• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/alpha/kernel/
1/*
2 * Hardware performance events for the Alpha.
3 *
4 * We implement HW counts on the EV67 and subsequent CPUs only.
5 *
6 * (C) 2010 Michael J. Cree
7 *
8 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
9 * ARM code, which are copyright by their respective authors.
10 */
11
12#include <linux/perf_event.h>
13#include <linux/kprobes.h>
14#include <linux/kernel.h>
15#include <linux/kdebug.h>
16#include <linux/mutex.h>
17
18#include <asm/hwrpb.h>
19#include <asm/atomic.h>
20#include <asm/irq.h>
21#include <asm/irq_regs.h>
22#include <asm/pal.h>
23#include <asm/wrperfmon.h>
24#include <asm/hw_irq.h>
25
26
27/* The maximum number of PMCs on any Alpha CPU whatsoever. */
28#define MAX_HWEVENTS 3
29#define PMC_NO_INDEX -1
30
31/* For tracking PMCs and the hw events they monitor on each CPU. */
32struct cpu_hw_events {
33	int			enabled;
34	/* Number of events scheduled; also number entries valid in arrays below. */
35	int			n_events;
36	/* Number events added since last hw_perf_disable(). */
37	int			n_added;
38	/* Events currently scheduled. */
39	struct perf_event	*event[MAX_HWEVENTS];
40	/* Event type of each scheduled event. */
41	unsigned long		evtype[MAX_HWEVENTS];
42	/* Current index of each scheduled event; if not yet determined
43	 * contains PMC_NO_INDEX.
44	 */
45	int			current_idx[MAX_HWEVENTS];
46	/* The active PMCs' config for easy use with wrperfmon(). */
47	unsigned long		config;
48	/* The active counters' indices for easy use with wrperfmon(). */
49	unsigned long		idx_mask;
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
52
53
54
55/*
56 * A structure to hold the description of the PMCs available on a particular
57 * type of Alpha CPU.
58 */
59struct alpha_pmu_t {
60	/* Mapping of the perf system hw event types to indigenous event types */
61	const int *event_map;
62	/* The number of entries in the event_map */
63	int  max_events;
64	/* The number of PMCs on this Alpha */
65	int  num_pmcs;
66	/*
67	 * All PMC counters reside in the IBOX register PCTR.  This is the
68	 * LSB of the counter.
69	 */
70	int  pmc_count_shift[MAX_HWEVENTS];
71	/*
72	 * The mask that isolates the PMC bits when the LSB of the counter
73	 * is shifted to bit 0.
74	 */
75	unsigned long pmc_count_mask[MAX_HWEVENTS];
76	/* The maximum period the PMC can count. */
77	unsigned long pmc_max_period[MAX_HWEVENTS];
78	/*
79	 * The maximum value that may be written to the counter due to
80	 * hardware restrictions is pmc_max_period - pmc_left.
81	 */
82	long pmc_left[3];
83	 /* Subroutine for allocation of PMCs.  Enforces constraints. */
84	int (*check_constraints)(struct perf_event **, unsigned long *, int);
85};
86
87/*
88 * The Alpha CPU PMU description currently in operation.  This is set during
89 * the boot process to the specific CPU of the machine.
90 */
91static const struct alpha_pmu_t *alpha_pmu;
92
93
94#define HW_OP_UNSUPPORTED -1
95
96/*
97 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
98 * follow. Since they are identical we refer to them collectively as the
99 * EV67 henceforth.
100 */
101
102/*
103 * EV67 PMC event types
104 *
105 * There is no one-to-one mapping of the possible hw event types to the
106 * actual codes that are used to program the PMCs hence we introduce our
107 * own hw event type identifiers.
108 */
109enum ev67_pmc_event_type {
110	EV67_CYCLES = 1,
111	EV67_INSTRUCTIONS,
112	EV67_BCACHEMISS,
113	EV67_MBOXREPLAY,
114	EV67_LAST_ET
115};
116#define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
117
118
119/* Mapping of the hw event types to the perf tool interface */
120static const int ev67_perfmon_event_map[] = {
121	[PERF_COUNT_HW_CPU_CYCLES]	 = EV67_CYCLES,
122	[PERF_COUNT_HW_INSTRUCTIONS]	 = EV67_INSTRUCTIONS,
123	[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
124	[PERF_COUNT_HW_CACHE_MISSES]	 = EV67_BCACHEMISS,
125};
126
127struct ev67_mapping_t {
128	int config;
129	int idx;
130};
131
132/*
133 * The mapping used for one event only - these must be in same order as enum
134 * ev67_pmc_event_type definition.
135 */
136static const struct ev67_mapping_t ev67_mapping[] = {
137	{EV67_PCTR_INSTR_CYCLES, 1},	 /* EV67_CYCLES, */
138	{EV67_PCTR_INSTR_CYCLES, 0},	 /* EV67_INSTRUCTIONS */
139	{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
140	{EV67_PCTR_CYCLES_MBOX, 1}	 /* EV67_MBOXREPLAY */
141};
142
143
144/*
145 * Check that a group of events can be simultaneously scheduled on to the
146 * EV67 PMU.  Also allocate counter indices and config.
147 */
148static int ev67_check_constraints(struct perf_event **event,
149				unsigned long *evtype, int n_ev)
150{
151	int idx0;
152	unsigned long config;
153
154	idx0 = ev67_mapping[evtype[0]-1].idx;
155	config = ev67_mapping[evtype[0]-1].config;
156	if (n_ev == 1)
157		goto success;
158
159	BUG_ON(n_ev != 2);
160
161	if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
162		/* MBOX replay traps must be on PMC 1 */
163		idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
164		/* Only cycles can accompany MBOX replay traps */
165		if (evtype[idx0] == EV67_CYCLES) {
166			config = EV67_PCTR_CYCLES_MBOX;
167			goto success;
168		}
169	}
170
171	if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
172		/* Bcache misses must be on PMC 1 */
173		idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
174		/* Only instructions can accompany Bcache misses */
175		if (evtype[idx0] == EV67_INSTRUCTIONS) {
176			config = EV67_PCTR_INSTR_BCACHEMISS;
177			goto success;
178		}
179	}
180
181	if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
182		/* Instructions must be on PMC 0 */
183		idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
184		/* By this point only cycles can accompany instructions */
185		if (evtype[idx0^1] == EV67_CYCLES) {
186			config = EV67_PCTR_INSTR_CYCLES;
187			goto success;
188		}
189	}
190
191	/* Otherwise, darn it, there is a conflict.  */
192	return -1;
193
194success:
195	event[0]->hw.idx = idx0;
196	event[0]->hw.config_base = config;
197	if (n_ev == 2) {
198		event[1]->hw.idx = idx0 ^ 1;
199		event[1]->hw.config_base = config;
200	}
201	return 0;
202}
203
204
205static const struct alpha_pmu_t ev67_pmu = {
206	.event_map = ev67_perfmon_event_map,
207	.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
208	.num_pmcs = 2,
209	.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
210	.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK,  EV67_PCTR_1_COUNT_MASK,  0},
211	.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
212	.pmc_left = {16, 4, 0},
213	.check_constraints = ev67_check_constraints
214};
215
216
217
218/*
219 * Helper routines to ensure that we read/write only the correct PMC bits
220 * when calling the wrperfmon PALcall.
221 */
222static inline void alpha_write_pmc(int idx, unsigned long val)
223{
224	val &= alpha_pmu->pmc_count_mask[idx];
225	val <<= alpha_pmu->pmc_count_shift[idx];
226	val |= (1<<idx);
227	wrperfmon(PERFMON_CMD_WRITE, val);
228}
229
230static inline unsigned long alpha_read_pmc(int idx)
231{
232	unsigned long val;
233
234	val = wrperfmon(PERFMON_CMD_READ, 0);
235	val >>= alpha_pmu->pmc_count_shift[idx];
236	val &= alpha_pmu->pmc_count_mask[idx];
237	return val;
238}
239
240/* Set a new period to sample over */
241static int alpha_perf_event_set_period(struct perf_event *event,
242				struct hw_perf_event *hwc, int idx)
243{
244	long left = local64_read(&hwc->period_left);
245	long period = hwc->sample_period;
246	int ret = 0;
247
248	if (unlikely(left <= -period)) {
249		left = period;
250		local64_set(&hwc->period_left, left);
251		hwc->last_period = period;
252		ret = 1;
253	}
254
255	if (unlikely(left <= 0)) {
256		left += period;
257		local64_set(&hwc->period_left, left);
258		hwc->last_period = period;
259		ret = 1;
260	}
261
262	/*
263	 * Hardware restrictions require that the counters must not be
264	 * written with values that are too close to the maximum period.
265	 */
266	if (unlikely(left < alpha_pmu->pmc_left[idx]))
267		left = alpha_pmu->pmc_left[idx];
268
269	if (left > (long)alpha_pmu->pmc_max_period[idx])
270		left = alpha_pmu->pmc_max_period[idx];
271
272	local64_set(&hwc->prev_count, (unsigned long)(-left));
273
274	alpha_write_pmc(idx, (unsigned long)(-left));
275
276	perf_event_update_userpage(event);
277
278	return ret;
279}
280
281
282/*
283 * Calculates the count (the 'delta') since the last time the PMC was read.
284 *
285 * As the PMCs' full period can easily be exceeded within the perf system
286 * sampling period we cannot use any high order bits as a guard bit in the
287 * PMCs to detect overflow as is done by other architectures.  The code here
288 * calculates the delta on the basis that there is no overflow when ovf is
289 * zero.  The value passed via ovf by the interrupt handler corrects for
290 * overflow.
291 *
292 * This can be racey on rare occasions -- a call to this routine can occur
293 * with an overflowed counter just before the PMI service routine is called.
294 * The check for delta negative hopefully always rectifies this situation.
295 */
296static unsigned long alpha_perf_event_update(struct perf_event *event,
297					struct hw_perf_event *hwc, int idx, long ovf)
298{
299	long prev_raw_count, new_raw_count;
300	long delta;
301
302again:
303	prev_raw_count = local64_read(&hwc->prev_count);
304	new_raw_count = alpha_read_pmc(idx);
305
306	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
307			     new_raw_count) != prev_raw_count)
308		goto again;
309
310	delta = (new_raw_count  - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
311
312	/* It is possible on very rare occasions that the PMC has overflowed
313	 * but the interrupt is yet to come.  Detect and fix this situation.
314	 */
315	if (unlikely(delta < 0)) {
316		delta += alpha_pmu->pmc_max_period[idx] + 1;
317	}
318
319	local64_add(delta, &event->count);
320	local64_sub(delta, &hwc->period_left);
321
322	return new_raw_count;
323}
324
325
326/*
327 * Collect all HW events into the array event[].
328 */
329static int collect_events(struct perf_event *group, int max_count,
330			  struct perf_event *event[], unsigned long *evtype,
331			  int *current_idx)
332{
333	struct perf_event *pe;
334	int n = 0;
335
336	if (!is_software_event(group)) {
337		if (n >= max_count)
338			return -1;
339		event[n] = group;
340		evtype[n] = group->hw.event_base;
341		current_idx[n++] = PMC_NO_INDEX;
342	}
343	list_for_each_entry(pe, &group->sibling_list, group_entry) {
344		if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
345			if (n >= max_count)
346				return -1;
347			event[n] = pe;
348			evtype[n] = pe->hw.event_base;
349			current_idx[n++] = PMC_NO_INDEX;
350		}
351	}
352	return n;
353}
354
355
356
357/*
358 * Check that a group of events can be simultaneously scheduled on to the PMU.
359 */
360static int alpha_check_constraints(struct perf_event **events,
361				   unsigned long *evtypes, int n_ev)
362{
363
364	/* No HW events is possible from hw_perf_group_sched_in(). */
365	if (n_ev == 0)
366		return 0;
367
368	if (n_ev > alpha_pmu->num_pmcs)
369		return -1;
370
371	return alpha_pmu->check_constraints(events, evtypes, n_ev);
372}
373
374
375/*
376 * If new events have been scheduled then update cpuc with the new
377 * configuration.  This may involve shifting cycle counts from one PMC to
378 * another.
379 */
380static void maybe_change_configuration(struct cpu_hw_events *cpuc)
381{
382	int j;
383
384	if (cpuc->n_added == 0)
385		return;
386
387	/* Find counters that are moving to another PMC and update */
388	for (j = 0; j < cpuc->n_events; j++) {
389		struct perf_event *pe = cpuc->event[j];
390
391		if (cpuc->current_idx[j] != PMC_NO_INDEX &&
392			cpuc->current_idx[j] != pe->hw.idx) {
393			alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
394			cpuc->current_idx[j] = PMC_NO_INDEX;
395		}
396	}
397
398	/* Assign to counters all unassigned events. */
399	cpuc->idx_mask = 0;
400	for (j = 0; j < cpuc->n_events; j++) {
401		struct perf_event *pe = cpuc->event[j];
402		struct hw_perf_event *hwc = &pe->hw;
403		int idx = hwc->idx;
404
405		if (cpuc->current_idx[j] != PMC_NO_INDEX) {
406			cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
407			continue;
408		}
409
410		alpha_perf_event_set_period(pe, hwc, idx);
411		cpuc->current_idx[j] = idx;
412		cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
413	}
414	cpuc->config = cpuc->event[0]->hw.config_base;
415}
416
417
418
419/* Schedule perf HW event on to PMU.
420 *  - this function is called from outside this module via the pmu struct
421 *    returned from perf event initialisation.
422 */
423static int alpha_pmu_enable(struct perf_event *event)
424{
425	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
426	int n0;
427	int ret;
428	unsigned long flags;
429
430	/*
431	 * The Sparc code has the IRQ disable first followed by the perf
432	 * disable, however this can lead to an overflowed counter with the
433	 * PMI disabled on rare occasions.  The alpha_perf_event_update()
434	 * routine should detect this situation by noting a negative delta,
435	 * nevertheless we disable the PMCs first to enable a potential
436	 * final PMI to occur before we disable interrupts.
437	 */
438	perf_disable();
439	local_irq_save(flags);
440
441	/* Default to error to be returned */
442	ret = -EAGAIN;
443
444	/* Insert event on to PMU and if successful modify ret to valid return */
445	n0 = cpuc->n_events;
446	if (n0 < alpha_pmu->num_pmcs) {
447		cpuc->event[n0] = event;
448		cpuc->evtype[n0] = event->hw.event_base;
449		cpuc->current_idx[n0] = PMC_NO_INDEX;
450
451		if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
452			cpuc->n_events++;
453			cpuc->n_added++;
454			ret = 0;
455		}
456	}
457
458	local_irq_restore(flags);
459	perf_enable();
460
461	return ret;
462}
463
464
465
466/* Disable performance monitoring unit
467 *  - this function is called from outside this module via the pmu struct
468 *    returned from perf event initialisation.
469 */
470static void alpha_pmu_disable(struct perf_event *event)
471{
472	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
473	struct hw_perf_event *hwc = &event->hw;
474	unsigned long flags;
475	int j;
476
477	perf_disable();
478	local_irq_save(flags);
479
480	for (j = 0; j < cpuc->n_events; j++) {
481		if (event == cpuc->event[j]) {
482			int idx = cpuc->current_idx[j];
483
484			/* Shift remaining entries down into the existing
485			 * slot.
486			 */
487			while (++j < cpuc->n_events) {
488				cpuc->event[j - 1] = cpuc->event[j];
489				cpuc->evtype[j - 1] = cpuc->evtype[j];
490				cpuc->current_idx[j - 1] =
491					cpuc->current_idx[j];
492			}
493
494			/* Absorb the final count and turn off the event. */
495			alpha_perf_event_update(event, hwc, idx, 0);
496			perf_event_update_userpage(event);
497
498			cpuc->idx_mask &= ~(1UL<<idx);
499			cpuc->n_events--;
500			break;
501		}
502	}
503
504	local_irq_restore(flags);
505	perf_enable();
506}
507
508
509static void alpha_pmu_read(struct perf_event *event)
510{
511	struct hw_perf_event *hwc = &event->hw;
512
513	alpha_perf_event_update(event, hwc, hwc->idx, 0);
514}
515
516
517static void alpha_pmu_unthrottle(struct perf_event *event)
518{
519	struct hw_perf_event *hwc = &event->hw;
520	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
521
522	cpuc->idx_mask |= 1UL<<hwc->idx;
523	wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
524}
525
526
527/*
528 * Check that CPU performance counters are supported.
529 * - currently support EV67 and later CPUs.
530 * - actually some later revisions of the EV6 have the same PMC model as the
531 *     EV67 but we don't do suffiently deep CPU detection to detect them.
532 *     Bad luck to the very few people who might have one, I guess.
533 */
534static int supported_cpu(void)
535{
536	struct percpu_struct *cpu;
537	unsigned long cputype;
538
539	/* Get cpu type from HW */
540	cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
541	cputype = cpu->type & 0xffffffff;
542	/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
543	return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
544}
545
546
547
548static void hw_perf_event_destroy(struct perf_event *event)
549{
550	/* Nothing to be done! */
551	return;
552}
553
554
555
556static int __hw_perf_event_init(struct perf_event *event)
557{
558	struct perf_event_attr *attr = &event->attr;
559	struct hw_perf_event *hwc = &event->hw;
560	struct perf_event *evts[MAX_HWEVENTS];
561	unsigned long evtypes[MAX_HWEVENTS];
562	int idx_rubbish_bin[MAX_HWEVENTS];
563	int ev;
564	int n;
565
566	/* We only support a limited range of HARDWARE event types with one
567	 * only programmable via a RAW event type.
568	 */
569	if (attr->type == PERF_TYPE_HARDWARE) {
570		if (attr->config >= alpha_pmu->max_events)
571			return -EINVAL;
572		ev = alpha_pmu->event_map[attr->config];
573	} else if (attr->type == PERF_TYPE_HW_CACHE) {
574		return -EOPNOTSUPP;
575	} else if (attr->type == PERF_TYPE_RAW) {
576		ev = attr->config & 0xff;
577	} else {
578		return -EOPNOTSUPP;
579	}
580
581	if (ev < 0) {
582		return ev;
583	}
584
585	/* The EV67 does not support mode exclusion */
586	if (attr->exclude_kernel || attr->exclude_user
587			|| attr->exclude_hv || attr->exclude_idle) {
588		return -EPERM;
589	}
590
591	/*
592	 * We place the event type in event_base here and leave calculation
593	 * of the codes to programme the PMU for alpha_pmu_enable() because
594	 * it is only then we will know what HW events are actually
595	 * scheduled on to the PMU.  At that point the code to programme the
596	 * PMU is put into config_base and the PMC to use is placed into
597	 * idx.  We initialise idx (below) to PMC_NO_INDEX to indicate that
598	 * it is yet to be determined.
599	 */
600	hwc->event_base = ev;
601
602	/* Collect events in a group together suitable for calling
603	 * alpha_check_constraints() to verify that the group as a whole can
604	 * be scheduled on to the PMU.
605	 */
606	n = 0;
607	if (event->group_leader != event) {
608		n = collect_events(event->group_leader,
609				alpha_pmu->num_pmcs - 1,
610				evts, evtypes, idx_rubbish_bin);
611		if (n < 0)
612			return -EINVAL;
613	}
614	evtypes[n] = hwc->event_base;
615	evts[n] = event;
616
617	if (alpha_check_constraints(evts, evtypes, n + 1))
618		return -EINVAL;
619
620	/* Indicate that PMU config and idx are yet to be determined. */
621	hwc->config_base = 0;
622	hwc->idx = PMC_NO_INDEX;
623
624	event->destroy = hw_perf_event_destroy;
625
626	/*
627	 * Most architectures reserve the PMU for their use at this point.
628	 * As there is no existing mechanism to arbitrate usage and there
629	 * appears to be no other user of the Alpha PMU we just assume
630	 * that we can just use it, hence a NO-OP here.
631	 *
632	 * Maybe an alpha_reserve_pmu() routine should be implemented but is
633	 * anything else ever going to use it?
634	 */
635
636	if (!hwc->sample_period) {
637		hwc->sample_period = alpha_pmu->pmc_max_period[0];
638		hwc->last_period = hwc->sample_period;
639		local64_set(&hwc->period_left, hwc->sample_period);
640	}
641
642	return 0;
643}
644
645static const struct pmu pmu = {
646	.enable		= alpha_pmu_enable,
647	.disable	= alpha_pmu_disable,
648	.read		= alpha_pmu_read,
649	.unthrottle	= alpha_pmu_unthrottle,
650};
651
652
653/*
654 * Main entry point to initialise a HW performance event.
655 */
656const struct pmu *hw_perf_event_init(struct perf_event *event)
657{
658	int err;
659
660	if (!alpha_pmu)
661		return ERR_PTR(-ENODEV);
662
663	/* Do the real initialisation work. */
664	err = __hw_perf_event_init(event);
665
666	if (err)
667		return ERR_PTR(err);
668
669	return &pmu;
670}
671
672
673
674/*
675 * Main entry point - enable HW performance counters.
676 */
677void hw_perf_enable(void)
678{
679	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
680
681	if (cpuc->enabled)
682		return;
683
684	cpuc->enabled = 1;
685	barrier();
686
687	if (cpuc->n_events > 0) {
688		/* Update cpuc with information from any new scheduled events. */
689		maybe_change_configuration(cpuc);
690
691		/* Start counting the desired events. */
692		wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
693		wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
694		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
695	}
696}
697
698
699/*
700 * Main entry point - disable HW performance counters.
701 */
702
703void hw_perf_disable(void)
704{
705	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
706
707	if (!cpuc->enabled)
708		return;
709
710	cpuc->enabled = 0;
711	cpuc->n_added = 0;
712
713	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
714}
715
716
717/*
718 * Main entry point - don't know when this is called but it
719 * obviously dumps debug info.
720 */
721void perf_event_print_debug(void)
722{
723	unsigned long flags;
724	unsigned long pcr;
725	int pcr0, pcr1;
726	int cpu;
727
728	if (!supported_cpu())
729		return;
730
731	local_irq_save(flags);
732
733	cpu = smp_processor_id();
734
735	pcr = wrperfmon(PERFMON_CMD_READ, 0);
736	pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
737	pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
738
739	pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
740
741	local_irq_restore(flags);
742}
743
744
745/*
746 * Performance Monitoring Interrupt Service Routine called when a PMC
747 * overflows.  The PMC that overflowed is passed in la_ptr.
748 */
749static void alpha_perf_event_irq_handler(unsigned long la_ptr,
750					struct pt_regs *regs)
751{
752	struct cpu_hw_events *cpuc;
753	struct perf_sample_data data;
754	struct perf_event *event;
755	struct hw_perf_event *hwc;
756	int idx, j;
757
758	__get_cpu_var(irq_pmi_count)++;
759	cpuc = &__get_cpu_var(cpu_hw_events);
760
761	/* Completely counting through the PMC's period to trigger a new PMC
762	 * overflow interrupt while in this interrupt routine is utterly
763	 * disastrous!  The EV6 and EV67 counters are sufficiently large to
764	 * prevent this but to be really sure disable the PMCs.
765	 */
766	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
767
768	/* la_ptr is the counter that overflowed. */
769	if (unlikely(la_ptr >= perf_max_events)) {
770		/* This should never occur! */
771		irq_err_count++;
772		pr_warning("PMI: silly index %ld\n", la_ptr);
773		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
774		return;
775	}
776
777	idx = la_ptr;
778
779	perf_sample_data_init(&data, 0);
780	for (j = 0; j < cpuc->n_events; j++) {
781		if (cpuc->current_idx[j] == idx)
782			break;
783	}
784
785	if (unlikely(j == cpuc->n_events)) {
786		/* This can occur if the event is disabled right on a PMC overflow. */
787		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
788		return;
789	}
790
791	event = cpuc->event[j];
792
793	if (unlikely(!event)) {
794		/* This should never occur! */
795		irq_err_count++;
796		pr_warning("PMI: No event at index %d!\n", idx);
797		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
798		return;
799	}
800
801	hwc = &event->hw;
802	alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
803	data.period = event->hw.last_period;
804
805	if (alpha_perf_event_set_period(event, hwc, idx)) {
806		if (perf_event_overflow(event, 1, &data, regs)) {
807			/* Interrupts coming too quickly; "throttle" the
808			 * counter, i.e., disable it for a little while.
809			 */
810			cpuc->idx_mask &= ~(1UL<<idx);
811		}
812	}
813	wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
814
815	return;
816}
817
818
819
820/*
821 * Init call to initialise performance events at kernel startup.
822 */
823void __init init_hw_perf_events(void)
824{
825	pr_info("Performance events: ");
826
827	if (!supported_cpu()) {
828		pr_cont("No support for your CPU.\n");
829		return;
830	}
831
832	pr_cont("Supported CPU type!\n");
833
834	/* Override performance counter IRQ vector */
835
836	perf_irq = alpha_perf_event_irq_handler;
837
838	/* And set up PMU specification */
839	alpha_pmu = &ev67_pmu;
840	perf_max_events = alpha_pmu->num_pmcs;
841}
842