
257	[4]	= 6,
258	[5]	= 9,
259	[6]	= 10,
260	[7]	= 14,
261};
262
263/**
264 * get_tacc - turn tACC value into cycle time
265 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
266 * @val: The bank timing register value, shifed down.
267 */
268static unsigned int get_tacc(unsigned long hclk_tns,
269			     unsigned long val)
270{
271	val &= 7;
272	return hclk_tns * tacc_tab[val];
273}
274
275/**
276 * get_0124 - turn 0/1/2/4 divider into cycle time
277 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
278 * @val: The bank timing register value, shifed down.
279 */
280static unsigned int get_0124(unsigned long hclk_tns,
281			     unsigned long val)
282{
283	val &= 3;
284	return hclk_tns * ((val == 3) ? 4 : val);
285}
286
287/**
288 * s3c2410_iotiming_getbank - turn BANKCON into cycle time information
289 * @cfg: The frequency configuration
290 * @bt: The bank timing to fill in (uses cached BANKCON)
291 *
292 * Given the BANKCON setting in @bt and the current frequency settings
293 * in @cfg, update the cycle timing information.
294 */
295void s3c2410_iotiming_getbank(struct s3c_cpufreq_config *cfg,
296			      struct s3c2410_iobank_timing *bt)
297{
298	unsigned long bankcon = bt->bankcon;
299	unsigned long hclk = cfg->freq.hclk_tns;
300
301	bt->tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT);
302	bt->tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT);
303	bt->tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT);
304	bt->tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT);
305	bt->tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT);
306}
307
308/**
309 * s3c2410_iotiming_debugfs - debugfs show io bank timing information
310 * @seq: The seq_file to write output to using seq_printf().
311 * @cfg: The current configuration.
312 * @iob: The IO bank information to decode.
313 */
314void s3c2410_iotiming_debugfs(struct seq_file *seq,
315			      struct s3c_cpufreq_config *cfg,
316			      union s3c_iobank *iob)
317{
318	struct s3c2410_iobank_timing *bt = iob->io_2410;
319	unsigned long bankcon = bt->bankcon;
320	unsigned long hclk = cfg->freq.hclk_tns;
321	unsigned int tacs;
322	unsigned int tcos;
323	unsigned int tacc;
324	unsigned int tcoh;
325	unsigned int tcah;
326
327	seq_printf(seq, "BANKCON=0x%08lx\n", bankcon);
328
329	tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT);
330	tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT);
331	tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT);
332	tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT);
333	tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT);
334
335	seq_printf(seq,
336		   "\tRead: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n",
337		   print_ns(bt->tacs),
338		   print_ns(bt->tcos),
339		   print_ns(bt->tacc),
340		   print_ns(bt->tcoh),
341		   print_ns(bt->tcah));
342
343	seq_printf(seq,
344		   "\t Set: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n",
345		   print_ns(tacs),
346		   print_ns(tcos),
347		   print_ns(tacc),
348		   print_ns(tcoh),
349		   print_ns(tcah));
350}
351
352/**
353 * s3c2410_iotiming_calc - Calculate bank timing for frequency change.
354 * @cfg: The frequency configuration
355 * @iot: The IO timing information to fill out.
356 *
357 * Calculate the new values for the banks in @iot based on the new
358 * frequency information in @cfg. This is then used by s3c2410_iotiming_set()
359 * to update the timing when necessary.
360 */
361int s3c2410_iotiming_calc(struct s3c_cpufreq_config *cfg,
362			  struct s3c_iotimings *iot)
363{
364	struct s3c2410_iobank_timing *bt;
365	unsigned long bankcon;
366	int bank;
367	int ret;
368
369	for (bank = 0; bank < MAX_BANKS; bank++) {
370		bankcon = __raw_readl(bank_reg(bank));
371		bt = iot->bank[bank].io_2410;
372
373		if (!bt)
374			continue;
375
376		bt->bankcon = bankcon;
377
378		ret = s3c2410_calc_bank(cfg, bt);
379		if (ret) {
380			printk(KERN_ERR "%s: cannot calculate bank %d io\n",
381			       __func__, bank);
382			goto err;
383		}
384
385		s3c_freq_iodbg("%s: bank %d: con=%08lx\n",
386			       __func__, bank, bt->bankcon);
387	}
388
389	return 0;
390 err:
391	return ret;
392}
393
394/**
395 * s3c2410_iotiming_set - set the IO timings from the given setup.
396 * @cfg: The frequency configuration
397 * @iot: The IO timing information to use.
398 *
399 * Set all the currently used IO bank timing information generated
400 * by s3c2410_iotiming_calc() once the core has validated that all
401 * the new values are within permitted bounds.
402 */
403void s3c2410_iotiming_set(struct s3c_cpufreq_config *cfg,
404			  struct s3c_iotimings *iot)
405{
406	struct s3c2410_iobank_timing *bt;
407	int bank;
408
409	/* set the io timings from the specifier */
410
411	for (bank = 0; bank < MAX_BANKS; bank++) {
412		bt = iot->bank[bank].io_2410;
413		if (!bt)
414			continue;
415
416		__raw_writel(bt->bankcon, bank_reg(bank));
417	}
418}
419
420/**
421 * s3c2410_iotiming_get - Get the timing information from current registers.
422 * @cfg: The frequency configuration
423 * @timings: The IO timing information to fill out.
424 *
425 * Calculate the @timings timing information from the current frequency
426 * information in @cfg, and the new frequency configur
427 * through all the IO banks, reading the state and then updating @iot
428 * as necessary.
429 *
430 * This is used at the moment on initialisation to get the current
431 * configuration so that boards do not have to carry their own setup
432 * if the timings are correct on initialisation.
433 */
434
435int s3c2410_iotiming_get(struct s3c_cpufreq_config *cfg,
436			 struct s3c_iotimings *timings)
437{
438	struct s3c2410_iobank_timing *bt;
439	unsigned long bankcon;
440	unsigned long bwscon;
441	int bank;
442
443	bwscon = __raw_readl(S3C2410_BWSCON);
444
445	/* look through all banks to see what is currently set. */
446
447	for (bank = 0; bank < MAX_BANKS; bank++) {
448		bankcon = __raw_readl(bank_reg(bank));
449
450		if (!bank_is_io(bankcon))
451			continue;
452
453		s3c_freq_iodbg("%s: bank %d: con %08lx\n",
454			       __func__, bank, bankcon);
455
456		bt = kzalloc(sizeof(struct s3c2410_iobank_timing), GFP_KERNEL);
457		if (!bt) {
458			printk(KERN_ERR "%s: no memory for bank\n", __func__);
459			return -ENOMEM;
460		}
461
462		/* find out in nWait is enabled for bank. */
463
464		if (bank != 0) {
465			unsigned long tmp  = S3C2410_BWSCON_GET(bwscon, bank);
466			if (tmp & S3C2410_BWSCON_WS)
467				bt->nwait_en = 1;
468		}
469
470		timings->bank[bank].io_2410 = bt;
471		bt->bankcon = bankcon;
472
473		s3c2410_iotiming_getbank(cfg, bt);
474	}
475
476	s3c2410_print_timing("get", timings);
477	return 0;
478}
479