• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/alpha/kernel/
1/*
2 *  linux/arch/alpha/kernel/time.c
3 *
4 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5 *
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02    Alan Modra
9 *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26    Markus Kuhn
11 *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 *      precision CMOS clock update
13 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09    Adrian Sun
16 *      use interval timer if CONFIG_RTC=y
17 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18 *      fixed tick loss calculation in timer_interrupt
19 *      (round system clock to nearest tick instead of truncating)
20 *      fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22 *	fixed algorithm in do_gettimeofday() for calculating the precise time
23 *	from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * 	Fixed time_init to be aware of epoches != 1900. This prevents
26 * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28 *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29 */
30#include <linux/errno.h>
31#include <linux/module.h>
32#include <linux/sched.h>
33#include <linux/kernel.h>
34#include <linux/param.h>
35#include <linux/string.h>
36#include <linux/mm.h>
37#include <linux/delay.h>
38#include <linux/ioport.h>
39#include <linux/irq.h>
40#include <linux/interrupt.h>
41#include <linux/init.h>
42#include <linux/bcd.h>
43#include <linux/profile.h>
44#include <linux/perf_event.h>
45
46#include <asm/uaccess.h>
47#include <asm/io.h>
48#include <asm/hwrpb.h>
49#include <asm/8253pit.h>
50#include <asm/rtc.h>
51
52#include <linux/mc146818rtc.h>
53#include <linux/time.h>
54#include <linux/timex.h>
55#include <linux/clocksource.h>
56
57#include "proto.h"
58#include "irq_impl.h"
59
60static int set_rtc_mmss(unsigned long);
61
62DEFINE_SPINLOCK(rtc_lock);
63EXPORT_SYMBOL(rtc_lock);
64
65#define TICK_SIZE (tick_nsec / 1000)
66
67/*
68 * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70 * for large CPU clock rates.
71 */
72#define FIX_SHIFT	48
73
74/* lump static variables together for more efficient access: */
75static struct {
76	/* cycle counter last time it got invoked */
77	__u32 last_time;
78	/* ticks/cycle * 2^48 */
79	unsigned long scaled_ticks_per_cycle;
80	/* partial unused tick */
81	unsigned long partial_tick;
82} state;
83
84unsigned long est_cycle_freq;
85
86#ifdef CONFIG_PERF_EVENTS
87
88DEFINE_PER_CPU(u8, perf_event_pending);
89
90#define set_perf_event_pending_flag()  __get_cpu_var(perf_event_pending) = 1
91#define test_perf_event_pending()      __get_cpu_var(perf_event_pending)
92#define clear_perf_event_pending()     __get_cpu_var(perf_event_pending) = 0
93
94void set_perf_event_pending(void)
95{
96	set_perf_event_pending_flag();
97}
98
99#else  /* CONFIG_PERF_EVENTS */
100
101#define test_perf_event_pending()      0
102#define clear_perf_event_pending()
103
104#endif /* CONFIG_PERF_EVENTS */
105
106
107static inline __u32 rpcc(void)
108{
109    __u32 result;
110    asm volatile ("rpcc %0" : "=r"(result));
111    return result;
112}
113
114int update_persistent_clock(struct timespec now)
115{
116	return set_rtc_mmss(now.tv_sec);
117}
118
119void read_persistent_clock(struct timespec *ts)
120{
121	unsigned int year, mon, day, hour, min, sec, epoch;
122
123	sec = CMOS_READ(RTC_SECONDS);
124	min = CMOS_READ(RTC_MINUTES);
125	hour = CMOS_READ(RTC_HOURS);
126	day = CMOS_READ(RTC_DAY_OF_MONTH);
127	mon = CMOS_READ(RTC_MONTH);
128	year = CMOS_READ(RTC_YEAR);
129
130	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
131		sec = bcd2bin(sec);
132		min = bcd2bin(min);
133		hour = bcd2bin(hour);
134		day = bcd2bin(day);
135		mon = bcd2bin(mon);
136		year = bcd2bin(year);
137	}
138
139	/* PC-like is standard; used for year >= 70 */
140	epoch = 1900;
141	if (year < 20)
142		epoch = 2000;
143	else if (year >= 20 && year < 48)
144		/* NT epoch */
145		epoch = 1980;
146	else if (year >= 48 && year < 70)
147		/* Digital UNIX epoch */
148		epoch = 1952;
149
150	printk(KERN_INFO "Using epoch = %d\n", epoch);
151
152	if ((year += epoch) < 1970)
153		year += 100;
154
155	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
156}
157
158
159
160/*
161 * timer_interrupt() needs to keep up the real-time clock,
162 * as well as call the "do_timer()" routine every clocktick
163 */
164irqreturn_t timer_interrupt(int irq, void *dev)
165{
166	unsigned long delta;
167	__u32 now;
168	long nticks;
169
170#ifndef CONFIG_SMP
171	/* Not SMP, do kernel PC profiling here.  */
172	profile_tick(CPU_PROFILING);
173#endif
174
175	write_seqlock(&xtime_lock);
176
177	/*
178	 * Calculate how many ticks have passed since the last update,
179	 * including any previous partial leftover.  Save any resulting
180	 * fraction for the next pass.
181	 */
182	now = rpcc();
183	delta = now - state.last_time;
184	state.last_time = now;
185	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
186	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
187	nticks = delta >> FIX_SHIFT;
188
189	if (nticks)
190		do_timer(nticks);
191
192	write_sequnlock(&xtime_lock);
193
194	if (test_perf_event_pending()) {
195		clear_perf_event_pending();
196		perf_event_do_pending();
197	}
198
199#ifndef CONFIG_SMP
200	while (nticks--)
201		update_process_times(user_mode(get_irq_regs()));
202#endif
203
204	return IRQ_HANDLED;
205}
206
207void __init
208common_init_rtc(void)
209{
210	unsigned char x;
211
212	/* Reset periodic interrupt frequency.  */
213	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
214        /* Test includes known working values on various platforms
215           where 0x26 is wrong; we refuse to change those. */
216	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
217		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
218		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
219	}
220
221	/* Turn on periodic interrupts.  */
222	x = CMOS_READ(RTC_CONTROL);
223	if (!(x & RTC_PIE)) {
224		printk("Turning on RTC interrupts.\n");
225		x |= RTC_PIE;
226		x &= ~(RTC_AIE | RTC_UIE);
227		CMOS_WRITE(x, RTC_CONTROL);
228	}
229	(void) CMOS_READ(RTC_INTR_FLAGS);
230
231	outb(0x36, 0x43);	/* pit counter 0: system timer */
232	outb(0x00, 0x40);
233	outb(0x00, 0x40);
234
235	outb(0xb6, 0x43);	/* pit counter 2: speaker */
236	outb(0x31, 0x42);
237	outb(0x13, 0x42);
238
239	init_rtc_irq();
240}
241
242unsigned int common_get_rtc_time(struct rtc_time *time)
243{
244	return __get_rtc_time(time);
245}
246
247int common_set_rtc_time(struct rtc_time *time)
248{
249	return __set_rtc_time(time);
250}
251
252/* Validate a computed cycle counter result against the known bounds for
253   the given processor core.  There's too much brokenness in the way of
254   timing hardware for any one method to work everywhere.  :-(
255
256   Return 0 if the result cannot be trusted, otherwise return the argument.  */
257
258static unsigned long __init
259validate_cc_value(unsigned long cc)
260{
261	static struct bounds {
262		unsigned int min, max;
263	} cpu_hz[] __initdata = {
264		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
265		[EV4_CPU]    = {  100000000,  300000000 },
266		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
267		[EV45_CPU]   = {  200000000,  300000000 },
268		[EV5_CPU]    = {  250000000,  433000000 },
269		[EV56_CPU]   = {  333000000,  667000000 },
270		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
271		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
272		[EV6_CPU]    = {  466000000,  600000000 },
273		[EV67_CPU]   = {  600000000,  750000000 },
274		[EV68AL_CPU] = {  750000000,  940000000 },
275		[EV68CB_CPU] = { 1000000000, 1333333333 },
276		/* None of the following are shipping as of 2001-11-01.  */
277		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
278		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
279		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
280		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
281	};
282
283	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
284	const unsigned int deviation = 10000000;
285
286	struct percpu_struct *cpu;
287	unsigned int index;
288
289	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
290	index = cpu->type & 0xffffffff;
291
292	/* If index out of bounds, no way to validate.  */
293	if (index >= ARRAY_SIZE(cpu_hz))
294		return cc;
295
296	/* If index contains no data, no way to validate.  */
297	if (cpu_hz[index].max == 0)
298		return cc;
299
300	if (cc < cpu_hz[index].min - deviation
301	    || cc > cpu_hz[index].max + deviation)
302		return 0;
303
304	return cc;
305}
306
307
308/*
309 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
310 * arch/i386/time.c.
311 */
312
313#define CALIBRATE_LATCH	0xffff
314#define TIMEOUT_COUNT	0x100000
315
316static unsigned long __init
317calibrate_cc_with_pit(void)
318{
319	int cc, count = 0;
320
321	/* Set the Gate high, disable speaker */
322	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
323
324	/*
325	 * Now let's take care of CTC channel 2
326	 *
327	 * Set the Gate high, program CTC channel 2 for mode 0,
328	 * (interrupt on terminal count mode), binary count,
329	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
330	 */
331	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
332	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
333	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
334
335	cc = rpcc();
336	do {
337		count++;
338	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
339	cc = rpcc() - cc;
340
341	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
342	if (count <= 1 || count == TIMEOUT_COUNT)
343		return 0;
344
345	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
346}
347
348/* The Linux interpretation of the CMOS clock register contents:
349   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
350   RTC registers show the second which has precisely just started.
351   Let's hope other operating systems interpret the RTC the same way.  */
352
353static unsigned long __init
354rpcc_after_update_in_progress(void)
355{
356	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
357	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
358
359	return rpcc();
360}
361
362#ifndef CONFIG_SMP
363/* Until and unless we figure out how to get cpu cycle counters
364   in sync and keep them there, we can't use the rpcc.  */
365static cycle_t read_rpcc(struct clocksource *cs)
366{
367	cycle_t ret = (cycle_t)rpcc();
368	return ret;
369}
370
371static struct clocksource clocksource_rpcc = {
372	.name                   = "rpcc",
373	.rating                 = 300,
374	.read                   = read_rpcc,
375	.mask                   = CLOCKSOURCE_MASK(32),
376	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
377};
378
379static inline void register_rpcc_clocksource(long cycle_freq)
380{
381	clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4);
382	clocksource_register(&clocksource_rpcc);
383}
384#else /* !CONFIG_SMP */
385static inline void register_rpcc_clocksource(long cycle_freq)
386{
387}
388#endif /* !CONFIG_SMP */
389
390void __init
391time_init(void)
392{
393	unsigned int cc1, cc2;
394	unsigned long cycle_freq, tolerance;
395	long diff;
396
397	/* Calibrate CPU clock -- attempt #1.  */
398	if (!est_cycle_freq)
399		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
400
401	cc1 = rpcc();
402
403	/* Calibrate CPU clock -- attempt #2.  */
404	if (!est_cycle_freq) {
405		cc1 = rpcc_after_update_in_progress();
406		cc2 = rpcc_after_update_in_progress();
407		est_cycle_freq = validate_cc_value(cc2 - cc1);
408		cc1 = cc2;
409	}
410
411	cycle_freq = hwrpb->cycle_freq;
412	if (est_cycle_freq) {
413		/* If the given value is within 250 PPM of what we calculated,
414		   accept it.  Otherwise, use what we found.  */
415		tolerance = cycle_freq / 4000;
416		diff = cycle_freq - est_cycle_freq;
417		if (diff < 0)
418			diff = -diff;
419		if ((unsigned long)diff > tolerance) {
420			cycle_freq = est_cycle_freq;
421			printk("HWRPB cycle frequency bogus.  "
422			       "Estimated %lu Hz\n", cycle_freq);
423		} else {
424			est_cycle_freq = 0;
425		}
426	} else if (! validate_cc_value (cycle_freq)) {
427		printk("HWRPB cycle frequency bogus, "
428		       "and unable to estimate a proper value!\n");
429	}
430
431	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
432	   to settle, as the Update-In-Progress bit going low isn't good
433	   enough on some hardware.  2ms is our guess; we haven't found
434	   bogomips yet, but this is close on a 500Mhz box.  */
435	__delay(1000000);
436
437
438	if (HZ > (1<<16)) {
439		extern void __you_loose (void);
440		__you_loose();
441	}
442
443	register_rpcc_clocksource(cycle_freq);
444
445	state.last_time = cc1;
446	state.scaled_ticks_per_cycle
447		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
448	state.partial_tick = 0L;
449
450	/* Startup the timer source. */
451	alpha_mv.init_rtc();
452}
453
454/*
455 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
456 * called 500 ms after the second nowtime has started, because when
457 * nowtime is written into the registers of the CMOS clock, it will
458 * jump to the next second precisely 500 ms later. Check the Motorola
459 * MC146818A or Dallas DS12887 data sheet for details.
460 *
461 * BUG: This routine does not handle hour overflow properly; it just
462 *      sets the minutes. Usually you won't notice until after reboot!
463 */
464
465
466static int
467set_rtc_mmss(unsigned long nowtime)
468{
469	int retval = 0;
470	int real_seconds, real_minutes, cmos_minutes;
471	unsigned char save_control, save_freq_select;
472
473	/* irq are locally disabled here */
474	spin_lock(&rtc_lock);
475	/* Tell the clock it's being set */
476	save_control = CMOS_READ(RTC_CONTROL);
477	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
478
479	/* Stop and reset prescaler */
480	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
481	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
482
483	cmos_minutes = CMOS_READ(RTC_MINUTES);
484	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
485		cmos_minutes = bcd2bin(cmos_minutes);
486
487	/*
488	 * since we're only adjusting minutes and seconds,
489	 * don't interfere with hour overflow. This avoids
490	 * messing with unknown time zones but requires your
491	 * RTC not to be off by more than 15 minutes
492	 */
493	real_seconds = nowtime % 60;
494	real_minutes = nowtime / 60;
495	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
496		/* correct for half hour time zone */
497		real_minutes += 30;
498	}
499	real_minutes %= 60;
500
501	if (abs(real_minutes - cmos_minutes) < 30) {
502		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
503			real_seconds = bin2bcd(real_seconds);
504			real_minutes = bin2bcd(real_minutes);
505		}
506		CMOS_WRITE(real_seconds,RTC_SECONDS);
507		CMOS_WRITE(real_minutes,RTC_MINUTES);
508	} else {
509		printk(KERN_WARNING
510		       "set_rtc_mmss: can't update from %d to %d\n",
511		       cmos_minutes, real_minutes);
512 		retval = -1;
513	}
514
515	/* The following flags have to be released exactly in this order,
516	 * otherwise the DS12887 (popular MC146818A clone with integrated
517	 * battery and quartz) will not reset the oscillator and will not
518	 * update precisely 500 ms later. You won't find this mentioned in
519	 * the Dallas Semiconductor data sheets, but who believes data
520	 * sheets anyway ...                           -- Markus Kuhn
521	 */
522	CMOS_WRITE(save_control, RTC_CONTROL);
523	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
524	spin_unlock(&rtc_lock);
525
526	return retval;
527}
528