1/*
2 * NET		An implementation of the SOCKET network access protocol.
3 *
4 * Version:	@(#)socket.c	1.1.93	18/02/95
5 *
6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
7 *		Ross Biro
8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12 *					shutdown()
13 *		Alan Cox	:	verify_area() fixes
14 *		Alan Cox	:	Removed DDI
15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16 *		Alan Cox	:	Moved a load of checks to the very
17 *					top level.
18 *		Alan Cox	:	Move address structures to/from user
19 *					mode above the protocol layers.
20 *		Rob Janssen	:	Allow 0 length sends.
21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22 *					tty drivers).
23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24 *		Jeff Uphoff	:	Made max number of sockets command-line
25 *					configurable.
26 *		Matti Aarnio	:	Made the number of sockets dynamic,
27 *					to be allocated when needed, and mr.
28 *					Uphoff's max is used as max to be
29 *					allowed to allocate.
30 *		Linus		:	Argh. removed all the socket allocation
31 *					altogether: it's in the inode now.
32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
33 *					for NetROM and future kernel nfsd type
34 *					stuff.
35 *		Alan Cox	:	sendmsg/recvmsg basics.
36 *		Tom Dyas	:	Export net symbols.
37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38 *		Alan Cox	:	Added thread locking to sys_* calls
39 *					for sockets. May have errors at the
40 *					moment.
41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
42 *		Andi Kleen	:	Some small cleanups, optimizations,
43 *					and fixed a copy_from_user() bug.
44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46 *					protocol-independent
47 *
48 *
49 *		This program is free software; you can redistribute it and/or
50 *		modify it under the terms of the GNU General Public License
51 *		as published by the Free Software Foundation; either version
52 *		2 of the License, or (at your option) any later version.
53 *
54 *
55 *	This module is effectively the top level interface to the BSD socket
56 *	paradigm.
57 *
58 *	Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/wanrouter.h>
73#include <linux/if_bridge.h>
74#include <linux/if_frad.h>
75#include <linux/if_vlan.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91
92#include <asm/uaccess.h>
93#include <asm/unistd.h>
94
95#include <net/compat.h>
96#include <net/wext.h>
97#include <net/cls_cgroup.h>
98
99#include <net/sock.h>
100#include <linux/netfilter.h>
101
102#include <linux/if_tun.h>
103#include <linux/ipv6_route.h>
104#include <linux/route.h>
105#include <linux/sockios.h>
106#include <linux/atalk.h>
107
108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110			 unsigned long nr_segs, loff_t pos);
111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112			  unsigned long nr_segs, loff_t pos);
113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115static int sock_close(struct inode *inode, struct file *file);
116static unsigned int sock_poll(struct file *file,
117			      struct poll_table_struct *wait);
118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119#ifdef CONFIG_COMPAT
120static long compat_sock_ioctl(struct file *file,
121			      unsigned int cmd, unsigned long arg);
122#endif
123static int sock_fasync(int fd, struct file *filp, int on);
124static ssize_t sock_sendpage(struct file *file, struct page *page,
125			     int offset, size_t size, loff_t *ppos, int more);
126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127				struct pipe_inode_info *pipe, size_t len,
128				unsigned int flags);
129
130/*
131 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 *	in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135static const struct file_operations socket_file_ops = {
136	.owner =	THIS_MODULE,
137	.llseek =	no_llseek,
138	.aio_read =	sock_aio_read,
139	.aio_write =	sock_aio_write,
140	.poll =		sock_poll,
141	.unlocked_ioctl = sock_ioctl,
142#ifdef CONFIG_COMPAT
143	.compat_ioctl = compat_sock_ioctl,
144#endif
145	.mmap =		sock_mmap,
146	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147	.release =	sock_close,
148	.fasync =	sock_fasync,
149	.sendpage =	sock_sendpage,
150	.splice_write = generic_splice_sendpage,
151	.splice_read =	sock_splice_read,
152};
153
154/*
155 *	The protocol list. Each protocol is registered in here.
156 */
157
158static DEFINE_SPINLOCK(net_family_lock);
159static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160
161/*
162 *	Statistics counters of the socket lists
163 */
164
165static DEFINE_PER_CPU(int, sockets_in_use);
166
167/*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173/**
174 *	move_addr_to_kernel	-	copy a socket address into kernel space
175 *	@uaddr: Address in user space
176 *	@kaddr: Address in kernel space
177 *	@ulen: Length in user space
178 *
179 *	The address is copied into kernel space. If the provided address is
180 *	too long an error code of -EINVAL is returned. If the copy gives
181 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185{
186	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187		return -EINVAL;
188	if (ulen == 0)
189		return 0;
190	if (copy_from_user(kaddr, uaddr, ulen))
191		return -EFAULT;
192	return audit_sockaddr(ulen, kaddr);
193}
194
195/**
196 *	move_addr_to_user	-	copy an address to user space
197 *	@kaddr: kernel space address
198 *	@klen: length of address in kernel
199 *	@uaddr: user space address
200 *	@ulen: pointer to user length field
201 *
202 *	The value pointed to by ulen on entry is the buffer length available.
203 *	This is overwritten with the buffer space used. -EINVAL is returned
204 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205 *	is returned if either the buffer or the length field are not
206 *	accessible.
207 *	After copying the data up to the limit the user specifies, the true
208 *	length of the data is written over the length limit the user
209 *	specified. Zero is returned for a success.
210 */
211
212int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213		      int __user *ulen)
214{
215	int err;
216	int len;
217
218	err = get_user(len, ulen);
219	if (err)
220		return err;
221	if (len > klen)
222		len = klen;
223	if (len < 0 || len > sizeof(struct sockaddr_storage))
224		return -EINVAL;
225	if (len) {
226		if (audit_sockaddr(klen, kaddr))
227			return -ENOMEM;
228		if (copy_to_user(uaddr, kaddr, len))
229			return -EFAULT;
230	}
231	/*
232	 *      "fromlen shall refer to the value before truncation.."
233	 *                      1003.1g
234	 */
235	return __put_user(klen, ulen);
236}
237
238static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240static struct inode *sock_alloc_inode(struct super_block *sb)
241{
242	struct socket_alloc *ei;
243
244	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245	if (!ei)
246		return NULL;
247	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248	if (!ei->socket.wq) {
249		kmem_cache_free(sock_inode_cachep, ei);
250		return NULL;
251	}
252	init_waitqueue_head(&ei->socket.wq->wait);
253	ei->socket.wq->fasync_list = NULL;
254
255	ei->socket.state = SS_UNCONNECTED;
256	ei->socket.flags = 0;
257	ei->socket.ops = NULL;
258	ei->socket.sk = NULL;
259	ei->socket.file = NULL;
260
261	return &ei->vfs_inode;
262}
263
264
265static void wq_free_rcu(struct rcu_head *head)
266{
267	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268
269	kfree(wq);
270}
271
272static void sock_destroy_inode(struct inode *inode)
273{
274	struct socket_alloc *ei;
275
276	ei = container_of(inode, struct socket_alloc, vfs_inode);
277	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278	kmem_cache_free(sock_inode_cachep, ei);
279}
280
281static void init_once(void *foo)
282{
283	struct socket_alloc *ei = (struct socket_alloc *)foo;
284
285	inode_init_once(&ei->vfs_inode);
286}
287
288static int init_inodecache(void)
289{
290	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291					      sizeof(struct socket_alloc),
292					      0,
293					      (SLAB_HWCACHE_ALIGN |
294					       SLAB_RECLAIM_ACCOUNT |
295					       SLAB_MEM_SPREAD),
296					      init_once);
297	if (sock_inode_cachep == NULL)
298		return -ENOMEM;
299	return 0;
300}
301
302static const struct super_operations sockfs_ops = {
303	.alloc_inode	= sock_alloc_inode,
304	.destroy_inode	= sock_destroy_inode,
305	.statfs		= simple_statfs,
306};
307
308static int sockfs_get_sb(struct file_system_type *fs_type,
309			 int flags, const char *dev_name, void *data,
310			 struct vfsmount *mnt)
311{
312	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
313			     mnt);
314}
315
316static struct vfsmount *sock_mnt __read_mostly;
317
318static struct file_system_type sock_fs_type = {
319	.name =		"sockfs",
320	.get_sb =	sockfs_get_sb,
321	.kill_sb =	kill_anon_super,
322};
323
324/*
325 * sockfs_dname() is called from d_path().
326 */
327static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
328{
329	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
330				dentry->d_inode->i_ino);
331}
332
333static const struct dentry_operations sockfs_dentry_operations = {
334	.d_dname  = sockfs_dname,
335};
336
337/*
338 *	Obtains the first available file descriptor and sets it up for use.
339 *
340 *	These functions create file structures and maps them to fd space
341 *	of the current process. On success it returns file descriptor
342 *	and file struct implicitly stored in sock->file.
343 *	Note that another thread may close file descriptor before we return
344 *	from this function. We use the fact that now we do not refer
345 *	to socket after mapping. If one day we will need it, this
346 *	function will increment ref. count on file by 1.
347 *
348 *	In any case returned fd MAY BE not valid!
349 *	This race condition is unavoidable
350 *	with shared fd spaces, we cannot solve it inside kernel,
351 *	but we take care of internal coherence yet.
352 */
353
354static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
355{
356	struct qstr name = { .name = "" };
357	struct path path;
358	struct file *file;
359	int fd;
360
361	fd = get_unused_fd_flags(flags);
362	if (unlikely(fd < 0))
363		return fd;
364
365	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
366	if (unlikely(!path.dentry)) {
367		put_unused_fd(fd);
368		return -ENOMEM;
369	}
370	path.mnt = mntget(sock_mnt);
371
372	path.dentry->d_op = &sockfs_dentry_operations;
373	d_instantiate(path.dentry, SOCK_INODE(sock));
374	SOCK_INODE(sock)->i_fop = &socket_file_ops;
375
376	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377		  &socket_file_ops);
378	if (unlikely(!file)) {
379		/* drop dentry, keep inode */
380		atomic_inc(&path.dentry->d_inode->i_count);
381		path_put(&path);
382		put_unused_fd(fd);
383		return -ENFILE;
384	}
385
386	sock->file = file;
387	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388	file->f_pos = 0;
389	file->private_data = sock;
390
391	*f = file;
392	return fd;
393}
394
395int sock_map_fd(struct socket *sock, int flags)
396{
397	struct file *newfile;
398	int fd = sock_alloc_file(sock, &newfile, flags);
399
400	if (likely(fd >= 0))
401		fd_install(fd, newfile);
402
403	return fd;
404}
405EXPORT_SYMBOL(sock_map_fd);
406
407static struct socket *sock_from_file(struct file *file, int *err)
408{
409	if (file->f_op == &socket_file_ops)
410		return file->private_data;	/* set in sock_map_fd */
411
412	*err = -ENOTSOCK;
413	return NULL;
414}
415
416/**
417 *	sockfd_lookup - Go from a file number to its socket slot
418 *	@fd: file handle
419 *	@err: pointer to an error code return
420 *
421 *	The file handle passed in is locked and the socket it is bound
422 *	too is returned. If an error occurs the err pointer is overwritten
423 *	with a negative errno code and NULL is returned. The function checks
424 *	for both invalid handles and passing a handle which is not a socket.
425 *
426 *	On a success the socket object pointer is returned.
427 */
428
429struct socket *sockfd_lookup(int fd, int *err)
430{
431	struct file *file;
432	struct socket *sock;
433
434	file = fget(fd);
435	if (!file) {
436		*err = -EBADF;
437		return NULL;
438	}
439
440	sock = sock_from_file(file, err);
441	if (!sock)
442		fput(file);
443	return sock;
444}
445EXPORT_SYMBOL(sockfd_lookup);
446
447static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448{
449	struct file *file;
450	struct socket *sock;
451
452	*err = -EBADF;
453	file = fget_light(fd, fput_needed);
454	if (file) {
455		sock = sock_from_file(file, err);
456		if (sock)
457			return sock;
458		fput_light(file, *fput_needed);
459	}
460	return NULL;
461}
462
463/**
464 *	sock_alloc	-	allocate a socket
465 *
466 *	Allocate a new inode and socket object. The two are bound together
467 *	and initialised. The socket is then returned. If we are out of inodes
468 *	NULL is returned.
469 */
470
471static struct socket *sock_alloc(void)
472{
473	struct inode *inode;
474	struct socket *sock;
475
476	inode = new_inode(sock_mnt->mnt_sb);
477	if (!inode)
478		return NULL;
479
480	sock = SOCKET_I(inode);
481
482	kmemcheck_annotate_bitfield(sock, type);
483	inode->i_mode = S_IFSOCK | S_IRWXUGO;
484	inode->i_uid = current_fsuid();
485	inode->i_gid = current_fsgid();
486
487	percpu_add(sockets_in_use, 1);
488	return sock;
489}
490
491/*
492 *	In theory you can't get an open on this inode, but /proc provides
493 *	a back door. Remember to keep it shut otherwise you'll let the
494 *	creepy crawlies in.
495 */
496
497static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498{
499	return -ENXIO;
500}
501
502const struct file_operations bad_sock_fops = {
503	.owner = THIS_MODULE,
504	.open = sock_no_open,
505};
506
507/**
508 *	sock_release	-	close a socket
509 *	@sock: socket to close
510 *
511 *	The socket is released from the protocol stack if it has a release
512 *	callback, and the inode is then released if the socket is bound to
513 *	an inode not a file.
514 */
515
516void sock_release(struct socket *sock)
517{
518	if (sock->ops) {
519		struct module *owner = sock->ops->owner;
520
521		sock->ops->release(sock);
522		sock->ops = NULL;
523		module_put(owner);
524	}
525
526	if (sock->wq->fasync_list)
527		printk(KERN_ERR "sock_release: fasync list not empty!\n");
528
529	percpu_sub(sockets_in_use, 1);
530	if (!sock->file) {
531		iput(SOCK_INODE(sock));
532		return;
533	}
534	sock->file = NULL;
535}
536EXPORT_SYMBOL(sock_release);
537
538int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
539		      union skb_shared_tx *shtx)
540{
541	shtx->flags = 0;
542	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
543		shtx->hardware = 1;
544	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
545		shtx->software = 1;
546	return 0;
547}
548EXPORT_SYMBOL(sock_tx_timestamp);
549
550static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
551				 struct msghdr *msg, size_t size)
552{
553	struct sock_iocb *si = kiocb_to_siocb(iocb);
554	int err;
555
556	sock_update_classid(sock->sk);
557
558	si->sock = sock;
559	si->scm = NULL;
560	si->msg = msg;
561	si->size = size;
562
563	err = security_socket_sendmsg(sock, msg, size);
564	if (err)
565		return err;
566
567	return sock->ops->sendmsg(iocb, sock, msg, size);
568}
569
570int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571{
572	struct kiocb iocb;
573	struct sock_iocb siocb;
574	int ret;
575
576	init_sync_kiocb(&iocb, NULL);
577	iocb.private = &siocb;
578	ret = __sock_sendmsg(&iocb, sock, msg, size);
579	if (-EIOCBQUEUED == ret)
580		ret = wait_on_sync_kiocb(&iocb);
581	return ret;
582}
583EXPORT_SYMBOL(sock_sendmsg);
584
585int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
586		   struct kvec *vec, size_t num, size_t size)
587{
588	mm_segment_t oldfs = get_fs();
589	int result;
590
591	set_fs(KERNEL_DS);
592	/*
593	 * the following is safe, since for compiler definitions of kvec and
594	 * iovec are identical, yielding the same in-core layout and alignment
595	 */
596	msg->msg_iov = (struct iovec *)vec;
597	msg->msg_iovlen = num;
598	result = sock_sendmsg(sock, msg, size);
599	set_fs(oldfs);
600	return result;
601}
602EXPORT_SYMBOL(kernel_sendmsg);
603
604static int ktime2ts(ktime_t kt, struct timespec *ts)
605{
606	if (kt.tv64) {
607		*ts = ktime_to_timespec(kt);
608		return 1;
609	} else {
610		return 0;
611	}
612}
613
614/*
615 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
616 */
617void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
618	struct sk_buff *skb)
619{
620	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
621	struct timespec ts[3];
622	int empty = 1;
623	struct skb_shared_hwtstamps *shhwtstamps =
624		skb_hwtstamps(skb);
625
626	/* Race occurred between timestamp enabling and packet
627	   receiving.  Fill in the current time for now. */
628	if (need_software_tstamp && skb->tstamp.tv64 == 0)
629		__net_timestamp(skb);
630
631	if (need_software_tstamp) {
632		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
633			struct timeval tv;
634			skb_get_timestamp(skb, &tv);
635			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
636				 sizeof(tv), &tv);
637		} else {
638			skb_get_timestampns(skb, &ts[0]);
639			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
640				 sizeof(ts[0]), &ts[0]);
641		}
642	}
643
644
645	memset(ts, 0, sizeof(ts));
646	if (skb->tstamp.tv64 &&
647	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
648		skb_get_timestampns(skb, ts + 0);
649		empty = 0;
650	}
651	if (shhwtstamps) {
652		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
653		    ktime2ts(shhwtstamps->syststamp, ts + 1))
654			empty = 0;
655		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
656		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
657			empty = 0;
658	}
659	if (!empty)
660		put_cmsg(msg, SOL_SOCKET,
661			 SCM_TIMESTAMPING, sizeof(ts), &ts);
662}
663EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
664
665inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
666{
667	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
668		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
669			sizeof(__u32), &skb->dropcount);
670}
671
672void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
673	struct sk_buff *skb)
674{
675	sock_recv_timestamp(msg, sk, skb);
676	sock_recv_drops(msg, sk, skb);
677}
678EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
679
680static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
681				       struct msghdr *msg, size_t size, int flags)
682{
683	struct sock_iocb *si = kiocb_to_siocb(iocb);
684
685	sock_update_classid(sock->sk);
686
687	si->sock = sock;
688	si->scm = NULL;
689	si->msg = msg;
690	si->size = size;
691	si->flags = flags;
692
693	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
694}
695
696static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697				 struct msghdr *msg, size_t size, int flags)
698{
699	int err = security_socket_recvmsg(sock, msg, size, flags);
700
701	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
702}
703
704int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705		 size_t size, int flags)
706{
707	struct kiocb iocb;
708	struct sock_iocb siocb;
709	int ret;
710
711	init_sync_kiocb(&iocb, NULL);
712	iocb.private = &siocb;
713	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714	if (-EIOCBQUEUED == ret)
715		ret = wait_on_sync_kiocb(&iocb);
716	return ret;
717}
718EXPORT_SYMBOL(sock_recvmsg);
719
720static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721			      size_t size, int flags)
722{
723	struct kiocb iocb;
724	struct sock_iocb siocb;
725	int ret;
726
727	init_sync_kiocb(&iocb, NULL);
728	iocb.private = &siocb;
729	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
730	if (-EIOCBQUEUED == ret)
731		ret = wait_on_sync_kiocb(&iocb);
732	return ret;
733}
734
735int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
736		   struct kvec *vec, size_t num, size_t size, int flags)
737{
738	mm_segment_t oldfs = get_fs();
739	int result;
740
741	set_fs(KERNEL_DS);
742	/*
743	 * the following is safe, since for compiler definitions of kvec and
744	 * iovec are identical, yielding the same in-core layout and alignment
745	 */
746	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
747	result = sock_recvmsg(sock, msg, size, flags);
748	set_fs(oldfs);
749	return result;
750}
751EXPORT_SYMBOL(kernel_recvmsg);
752
753static void sock_aio_dtor(struct kiocb *iocb)
754{
755	kfree(iocb->private);
756}
757
758static ssize_t sock_sendpage(struct file *file, struct page *page,
759			     int offset, size_t size, loff_t *ppos, int more)
760{
761	struct socket *sock;
762	int flags;
763
764	sock = file->private_data;
765
766	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
767	if (more)
768		flags |= MSG_MORE;
769
770	return kernel_sendpage(sock, page, offset, size, flags);
771}
772
773static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
774				struct pipe_inode_info *pipe, size_t len,
775				unsigned int flags)
776{
777	struct socket *sock = file->private_data;
778
779	if (unlikely(!sock->ops->splice_read))
780		return -EINVAL;
781
782	sock_update_classid(sock->sk);
783
784	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
785}
786
787static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
788					 struct sock_iocb *siocb)
789{
790	if (!is_sync_kiocb(iocb)) {
791		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
792		if (!siocb)
793			return NULL;
794		iocb->ki_dtor = sock_aio_dtor;
795	}
796
797	siocb->kiocb = iocb;
798	iocb->private = siocb;
799	return siocb;
800}
801
802static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
803		struct file *file, const struct iovec *iov,
804		unsigned long nr_segs)
805{
806	struct socket *sock = file->private_data;
807	size_t size = 0;
808	int i;
809
810	for (i = 0; i < nr_segs; i++)
811		size += iov[i].iov_len;
812
813	msg->msg_name = NULL;
814	msg->msg_namelen = 0;
815	msg->msg_control = NULL;
816	msg->msg_controllen = 0;
817	msg->msg_iov = (struct iovec *)iov;
818	msg->msg_iovlen = nr_segs;
819	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
820
821	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
822}
823
824static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
825				unsigned long nr_segs, loff_t pos)
826{
827	struct sock_iocb siocb, *x;
828
829	if (pos != 0)
830		return -ESPIPE;
831
832	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
833		return 0;
834
835
836	x = alloc_sock_iocb(iocb, &siocb);
837	if (!x)
838		return -ENOMEM;
839	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
840}
841
842static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
843			struct file *file, const struct iovec *iov,
844			unsigned long nr_segs)
845{
846	struct socket *sock = file->private_data;
847	size_t size = 0;
848	int i;
849
850	for (i = 0; i < nr_segs; i++)
851		size += iov[i].iov_len;
852
853	msg->msg_name = NULL;
854	msg->msg_namelen = 0;
855	msg->msg_control = NULL;
856	msg->msg_controllen = 0;
857	msg->msg_iov = (struct iovec *)iov;
858	msg->msg_iovlen = nr_segs;
859	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
860	if (sock->type == SOCK_SEQPACKET)
861		msg->msg_flags |= MSG_EOR;
862
863	return __sock_sendmsg(iocb, sock, msg, size);
864}
865
866static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
867			  unsigned long nr_segs, loff_t pos)
868{
869	struct sock_iocb siocb, *x;
870
871	if (pos != 0)
872		return -ESPIPE;
873
874	x = alloc_sock_iocb(iocb, &siocb);
875	if (!x)
876		return -ENOMEM;
877
878	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
879}
880
881/*
882 * Atomic setting of ioctl hooks to avoid race
883 * with module unload.
884 */
885
886static DEFINE_MUTEX(br_ioctl_mutex);
887static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
888
889void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
890{
891	mutex_lock(&br_ioctl_mutex);
892	br_ioctl_hook = hook;
893	mutex_unlock(&br_ioctl_mutex);
894}
895EXPORT_SYMBOL(brioctl_set);
896
897static DEFINE_MUTEX(vlan_ioctl_mutex);
898static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
899
900void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
901{
902	mutex_lock(&vlan_ioctl_mutex);
903	vlan_ioctl_hook = hook;
904	mutex_unlock(&vlan_ioctl_mutex);
905}
906EXPORT_SYMBOL(vlan_ioctl_set);
907
908static DEFINE_MUTEX(dlci_ioctl_mutex);
909static int (*dlci_ioctl_hook) (unsigned int, void __user *);
910
911void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
912{
913	mutex_lock(&dlci_ioctl_mutex);
914	dlci_ioctl_hook = hook;
915	mutex_unlock(&dlci_ioctl_mutex);
916}
917EXPORT_SYMBOL(dlci_ioctl_set);
918
919static long sock_do_ioctl(struct net *net, struct socket *sock,
920				 unsigned int cmd, unsigned long arg)
921{
922	int err;
923	void __user *argp = (void __user *)arg;
924
925	err = sock->ops->ioctl(sock, cmd, arg);
926
927	/*
928	 * If this ioctl is unknown try to hand it down
929	 * to the NIC driver.
930	 */
931	if (err == -ENOIOCTLCMD)
932		err = dev_ioctl(net, cmd, argp);
933
934	return err;
935}
936
937/*
938 *	With an ioctl, arg may well be a user mode pointer, but we don't know
939 *	what to do with it - that's up to the protocol still.
940 */
941
942static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
943{
944	struct socket *sock;
945	struct sock *sk;
946	void __user *argp = (void __user *)arg;
947	int pid, err;
948	struct net *net;
949
950	sock = file->private_data;
951	sk = sock->sk;
952	net = sock_net(sk);
953	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
954		err = dev_ioctl(net, cmd, argp);
955	} else
956#ifdef CONFIG_WEXT_CORE
957	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
958		err = dev_ioctl(net, cmd, argp);
959	} else
960#endif
961		switch (cmd) {
962		case FIOSETOWN:
963		case SIOCSPGRP:
964			err = -EFAULT;
965			if (get_user(pid, (int __user *)argp))
966				break;
967			err = f_setown(sock->file, pid, 1);
968			break;
969		case FIOGETOWN:
970		case SIOCGPGRP:
971			err = put_user(f_getown(sock->file),
972				       (int __user *)argp);
973			break;
974		case SIOCGIFBR:
975		case SIOCSIFBR:
976		case SIOCBRADDBR:
977		case SIOCBRDELBR:
978			err = -ENOPKG;
979			if (!br_ioctl_hook)
980				request_module("bridge");
981
982			mutex_lock(&br_ioctl_mutex);
983			if (br_ioctl_hook)
984				err = br_ioctl_hook(net, cmd, argp);
985			mutex_unlock(&br_ioctl_mutex);
986			break;
987		case SIOCGIFVLAN:
988		case SIOCSIFVLAN:
989			err = -ENOPKG;
990			if (!vlan_ioctl_hook)
991				request_module("8021q");
992
993			mutex_lock(&vlan_ioctl_mutex);
994			if (vlan_ioctl_hook)
995				err = vlan_ioctl_hook(net, argp);
996			mutex_unlock(&vlan_ioctl_mutex);
997			break;
998		case SIOCADDDLCI:
999		case SIOCDELDLCI:
1000			err = -ENOPKG;
1001			if (!dlci_ioctl_hook)
1002				request_module("dlci");
1003
1004			mutex_lock(&dlci_ioctl_mutex);
1005			if (dlci_ioctl_hook)
1006				err = dlci_ioctl_hook(cmd, argp);
1007			mutex_unlock(&dlci_ioctl_mutex);
1008			break;
1009		default:
1010			err = sock_do_ioctl(net, sock, cmd, arg);
1011			break;
1012		}
1013	return err;
1014}
1015
1016int sock_create_lite(int family, int type, int protocol, struct socket **res)
1017{
1018	int err;
1019	struct socket *sock = NULL;
1020
1021	err = security_socket_create(family, type, protocol, 1);
1022	if (err)
1023		goto out;
1024
1025	sock = sock_alloc();
1026	if (!sock) {
1027		err = -ENOMEM;
1028		goto out;
1029	}
1030
1031	sock->type = type;
1032	err = security_socket_post_create(sock, family, type, protocol, 1);
1033	if (err)
1034		goto out_release;
1035
1036out:
1037	*res = sock;
1038	return err;
1039out_release:
1040	sock_release(sock);
1041	sock = NULL;
1042	goto out;
1043}
1044EXPORT_SYMBOL(sock_create_lite);
1045
1046/* No kernel lock held - perfect */
1047static unsigned int sock_poll(struct file *file, poll_table *wait)
1048{
1049	struct socket *sock;
1050
1051	/*
1052	 *      We can't return errors to poll, so it's either yes or no.
1053	 */
1054	sock = file->private_data;
1055	return sock->ops->poll(file, sock, wait);
1056}
1057
1058static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1059{
1060	struct socket *sock = file->private_data;
1061
1062	return sock->ops->mmap(file, sock, vma);
1063}
1064
1065static int sock_close(struct inode *inode, struct file *filp)
1066{
1067	/*
1068	 *      It was possible the inode is NULL we were
1069	 *      closing an unfinished socket.
1070	 */
1071
1072	if (!inode) {
1073		printk(KERN_DEBUG "sock_close: NULL inode\n");
1074		return 0;
1075	}
1076	sock_release(SOCKET_I(inode));
1077	return 0;
1078}
1079
1080/*
1081 *	Update the socket async list
1082 *
1083 *	Fasync_list locking strategy.
1084 *
1085 *	1. fasync_list is modified only under process context socket lock
1086 *	   i.e. under semaphore.
1087 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1088 *	   or under socket lock
1089 */
1090
1091static int sock_fasync(int fd, struct file *filp, int on)
1092{
1093	struct socket *sock = filp->private_data;
1094	struct sock *sk = sock->sk;
1095
1096	if (sk == NULL)
1097		return -EINVAL;
1098
1099	lock_sock(sk);
1100
1101	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1102
1103	if (!sock->wq->fasync_list)
1104		sock_reset_flag(sk, SOCK_FASYNC);
1105	else
1106		sock_set_flag(sk, SOCK_FASYNC);
1107
1108	release_sock(sk);
1109	return 0;
1110}
1111
1112/* This function may be called only under socket lock or callback_lock or rcu_lock */
1113
1114int sock_wake_async(struct socket *sock, int how, int band)
1115{
1116	struct socket_wq *wq;
1117
1118	if (!sock)
1119		return -1;
1120	rcu_read_lock();
1121	wq = rcu_dereference(sock->wq);
1122	if (!wq || !wq->fasync_list) {
1123		rcu_read_unlock();
1124		return -1;
1125	}
1126	switch (how) {
1127	case SOCK_WAKE_WAITD:
1128		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1129			break;
1130		goto call_kill;
1131	case SOCK_WAKE_SPACE:
1132		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1133			break;
1134		/* fall through */
1135	case SOCK_WAKE_IO:
1136call_kill:
1137		kill_fasync(&wq->fasync_list, SIGIO, band);
1138		break;
1139	case SOCK_WAKE_URG:
1140		kill_fasync(&wq->fasync_list, SIGURG, band);
1141	}
1142	rcu_read_unlock();
1143	return 0;
1144}
1145EXPORT_SYMBOL(sock_wake_async);
1146
1147static int __sock_create(struct net *net, int family, int type, int protocol,
1148			 struct socket **res, int kern)
1149{
1150	int err;
1151	struct socket *sock;
1152	const struct net_proto_family *pf;
1153
1154	/*
1155	 *      Check protocol is in range
1156	 */
1157	if (family < 0 || family >= NPROTO)
1158		return -EAFNOSUPPORT;
1159	if (type < 0 || type >= SOCK_MAX)
1160		return -EINVAL;
1161
1162	/* Compatibility.
1163
1164	   This uglymoron is moved from INET layer to here to avoid
1165	   deadlock in module load.
1166	 */
1167	if (family == PF_INET && type == SOCK_PACKET) {
1168		static int warned;
1169		if (!warned) {
1170			warned = 1;
1171			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1172			       current->comm);
1173		}
1174		family = PF_PACKET;
1175	}
1176
1177	err = security_socket_create(family, type, protocol, kern);
1178	if (err)
1179		return err;
1180
1181	/*
1182	 *	Allocate the socket and allow the family to set things up. if
1183	 *	the protocol is 0, the family is instructed to select an appropriate
1184	 *	default.
1185	 */
1186	sock = sock_alloc();
1187	if (!sock) {
1188		if (net_ratelimit())
1189			printk(KERN_WARNING "socket: no more sockets\n");
1190		return -ENFILE;	/* Not exactly a match, but its the
1191				   closest posix thing */
1192	}
1193
1194	sock->type = type;
1195
1196#ifdef CONFIG_MODULES
1197	/* Attempt to load a protocol module if the find failed.
1198	 *
1199	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1200	 * requested real, full-featured networking support upon configuration.
1201	 * Otherwise module support will break!
1202	 */
1203	if (net_families[family] == NULL)
1204		request_module("net-pf-%d", family);
1205#endif
1206
1207	rcu_read_lock();
1208	pf = rcu_dereference(net_families[family]);
1209	err = -EAFNOSUPPORT;
1210	if (!pf)
1211		goto out_release;
1212
1213	/*
1214	 * We will call the ->create function, that possibly is in a loadable
1215	 * module, so we have to bump that loadable module refcnt first.
1216	 */
1217	if (!try_module_get(pf->owner))
1218		goto out_release;
1219
1220	/* Now protected by module ref count */
1221	rcu_read_unlock();
1222
1223	err = pf->create(net, sock, protocol, kern);
1224	if (err < 0)
1225		goto out_module_put;
1226
1227	/*
1228	 * Now to bump the refcnt of the [loadable] module that owns this
1229	 * socket at sock_release time we decrement its refcnt.
1230	 */
1231	if (!try_module_get(sock->ops->owner))
1232		goto out_module_busy;
1233
1234	/*
1235	 * Now that we're done with the ->create function, the [loadable]
1236	 * module can have its refcnt decremented
1237	 */
1238	module_put(pf->owner);
1239	err = security_socket_post_create(sock, family, type, protocol, kern);
1240	if (err)
1241		goto out_sock_release;
1242	*res = sock;
1243
1244	return 0;
1245
1246out_module_busy:
1247	err = -EAFNOSUPPORT;
1248out_module_put:
1249	sock->ops = NULL;
1250	module_put(pf->owner);
1251out_sock_release:
1252	sock_release(sock);
1253	return err;
1254
1255out_release:
1256	rcu_read_unlock();
1257	goto out_sock_release;
1258}
1259
1260int sock_create(int family, int type, int protocol, struct socket **res)
1261{
1262	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1263}
1264EXPORT_SYMBOL(sock_create);
1265
1266int sock_create_kern(int family, int type, int protocol, struct socket **res)
1267{
1268	return __sock_create(&init_net, family, type, protocol, res, 1);
1269}
1270EXPORT_SYMBOL(sock_create_kern);
1271
1272SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1273{
1274	int retval;
1275	struct socket *sock;
1276	int flags;
1277
1278	/* Check the SOCK_* constants for consistency.  */
1279	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1280	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1281	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1282	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1283
1284	flags = type & ~SOCK_TYPE_MASK;
1285	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1286		return -EINVAL;
1287	type &= SOCK_TYPE_MASK;
1288
1289	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1290		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1291
1292	retval = sock_create(family, type, protocol, &sock);
1293	if (retval < 0)
1294		goto out;
1295
1296	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1297	if (retval < 0)
1298		goto out_release;
1299
1300out:
1301	/* It may be already another descriptor 8) Not kernel problem. */
1302	return retval;
1303
1304out_release:
1305	sock_release(sock);
1306	return retval;
1307}
1308
1309/*
1310 *	Create a pair of connected sockets.
1311 */
1312
1313SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1314		int __user *, usockvec)
1315{
1316	struct socket *sock1, *sock2;
1317	int fd1, fd2, err;
1318	struct file *newfile1, *newfile2;
1319	int flags;
1320
1321	flags = type & ~SOCK_TYPE_MASK;
1322	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1323		return -EINVAL;
1324	type &= SOCK_TYPE_MASK;
1325
1326	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1327		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1328
1329	/*
1330	 * Obtain the first socket and check if the underlying protocol
1331	 * supports the socketpair call.
1332	 */
1333
1334	err = sock_create(family, type, protocol, &sock1);
1335	if (err < 0)
1336		goto out;
1337
1338	err = sock_create(family, type, protocol, &sock2);
1339	if (err < 0)
1340		goto out_release_1;
1341
1342	err = sock1->ops->socketpair(sock1, sock2);
1343	if (err < 0)
1344		goto out_release_both;
1345
1346	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1347	if (unlikely(fd1 < 0)) {
1348		err = fd1;
1349		goto out_release_both;
1350	}
1351
1352	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1353	if (unlikely(fd2 < 0)) {
1354		err = fd2;
1355		fput(newfile1);
1356		put_unused_fd(fd1);
1357		sock_release(sock2);
1358		goto out;
1359	}
1360
1361	audit_fd_pair(fd1, fd2);
1362	fd_install(fd1, newfile1);
1363	fd_install(fd2, newfile2);
1364	/* fd1 and fd2 may be already another descriptors.
1365	 * Not kernel problem.
1366	 */
1367
1368	err = put_user(fd1, &usockvec[0]);
1369	if (!err)
1370		err = put_user(fd2, &usockvec[1]);
1371	if (!err)
1372		return 0;
1373
1374	sys_close(fd2);
1375	sys_close(fd1);
1376	return err;
1377
1378out_release_both:
1379	sock_release(sock2);
1380out_release_1:
1381	sock_release(sock1);
1382out:
1383	return err;
1384}
1385
1386/*
1387 *	Bind a name to a socket. Nothing much to do here since it's
1388 *	the protocol's responsibility to handle the local address.
1389 *
1390 *	We move the socket address to kernel space before we call
1391 *	the protocol layer (having also checked the address is ok).
1392 */
1393
1394SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1395{
1396	struct socket *sock;
1397	struct sockaddr_storage address;
1398	int err, fput_needed;
1399
1400	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1401	if (sock) {
1402		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1403		if (err >= 0) {
1404			err = security_socket_bind(sock,
1405						   (struct sockaddr *)&address,
1406						   addrlen);
1407			if (!err)
1408				err = sock->ops->bind(sock,
1409						      (struct sockaddr *)
1410						      &address, addrlen);
1411		}
1412		fput_light(sock->file, fput_needed);
1413	}
1414	return err;
1415}
1416
1417/*
1418 *	Perform a listen. Basically, we allow the protocol to do anything
1419 *	necessary for a listen, and if that works, we mark the socket as
1420 *	ready for listening.
1421 */
1422
1423SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1424{
1425	struct socket *sock;
1426	int err, fput_needed;
1427	int somaxconn;
1428
1429	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1430	if (sock) {
1431		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1432		if ((unsigned)backlog > somaxconn)
1433			backlog = somaxconn;
1434
1435		err = security_socket_listen(sock, backlog);
1436		if (!err)
1437			err = sock->ops->listen(sock, backlog);
1438
1439		fput_light(sock->file, fput_needed);
1440	}
1441	return err;
1442}
1443
1444/*
1445 *	For accept, we attempt to create a new socket, set up the link
1446 *	with the client, wake up the client, then return the new
1447 *	connected fd. We collect the address of the connector in kernel
1448 *	space and move it to user at the very end. This is unclean because
1449 *	we open the socket then return an error.
1450 *
1451 *	1003.1g adds the ability to recvmsg() to query connection pending
1452 *	status to recvmsg. We need to add that support in a way thats
1453 *	clean when we restucture accept also.
1454 */
1455
1456SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1457		int __user *, upeer_addrlen, int, flags)
1458{
1459	struct socket *sock, *newsock;
1460	struct file *newfile;
1461	int err, len, newfd, fput_needed;
1462	struct sockaddr_storage address;
1463
1464	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1465		return -EINVAL;
1466
1467	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1468		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1469
1470	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1471	if (!sock)
1472		goto out;
1473
1474	err = -ENFILE;
1475	newsock = sock_alloc();
1476	if (!newsock)
1477		goto out_put;
1478
1479	newsock->type = sock->type;
1480	newsock->ops = sock->ops;
1481
1482	/*
1483	 * We don't need try_module_get here, as the listening socket (sock)
1484	 * has the protocol module (sock->ops->owner) held.
1485	 */
1486	__module_get(newsock->ops->owner);
1487
1488	newfd = sock_alloc_file(newsock, &newfile, flags);
1489	if (unlikely(newfd < 0)) {
1490		err = newfd;
1491		sock_release(newsock);
1492		goto out_put;
1493	}
1494
1495	err = security_socket_accept(sock, newsock);
1496	if (err)
1497		goto out_fd;
1498
1499	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1500	if (err < 0)
1501		goto out_fd;
1502
1503	if (upeer_sockaddr) {
1504		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1505					  &len, 2) < 0) {
1506			err = -ECONNABORTED;
1507			goto out_fd;
1508		}
1509		err = move_addr_to_user((struct sockaddr *)&address,
1510					len, upeer_sockaddr, upeer_addrlen);
1511		if (err < 0)
1512			goto out_fd;
1513	}
1514
1515	/* File flags are not inherited via accept() unlike another OSes. */
1516
1517	fd_install(newfd, newfile);
1518	err = newfd;
1519
1520out_put:
1521	fput_light(sock->file, fput_needed);
1522out:
1523	return err;
1524out_fd:
1525	fput(newfile);
1526	put_unused_fd(newfd);
1527	goto out_put;
1528}
1529
1530SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1531		int __user *, upeer_addrlen)
1532{
1533	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1534}
1535
1536/*
1537 *	Attempt to connect to a socket with the server address.  The address
1538 *	is in user space so we verify it is OK and move it to kernel space.
1539 *
1540 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1541 *	break bindings
1542 *
1543 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1544 *	other SEQPACKET protocols that take time to connect() as it doesn't
1545 *	include the -EINPROGRESS status for such sockets.
1546 */
1547
1548SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1549		int, addrlen)
1550{
1551	struct socket *sock;
1552	struct sockaddr_storage address;
1553	int err, fput_needed;
1554
1555	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556	if (!sock)
1557		goto out;
1558	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1559	if (err < 0)
1560		goto out_put;
1561
1562	err =
1563	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1564	if (err)
1565		goto out_put;
1566
1567	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1568				 sock->file->f_flags);
1569out_put:
1570	fput_light(sock->file, fput_needed);
1571out:
1572	return err;
1573}
1574
1575/*
1576 *	Get the local address ('name') of a socket object. Move the obtained
1577 *	name to user space.
1578 */
1579
1580SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1581		int __user *, usockaddr_len)
1582{
1583	struct socket *sock;
1584	struct sockaddr_storage address;
1585	int len, err, fput_needed;
1586
1587	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588	if (!sock)
1589		goto out;
1590
1591	err = security_socket_getsockname(sock);
1592	if (err)
1593		goto out_put;
1594
1595	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1596	if (err)
1597		goto out_put;
1598	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1599
1600out_put:
1601	fput_light(sock->file, fput_needed);
1602out:
1603	return err;
1604}
1605
1606/*
1607 *	Get the remote address ('name') of a socket object. Move the obtained
1608 *	name to user space.
1609 */
1610
1611SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1612		int __user *, usockaddr_len)
1613{
1614	struct socket *sock;
1615	struct sockaddr_storage address;
1616	int len, err, fput_needed;
1617
1618	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1619	if (sock != NULL) {
1620		err = security_socket_getpeername(sock);
1621		if (err) {
1622			fput_light(sock->file, fput_needed);
1623			return err;
1624		}
1625
1626		err =
1627		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1628				       1);
1629		if (!err)
1630			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1631						usockaddr_len);
1632		fput_light(sock->file, fput_needed);
1633	}
1634	return err;
1635}
1636
1637/*
1638 *	Send a datagram to a given address. We move the address into kernel
1639 *	space and check the user space data area is readable before invoking
1640 *	the protocol.
1641 */
1642
1643SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1644		unsigned, flags, struct sockaddr __user *, addr,
1645		int, addr_len)
1646{
1647	struct socket *sock;
1648	struct sockaddr_storage address;
1649	int err;
1650	struct msghdr msg;
1651	struct iovec iov;
1652	int fput_needed;
1653
1654	if (len > INT_MAX)
1655		len = INT_MAX;
1656	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1657	if (!sock)
1658		goto out;
1659
1660	iov.iov_base = buff;
1661	iov.iov_len = len;
1662	msg.msg_name = NULL;
1663	msg.msg_iov = &iov;
1664	msg.msg_iovlen = 1;
1665	msg.msg_control = NULL;
1666	msg.msg_controllen = 0;
1667	msg.msg_namelen = 0;
1668	if (addr) {
1669		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1670		if (err < 0)
1671			goto out_put;
1672		msg.msg_name = (struct sockaddr *)&address;
1673		msg.msg_namelen = addr_len;
1674	}
1675	if (sock->file->f_flags & O_NONBLOCK)
1676		flags |= MSG_DONTWAIT;
1677	msg.msg_flags = flags;
1678	err = sock_sendmsg(sock, &msg, len);
1679
1680out_put:
1681	fput_light(sock->file, fput_needed);
1682out:
1683	return err;
1684}
1685
1686/*
1687 *	Send a datagram down a socket.
1688 */
1689
1690SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1691		unsigned, flags)
1692{
1693	return sys_sendto(fd, buff, len, flags, NULL, 0);
1694}
1695
1696/*
1697 *	Receive a frame from the socket and optionally record the address of the
1698 *	sender. We verify the buffers are writable and if needed move the
1699 *	sender address from kernel to user space.
1700 */
1701
1702SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1703		unsigned, flags, struct sockaddr __user *, addr,
1704		int __user *, addr_len)
1705{
1706	struct socket *sock;
1707	struct iovec iov;
1708	struct msghdr msg;
1709	struct sockaddr_storage address;
1710	int err, err2;
1711	int fput_needed;
1712
1713	if (size > INT_MAX)
1714		size = INT_MAX;
1715	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1716	if (!sock)
1717		goto out;
1718
1719	msg.msg_control = NULL;
1720	msg.msg_controllen = 0;
1721	msg.msg_iovlen = 1;
1722	msg.msg_iov = &iov;
1723	iov.iov_len = size;
1724	iov.iov_base = ubuf;
1725	msg.msg_name = (struct sockaddr *)&address;
1726	msg.msg_namelen = sizeof(address);
1727	if (sock->file->f_flags & O_NONBLOCK)
1728		flags |= MSG_DONTWAIT;
1729	err = sock_recvmsg(sock, &msg, size, flags);
1730
1731	if (err >= 0 && addr != NULL) {
1732		err2 = move_addr_to_user((struct sockaddr *)&address,
1733					 msg.msg_namelen, addr, addr_len);
1734		if (err2 < 0)
1735			err = err2;
1736	}
1737
1738	fput_light(sock->file, fput_needed);
1739out:
1740	return err;
1741}
1742
1743/*
1744 *	Receive a datagram from a socket.
1745 */
1746
1747asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1748			 unsigned flags)
1749{
1750	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1751}
1752
1753/*
1754 *	Set a socket option. Because we don't know the option lengths we have
1755 *	to pass the user mode parameter for the protocols to sort out.
1756 */
1757
1758SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1759		char __user *, optval, int, optlen)
1760{
1761	int err, fput_needed;
1762	struct socket *sock;
1763
1764	if (optlen < 0)
1765		return -EINVAL;
1766
1767	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768	if (sock != NULL) {
1769		err = security_socket_setsockopt(sock, level, optname);
1770		if (err)
1771			goto out_put;
1772
1773		if (level == SOL_SOCKET)
1774			err =
1775			    sock_setsockopt(sock, level, optname, optval,
1776					    optlen);
1777		else
1778			err =
1779			    sock->ops->setsockopt(sock, level, optname, optval,
1780						  optlen);
1781out_put:
1782		fput_light(sock->file, fput_needed);
1783	}
1784	return err;
1785}
1786
1787/*
1788 *	Get a socket option. Because we don't know the option lengths we have
1789 *	to pass a user mode parameter for the protocols to sort out.
1790 */
1791
1792SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1793		char __user *, optval, int __user *, optlen)
1794{
1795	int err, fput_needed;
1796	struct socket *sock;
1797
1798	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799	if (sock != NULL) {
1800		err = security_socket_getsockopt(sock, level, optname);
1801		if (err)
1802			goto out_put;
1803
1804		if (level == SOL_SOCKET)
1805			err =
1806			    sock_getsockopt(sock, level, optname, optval,
1807					    optlen);
1808		else
1809			err =
1810			    sock->ops->getsockopt(sock, level, optname, optval,
1811						  optlen);
1812out_put:
1813		fput_light(sock->file, fput_needed);
1814	}
1815	return err;
1816}
1817
1818/*
1819 *	Shutdown a socket.
1820 */
1821
1822SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1823{
1824	int err, fput_needed;
1825	struct socket *sock;
1826
1827	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1828	if (sock != NULL) {
1829		err = security_socket_shutdown(sock, how);
1830		if (!err)
1831			err = sock->ops->shutdown(sock, how);
1832		fput_light(sock->file, fput_needed);
1833	}
1834	return err;
1835}
1836
1837/* A couple of helpful macros for getting the address of the 32/64 bit
1838 * fields which are the same type (int / unsigned) on our platforms.
1839 */
1840#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1841#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1842#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1843
1844/*
1845 *	BSD sendmsg interface
1846 */
1847
1848SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1849{
1850	struct compat_msghdr __user *msg_compat =
1851	    (struct compat_msghdr __user *)msg;
1852	struct socket *sock;
1853	struct sockaddr_storage address;
1854	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1855	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1856	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1857	/* 20 is size of ipv6_pktinfo */
1858	unsigned char *ctl_buf = ctl;
1859	struct msghdr msg_sys;
1860	int err, ctl_len, iov_size, total_len;
1861	int fput_needed;
1862
1863	err = -EFAULT;
1864	if (MSG_CMSG_COMPAT & flags) {
1865		if (get_compat_msghdr(&msg_sys, msg_compat))
1866			return -EFAULT;
1867	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1868		return -EFAULT;
1869
1870	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1871	if (!sock)
1872		goto out;
1873
1874	/* do not move before msg_sys is valid */
1875	err = -EMSGSIZE;
1876	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1877		goto out_put;
1878
1879	/* Check whether to allocate the iovec area */
1880	err = -ENOMEM;
1881	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1882	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1883		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1884		if (!iov)
1885			goto out_put;
1886	}
1887
1888	/* This will also move the address data into kernel space */
1889	if (MSG_CMSG_COMPAT & flags) {
1890		err = verify_compat_iovec(&msg_sys, iov,
1891					  (struct sockaddr *)&address,
1892					  VERIFY_READ);
1893	} else
1894		err = verify_iovec(&msg_sys, iov,
1895				   (struct sockaddr *)&address,
1896				   VERIFY_READ);
1897	if (err < 0)
1898		goto out_freeiov;
1899	total_len = err;
1900
1901	err = -ENOBUFS;
1902
1903	if (msg_sys.msg_controllen > INT_MAX)
1904		goto out_freeiov;
1905	ctl_len = msg_sys.msg_controllen;
1906	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1907		err =
1908		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1909						     sizeof(ctl));
1910		if (err)
1911			goto out_freeiov;
1912		ctl_buf = msg_sys.msg_control;
1913		ctl_len = msg_sys.msg_controllen;
1914	} else if (ctl_len) {
1915		if (ctl_len > sizeof(ctl)) {
1916			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1917			if (ctl_buf == NULL)
1918				goto out_freeiov;
1919		}
1920		err = -EFAULT;
1921		/*
1922		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1923		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1924		 * checking falls down on this.
1925		 */
1926		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1927				   ctl_len))
1928			goto out_freectl;
1929		msg_sys.msg_control = ctl_buf;
1930	}
1931	msg_sys.msg_flags = flags;
1932
1933	if (sock->file->f_flags & O_NONBLOCK)
1934		msg_sys.msg_flags |= MSG_DONTWAIT;
1935	err = sock_sendmsg(sock, &msg_sys, total_len);
1936
1937out_freectl:
1938	if (ctl_buf != ctl)
1939		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1940out_freeiov:
1941	if (iov != iovstack)
1942		sock_kfree_s(sock->sk, iov, iov_size);
1943out_put:
1944	fput_light(sock->file, fput_needed);
1945out:
1946	return err;
1947}
1948
1949static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1950			 struct msghdr *msg_sys, unsigned flags, int nosec)
1951{
1952	struct compat_msghdr __user *msg_compat =
1953	    (struct compat_msghdr __user *)msg;
1954	struct iovec iovstack[UIO_FASTIOV];
1955	struct iovec *iov = iovstack;
1956	unsigned long cmsg_ptr;
1957	int err, iov_size, total_len, len;
1958
1959	/* kernel mode address */
1960	struct sockaddr_storage addr;
1961
1962	/* user mode address pointers */
1963	struct sockaddr __user *uaddr;
1964	int __user *uaddr_len;
1965
1966	if (MSG_CMSG_COMPAT & flags) {
1967		if (get_compat_msghdr(msg_sys, msg_compat))
1968			return -EFAULT;
1969	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1970		return -EFAULT;
1971
1972	err = -EMSGSIZE;
1973	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1974		goto out;
1975
1976	/* Check whether to allocate the iovec area */
1977	err = -ENOMEM;
1978	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1979	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1980		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1981		if (!iov)
1982			goto out;
1983	}
1984
1985	/*
1986	 *      Save the user-mode address (verify_iovec will change the
1987	 *      kernel msghdr to use the kernel address space)
1988	 */
1989
1990	uaddr = (__force void __user *)msg_sys->msg_name;
1991	uaddr_len = COMPAT_NAMELEN(msg);
1992	if (MSG_CMSG_COMPAT & flags) {
1993		err = verify_compat_iovec(msg_sys, iov,
1994					  (struct sockaddr *)&addr,
1995					  VERIFY_WRITE);
1996	} else
1997		err = verify_iovec(msg_sys, iov,
1998				   (struct sockaddr *)&addr,
1999				   VERIFY_WRITE);
2000	if (err < 0)
2001		goto out_freeiov;
2002	total_len = err;
2003
2004	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2005	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2006
2007	if (sock->file->f_flags & O_NONBLOCK)
2008		flags |= MSG_DONTWAIT;
2009	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2010							  total_len, flags);
2011	if (err < 0)
2012		goto out_freeiov;
2013	len = err;
2014
2015	if (uaddr != NULL) {
2016		err = move_addr_to_user((struct sockaddr *)&addr,
2017					msg_sys->msg_namelen, uaddr,
2018					uaddr_len);
2019		if (err < 0)
2020			goto out_freeiov;
2021	}
2022	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2023			 COMPAT_FLAGS(msg));
2024	if (err)
2025		goto out_freeiov;
2026	if (MSG_CMSG_COMPAT & flags)
2027		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2028				 &msg_compat->msg_controllen);
2029	else
2030		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2031				 &msg->msg_controllen);
2032	if (err)
2033		goto out_freeiov;
2034	err = len;
2035
2036out_freeiov:
2037	if (iov != iovstack)
2038		sock_kfree_s(sock->sk, iov, iov_size);
2039out:
2040	return err;
2041}
2042
2043/*
2044 *	BSD recvmsg interface
2045 */
2046
2047SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2048		unsigned int, flags)
2049{
2050	int fput_needed, err;
2051	struct msghdr msg_sys;
2052	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2053
2054	if (!sock)
2055		goto out;
2056
2057	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2058
2059	fput_light(sock->file, fput_needed);
2060out:
2061	return err;
2062}
2063
2064/*
2065 *     Linux recvmmsg interface
2066 */
2067
2068int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2069		   unsigned int flags, struct timespec *timeout)
2070{
2071	int fput_needed, err, datagrams;
2072	struct socket *sock;
2073	struct mmsghdr __user *entry;
2074	struct compat_mmsghdr __user *compat_entry;
2075	struct msghdr msg_sys;
2076	struct timespec end_time;
2077
2078	if (timeout &&
2079	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2080				    timeout->tv_nsec))
2081		return -EINVAL;
2082
2083	datagrams = 0;
2084
2085	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2086	if (!sock)
2087		return err;
2088
2089	err = sock_error(sock->sk);
2090	if (err)
2091		goto out_put;
2092
2093	entry = mmsg;
2094	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2095
2096	while (datagrams < vlen) {
2097		/*
2098		 * No need to ask LSM for more than the first datagram.
2099		 */
2100		if (MSG_CMSG_COMPAT & flags) {
2101			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2102					    &msg_sys, flags, datagrams);
2103			if (err < 0)
2104				break;
2105			err = __put_user(err, &compat_entry->msg_len);
2106			++compat_entry;
2107		} else {
2108			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2109					    &msg_sys, flags, datagrams);
2110			if (err < 0)
2111				break;
2112			err = put_user(err, &entry->msg_len);
2113			++entry;
2114		}
2115
2116		if (err)
2117			break;
2118		++datagrams;
2119
2120		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2121		if (flags & MSG_WAITFORONE)
2122			flags |= MSG_DONTWAIT;
2123
2124		if (timeout) {
2125			ktime_get_ts(timeout);
2126			*timeout = timespec_sub(end_time, *timeout);
2127			if (timeout->tv_sec < 0) {
2128				timeout->tv_sec = timeout->tv_nsec = 0;
2129				break;
2130			}
2131
2132			/* Timeout, return less than vlen datagrams */
2133			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2134				break;
2135		}
2136
2137		/* Out of band data, return right away */
2138		if (msg_sys.msg_flags & MSG_OOB)
2139			break;
2140	}
2141
2142out_put:
2143	fput_light(sock->file, fput_needed);
2144
2145	if (err == 0)
2146		return datagrams;
2147
2148	if (datagrams != 0) {
2149		/*
2150		 * We may return less entries than requested (vlen) if the
2151		 * sock is non block and there aren't enough datagrams...
2152		 */
2153		if (err != -EAGAIN) {
2154			/*
2155			 * ... or  if recvmsg returns an error after we
2156			 * received some datagrams, where we record the
2157			 * error to return on the next call or if the
2158			 * app asks about it using getsockopt(SO_ERROR).
2159			 */
2160			sock->sk->sk_err = -err;
2161		}
2162
2163		return datagrams;
2164	}
2165
2166	return err;
2167}
2168
2169SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2170		unsigned int, vlen, unsigned int, flags,
2171		struct timespec __user *, timeout)
2172{
2173	int datagrams;
2174	struct timespec timeout_sys;
2175
2176	if (!timeout)
2177		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2178
2179	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2180		return -EFAULT;
2181
2182	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2183
2184	if (datagrams > 0 &&
2185	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2186		datagrams = -EFAULT;
2187
2188	return datagrams;
2189}
2190
2191#ifdef __ARCH_WANT_SYS_SOCKETCALL
2192/* Argument list sizes for sys_socketcall */
2193#define AL(x) ((x) * sizeof(unsigned long))
2194static const unsigned char nargs[20] = {
2195	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2196	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2197	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2198	AL(4), AL(5)
2199};
2200
2201#undef AL
2202
2203/*
2204 *	System call vectors.
2205 *
2206 *	Argument checking cleaned up. Saved 20% in size.
2207 *  This function doesn't need to set the kernel lock because
2208 *  it is set by the callees.
2209 */
2210
2211SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2212{
2213	unsigned long a[6];
2214	unsigned long a0, a1;
2215	int err;
2216	unsigned int len;
2217
2218	if (call < 1 || call > SYS_RECVMMSG)
2219		return -EINVAL;
2220
2221	len = nargs[call];
2222	if (len > sizeof(a))
2223		return -EINVAL;
2224
2225	/* copy_from_user should be SMP safe. */
2226	if (copy_from_user(a, args, len))
2227		return -EFAULT;
2228
2229	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2230
2231	a0 = a[0];
2232	a1 = a[1];
2233
2234	switch (call) {
2235	case SYS_SOCKET:
2236		err = sys_socket(a0, a1, a[2]);
2237		break;
2238	case SYS_BIND:
2239		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2240		break;
2241	case SYS_CONNECT:
2242		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2243		break;
2244	case SYS_LISTEN:
2245		err = sys_listen(a0, a1);
2246		break;
2247	case SYS_ACCEPT:
2248		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2249				  (int __user *)a[2], 0);
2250		break;
2251	case SYS_GETSOCKNAME:
2252		err =
2253		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2254				    (int __user *)a[2]);
2255		break;
2256	case SYS_GETPEERNAME:
2257		err =
2258		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2259				    (int __user *)a[2]);
2260		break;
2261	case SYS_SOCKETPAIR:
2262		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2263		break;
2264	case SYS_SEND:
2265		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2266		break;
2267	case SYS_SENDTO:
2268		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2269				 (struct sockaddr __user *)a[4], a[5]);
2270		break;
2271	case SYS_RECV:
2272		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2273		break;
2274	case SYS_RECVFROM:
2275		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2276				   (struct sockaddr __user *)a[4],
2277				   (int __user *)a[5]);
2278		break;
2279	case SYS_SHUTDOWN:
2280		err = sys_shutdown(a0, a1);
2281		break;
2282	case SYS_SETSOCKOPT:
2283		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2284		break;
2285	case SYS_GETSOCKOPT:
2286		err =
2287		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2288				   (int __user *)a[4]);
2289		break;
2290	case SYS_SENDMSG:
2291		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2292		break;
2293	case SYS_RECVMSG:
2294		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2295		break;
2296	case SYS_RECVMMSG:
2297		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2298				   (struct timespec __user *)a[4]);
2299		break;
2300	case SYS_ACCEPT4:
2301		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2302				  (int __user *)a[2], a[3]);
2303		break;
2304	default:
2305		err = -EINVAL;
2306		break;
2307	}
2308	return err;
2309}
2310
2311#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2312
2313/**
2314 *	sock_register - add a socket protocol handler
2315 *	@ops: description of protocol
2316 *
2317 *	This function is called by a protocol handler that wants to
2318 *	advertise its address family, and have it linked into the
2319 *	socket interface. The value ops->family coresponds to the
2320 *	socket system call protocol family.
2321 */
2322int sock_register(const struct net_proto_family *ops)
2323{
2324	int err;
2325
2326	if (ops->family >= NPROTO) {
2327		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2328		       NPROTO);
2329		return -ENOBUFS;
2330	}
2331
2332	spin_lock(&net_family_lock);
2333	if (net_families[ops->family])
2334		err = -EEXIST;
2335	else {
2336		net_families[ops->family] = ops;
2337		err = 0;
2338	}
2339	spin_unlock(&net_family_lock);
2340
2341	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2342	return err;
2343}
2344EXPORT_SYMBOL(sock_register);
2345
2346/**
2347 *	sock_unregister - remove a protocol handler
2348 *	@family: protocol family to remove
2349 *
2350 *	This function is called by a protocol handler that wants to
2351 *	remove its address family, and have it unlinked from the
2352 *	new socket creation.
2353 *
2354 *	If protocol handler is a module, then it can use module reference
2355 *	counts to protect against new references. If protocol handler is not
2356 *	a module then it needs to provide its own protection in
2357 *	the ops->create routine.
2358 */
2359void sock_unregister(int family)
2360{
2361	BUG_ON(family < 0 || family >= NPROTO);
2362
2363	spin_lock(&net_family_lock);
2364	net_families[family] = NULL;
2365	spin_unlock(&net_family_lock);
2366
2367	synchronize_rcu();
2368
2369	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2370}
2371EXPORT_SYMBOL(sock_unregister);
2372
2373static int __init sock_init(void)
2374{
2375	/*
2376	 *      Initialize sock SLAB cache.
2377	 */
2378
2379	sk_init();
2380
2381	/*
2382	 *      Initialize skbuff SLAB cache
2383	 */
2384	skb_init();
2385
2386	/*
2387	 *      Initialize the protocols module.
2388	 */
2389
2390	init_inodecache();
2391	register_filesystem(&sock_fs_type);
2392	sock_mnt = kern_mount(&sock_fs_type);
2393
2394	/* The real protocol initialization is performed in later initcalls.
2395	 */
2396
2397#ifdef CONFIG_NETFILTER
2398	netfilter_init();
2399#endif
2400
2401#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2402	skb_timestamping_init();
2403#endif
2404
2405	return 0;
2406}
2407
2408core_initcall(sock_init);	/* early initcall */
2409
2410#ifdef CONFIG_PROC_FS
2411void socket_seq_show(struct seq_file *seq)
2412{
2413	int cpu;
2414	int counter = 0;
2415
2416	for_each_possible_cpu(cpu)
2417	    counter += per_cpu(sockets_in_use, cpu);
2418
2419	/* It can be negative, by the way. 8) */
2420	if (counter < 0)
2421		counter = 0;
2422
2423	seq_printf(seq, "sockets: used %d\n", counter);
2424}
2425#endif				/* CONFIG_PROC_FS */
2426
2427#ifdef CONFIG_COMPAT
2428static int do_siocgstamp(struct net *net, struct socket *sock,
2429			 unsigned int cmd, struct compat_timeval __user *up)
2430{
2431	mm_segment_t old_fs = get_fs();
2432	struct timeval ktv;
2433	int err;
2434
2435	set_fs(KERNEL_DS);
2436	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2437	set_fs(old_fs);
2438	if (!err) {
2439		err = put_user(ktv.tv_sec, &up->tv_sec);
2440		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2441	}
2442	return err;
2443}
2444
2445static int do_siocgstampns(struct net *net, struct socket *sock,
2446			 unsigned int cmd, struct compat_timespec __user *up)
2447{
2448	mm_segment_t old_fs = get_fs();
2449	struct timespec kts;
2450	int err;
2451
2452	set_fs(KERNEL_DS);
2453	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2454	set_fs(old_fs);
2455	if (!err) {
2456		err = put_user(kts.tv_sec, &up->tv_sec);
2457		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2458	}
2459	return err;
2460}
2461
2462static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2463{
2464	struct ifreq __user *uifr;
2465	int err;
2466
2467	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2468	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2469		return -EFAULT;
2470
2471	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2472	if (err)
2473		return err;
2474
2475	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2476		return -EFAULT;
2477
2478	return 0;
2479}
2480
2481static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2482{
2483	struct compat_ifconf ifc32;
2484	struct ifconf ifc;
2485	struct ifconf __user *uifc;
2486	struct compat_ifreq __user *ifr32;
2487	struct ifreq __user *ifr;
2488	unsigned int i, j;
2489	int err;
2490
2491	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2492		return -EFAULT;
2493
2494	if (ifc32.ifcbuf == 0) {
2495		ifc32.ifc_len = 0;
2496		ifc.ifc_len = 0;
2497		ifc.ifc_req = NULL;
2498		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2499	} else {
2500		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2501			sizeof(struct ifreq);
2502		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2503		ifc.ifc_len = len;
2504		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2505		ifr32 = compat_ptr(ifc32.ifcbuf);
2506		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2507			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2508				return -EFAULT;
2509			ifr++;
2510			ifr32++;
2511		}
2512	}
2513	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2514		return -EFAULT;
2515
2516	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2517	if (err)
2518		return err;
2519
2520	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2521		return -EFAULT;
2522
2523	ifr = ifc.ifc_req;
2524	ifr32 = compat_ptr(ifc32.ifcbuf);
2525	for (i = 0, j = 0;
2526	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2527	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2528		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2529			return -EFAULT;
2530		ifr32++;
2531		ifr++;
2532	}
2533
2534	if (ifc32.ifcbuf == 0) {
2535		/* Translate from 64-bit structure multiple to
2536		 * a 32-bit one.
2537		 */
2538		i = ifc.ifc_len;
2539		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2540		ifc32.ifc_len = i;
2541	} else {
2542		ifc32.ifc_len = i;
2543	}
2544	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2545		return -EFAULT;
2546
2547	return 0;
2548}
2549
2550static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2551{
2552	struct ifreq __user *ifr;
2553	u32 data;
2554	void __user *datap;
2555
2556	ifr = compat_alloc_user_space(sizeof(*ifr));
2557
2558	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2559		return -EFAULT;
2560
2561	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2562		return -EFAULT;
2563
2564	datap = compat_ptr(data);
2565	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2566		return -EFAULT;
2567
2568	return dev_ioctl(net, SIOCETHTOOL, ifr);
2569}
2570
2571static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2572{
2573	void __user *uptr;
2574	compat_uptr_t uptr32;
2575	struct ifreq __user *uifr;
2576
2577	uifr = compat_alloc_user_space(sizeof(*uifr));
2578	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2579		return -EFAULT;
2580
2581	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2582		return -EFAULT;
2583
2584	uptr = compat_ptr(uptr32);
2585
2586	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2587		return -EFAULT;
2588
2589	return dev_ioctl(net, SIOCWANDEV, uifr);
2590}
2591
2592static int bond_ioctl(struct net *net, unsigned int cmd,
2593			 struct compat_ifreq __user *ifr32)
2594{
2595	struct ifreq kifr;
2596	struct ifreq __user *uifr;
2597	mm_segment_t old_fs;
2598	int err;
2599	u32 data;
2600	void __user *datap;
2601
2602	switch (cmd) {
2603	case SIOCBONDENSLAVE:
2604	case SIOCBONDRELEASE:
2605	case SIOCBONDSETHWADDR:
2606	case SIOCBONDCHANGEACTIVE:
2607		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2608			return -EFAULT;
2609
2610		old_fs = get_fs();
2611		set_fs(KERNEL_DS);
2612		err = dev_ioctl(net, cmd, &kifr);
2613		set_fs(old_fs);
2614
2615		return err;
2616	case SIOCBONDSLAVEINFOQUERY:
2617	case SIOCBONDINFOQUERY:
2618		uifr = compat_alloc_user_space(sizeof(*uifr));
2619		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2620			return -EFAULT;
2621
2622		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2623			return -EFAULT;
2624
2625		datap = compat_ptr(data);
2626		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2627			return -EFAULT;
2628
2629		return dev_ioctl(net, cmd, uifr);
2630	default:
2631		return -EINVAL;
2632	}
2633}
2634
2635static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2636				 struct compat_ifreq __user *u_ifreq32)
2637{
2638	struct ifreq __user *u_ifreq64;
2639	char tmp_buf[IFNAMSIZ];
2640	void __user *data64;
2641	u32 data32;
2642
2643	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2644			   IFNAMSIZ))
2645		return -EFAULT;
2646	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2647		return -EFAULT;
2648	data64 = compat_ptr(data32);
2649
2650	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2651
2652	/* Don't check these user accesses, just let that get trapped
2653	 * in the ioctl handler instead.
2654	 */
2655	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2656			 IFNAMSIZ))
2657		return -EFAULT;
2658	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2659		return -EFAULT;
2660
2661	return dev_ioctl(net, cmd, u_ifreq64);
2662}
2663
2664static int dev_ifsioc(struct net *net, struct socket *sock,
2665			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2666{
2667	struct ifreq __user *uifr;
2668	int err;
2669
2670	uifr = compat_alloc_user_space(sizeof(*uifr));
2671	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2672		return -EFAULT;
2673
2674	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2675
2676	if (!err) {
2677		switch (cmd) {
2678		case SIOCGIFFLAGS:
2679		case SIOCGIFMETRIC:
2680		case SIOCGIFMTU:
2681		case SIOCGIFMEM:
2682		case SIOCGIFHWADDR:
2683		case SIOCGIFINDEX:
2684		case SIOCGIFADDR:
2685		case SIOCGIFBRDADDR:
2686		case SIOCGIFDSTADDR:
2687		case SIOCGIFNETMASK:
2688		case SIOCGIFPFLAGS:
2689		case SIOCGIFTXQLEN:
2690		case SIOCGMIIPHY:
2691		case SIOCGMIIREG:
2692			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2693				err = -EFAULT;
2694			break;
2695		}
2696	}
2697	return err;
2698}
2699
2700static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2701			struct compat_ifreq __user *uifr32)
2702{
2703	struct ifreq ifr;
2704	struct compat_ifmap __user *uifmap32;
2705	mm_segment_t old_fs;
2706	int err;
2707
2708	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2709	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2710	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2711	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2712	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2713	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2714	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2715	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2716	if (err)
2717		return -EFAULT;
2718
2719	old_fs = get_fs();
2720	set_fs(KERNEL_DS);
2721	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2722	set_fs(old_fs);
2723
2724	if (cmd == SIOCGIFMAP && !err) {
2725		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2726		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2727		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2728		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2729		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2730		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2731		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2732		if (err)
2733			err = -EFAULT;
2734	}
2735	return err;
2736}
2737
2738static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2739{
2740	void __user *uptr;
2741	compat_uptr_t uptr32;
2742	struct ifreq __user *uifr;
2743
2744	uifr = compat_alloc_user_space(sizeof(*uifr));
2745	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2746		return -EFAULT;
2747
2748	if (get_user(uptr32, &uifr32->ifr_data))
2749		return -EFAULT;
2750
2751	uptr = compat_ptr(uptr32);
2752
2753	if (put_user(uptr, &uifr->ifr_data))
2754		return -EFAULT;
2755
2756	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2757}
2758
2759struct rtentry32 {
2760	u32		rt_pad1;
2761	struct sockaddr rt_dst;         /* target address               */
2762	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2763	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2764	unsigned short	rt_flags;
2765	short		rt_pad2;
2766	u32		rt_pad3;
2767	unsigned char	rt_tos;
2768	unsigned char	rt_class;
2769	short		rt_pad4;
2770	short		rt_metric;      /* +1 for binary compatibility! */
2771	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2772	u32		rt_mtu;         /* per route MTU/Window         */
2773	u32		rt_window;      /* Window clamping              */
2774	unsigned short  rt_irtt;        /* Initial RTT                  */
2775};
2776
2777struct in6_rtmsg32 {
2778	struct in6_addr		rtmsg_dst;
2779	struct in6_addr		rtmsg_src;
2780	struct in6_addr		rtmsg_gateway;
2781	u32			rtmsg_type;
2782	u16			rtmsg_dst_len;
2783	u16			rtmsg_src_len;
2784	u32			rtmsg_metric;
2785	u32			rtmsg_info;
2786	u32			rtmsg_flags;
2787	s32			rtmsg_ifindex;
2788};
2789
2790static int routing_ioctl(struct net *net, struct socket *sock,
2791			 unsigned int cmd, void __user *argp)
2792{
2793	int ret;
2794	void *r = NULL;
2795	struct in6_rtmsg r6;
2796	struct rtentry r4;
2797	char devname[16];
2798	u32 rtdev;
2799	mm_segment_t old_fs = get_fs();
2800
2801	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2802		struct in6_rtmsg32 __user *ur6 = argp;
2803		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2804			3 * sizeof(struct in6_addr));
2805		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2806		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2807		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2808		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2809		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2810		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2811		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2812
2813		r = (void *) &r6;
2814	} else { /* ipv4 */
2815		struct rtentry32 __user *ur4 = argp;
2816		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2817					3 * sizeof(struct sockaddr));
2818		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2819		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2820		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2821		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2822		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2823		ret |= __get_user(rtdev, &(ur4->rt_dev));
2824		if (rtdev) {
2825			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2826			r4.rt_dev = devname; devname[15] = 0;
2827		} else
2828			r4.rt_dev = NULL;
2829
2830		r = (void *) &r4;
2831	}
2832
2833	if (ret) {
2834		ret = -EFAULT;
2835		goto out;
2836	}
2837
2838	set_fs(KERNEL_DS);
2839	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2840	set_fs(old_fs);
2841
2842out:
2843	return ret;
2844}
2845
2846/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2847 * for some operations; this forces use of the newer bridge-utils that
2848 * use compatiable ioctls
2849 */
2850static int old_bridge_ioctl(compat_ulong_t __user *argp)
2851{
2852	compat_ulong_t tmp;
2853
2854	if (get_user(tmp, argp))
2855		return -EFAULT;
2856	if (tmp == BRCTL_GET_VERSION)
2857		return BRCTL_VERSION + 1;
2858	return -EINVAL;
2859}
2860
2861static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2862			 unsigned int cmd, unsigned long arg)
2863{
2864	void __user *argp = compat_ptr(arg);
2865	struct sock *sk = sock->sk;
2866	struct net *net = sock_net(sk);
2867
2868	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2869		return siocdevprivate_ioctl(net, cmd, argp);
2870
2871	switch (cmd) {
2872	case SIOCSIFBR:
2873	case SIOCGIFBR:
2874		return old_bridge_ioctl(argp);
2875	case SIOCGIFNAME:
2876		return dev_ifname32(net, argp);
2877	case SIOCGIFCONF:
2878		return dev_ifconf(net, argp);
2879	case SIOCETHTOOL:
2880		return ethtool_ioctl(net, argp);
2881	case SIOCWANDEV:
2882		return compat_siocwandev(net, argp);
2883	case SIOCGIFMAP:
2884	case SIOCSIFMAP:
2885		return compat_sioc_ifmap(net, cmd, argp);
2886	case SIOCBONDENSLAVE:
2887	case SIOCBONDRELEASE:
2888	case SIOCBONDSETHWADDR:
2889	case SIOCBONDSLAVEINFOQUERY:
2890	case SIOCBONDINFOQUERY:
2891	case SIOCBONDCHANGEACTIVE:
2892		return bond_ioctl(net, cmd, argp);
2893	case SIOCADDRT:
2894	case SIOCDELRT:
2895		return routing_ioctl(net, sock, cmd, argp);
2896	case SIOCGSTAMP:
2897		return do_siocgstamp(net, sock, cmd, argp);
2898	case SIOCGSTAMPNS:
2899		return do_siocgstampns(net, sock, cmd, argp);
2900	case SIOCSHWTSTAMP:
2901		return compat_siocshwtstamp(net, argp);
2902
2903	case FIOSETOWN:
2904	case SIOCSPGRP:
2905	case FIOGETOWN:
2906	case SIOCGPGRP:
2907	case SIOCBRADDBR:
2908	case SIOCBRDELBR:
2909	case SIOCGIFVLAN:
2910	case SIOCSIFVLAN:
2911	case SIOCADDDLCI:
2912	case SIOCDELDLCI:
2913		return sock_ioctl(file, cmd, arg);
2914
2915	case SIOCGIFFLAGS:
2916	case SIOCSIFFLAGS:
2917	case SIOCGIFMETRIC:
2918	case SIOCSIFMETRIC:
2919	case SIOCGIFMTU:
2920	case SIOCSIFMTU:
2921	case SIOCGIFMEM:
2922	case SIOCSIFMEM:
2923	case SIOCGIFHWADDR:
2924	case SIOCSIFHWADDR:
2925	case SIOCADDMULTI:
2926	case SIOCDELMULTI:
2927	case SIOCGIFINDEX:
2928	case SIOCGIFADDR:
2929	case SIOCSIFADDR:
2930	case SIOCSIFHWBROADCAST:
2931	case SIOCDIFADDR:
2932	case SIOCGIFBRDADDR:
2933	case SIOCSIFBRDADDR:
2934	case SIOCGIFDSTADDR:
2935	case SIOCSIFDSTADDR:
2936	case SIOCGIFNETMASK:
2937	case SIOCSIFNETMASK:
2938	case SIOCSIFPFLAGS:
2939	case SIOCGIFPFLAGS:
2940	case SIOCGIFTXQLEN:
2941	case SIOCSIFTXQLEN:
2942	case SIOCBRADDIF:
2943	case SIOCBRDELIF:
2944	case SIOCSIFNAME:
2945	case SIOCGMIIPHY:
2946	case SIOCGMIIREG:
2947	case SIOCSMIIREG:
2948		return dev_ifsioc(net, sock, cmd, argp);
2949
2950	case SIOCSARP:
2951	case SIOCGARP:
2952	case SIOCDARP:
2953	case SIOCATMARK:
2954		return sock_do_ioctl(net, sock, cmd, arg);
2955	}
2956
2957	/* Prevent warning from compat_sys_ioctl, these always
2958	 * result in -EINVAL in the native case anyway. */
2959	switch (cmd) {
2960	case SIOCRTMSG:
2961	case SIOCGIFCOUNT:
2962	case SIOCSRARP:
2963	case SIOCGRARP:
2964	case SIOCDRARP:
2965	case SIOCSIFLINK:
2966	case SIOCGIFSLAVE:
2967	case SIOCSIFSLAVE:
2968		return -EINVAL;
2969	}
2970
2971	return -ENOIOCTLCMD;
2972}
2973
2974static long compat_sock_ioctl(struct file *file, unsigned cmd,
2975			      unsigned long arg)
2976{
2977	struct socket *sock = file->private_data;
2978	int ret = -ENOIOCTLCMD;
2979	struct sock *sk;
2980	struct net *net;
2981
2982	sk = sock->sk;
2983	net = sock_net(sk);
2984
2985	if (sock->ops->compat_ioctl)
2986		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2987
2988	if (ret == -ENOIOCTLCMD &&
2989	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2990		ret = compat_wext_handle_ioctl(net, cmd, arg);
2991
2992	if (ret == -ENOIOCTLCMD)
2993		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2994
2995	return ret;
2996}
2997#endif
2998
2999int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3000{
3001	return sock->ops->bind(sock, addr, addrlen);
3002}
3003EXPORT_SYMBOL(kernel_bind);
3004
3005int kernel_listen(struct socket *sock, int backlog)
3006{
3007	return sock->ops->listen(sock, backlog);
3008}
3009EXPORT_SYMBOL(kernel_listen);
3010
3011int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3012{
3013	struct sock *sk = sock->sk;
3014	int err;
3015
3016	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3017			       newsock);
3018	if (err < 0)
3019		goto done;
3020
3021	err = sock->ops->accept(sock, *newsock, flags);
3022	if (err < 0) {
3023		sock_release(*newsock);
3024		*newsock = NULL;
3025		goto done;
3026	}
3027
3028	(*newsock)->ops = sock->ops;
3029	__module_get((*newsock)->ops->owner);
3030
3031done:
3032	return err;
3033}
3034EXPORT_SYMBOL(kernel_accept);
3035
3036int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3037		   int flags)
3038{
3039	return sock->ops->connect(sock, addr, addrlen, flags);
3040}
3041EXPORT_SYMBOL(kernel_connect);
3042
3043int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3044			 int *addrlen)
3045{
3046	return sock->ops->getname(sock, addr, addrlen, 0);
3047}
3048EXPORT_SYMBOL(kernel_getsockname);
3049
3050int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3051			 int *addrlen)
3052{
3053	return sock->ops->getname(sock, addr, addrlen, 1);
3054}
3055EXPORT_SYMBOL(kernel_getpeername);
3056
3057int kernel_getsockopt(struct socket *sock, int level, int optname,
3058			char *optval, int *optlen)
3059{
3060	mm_segment_t oldfs = get_fs();
3061	int err;
3062
3063	set_fs(KERNEL_DS);
3064	if (level == SOL_SOCKET)
3065		err = sock_getsockopt(sock, level, optname, optval, optlen);
3066	else
3067		err = sock->ops->getsockopt(sock, level, optname, optval,
3068					    optlen);
3069	set_fs(oldfs);
3070	return err;
3071}
3072EXPORT_SYMBOL(kernel_getsockopt);
3073
3074int kernel_setsockopt(struct socket *sock, int level, int optname,
3075			char *optval, unsigned int optlen)
3076{
3077	mm_segment_t oldfs = get_fs();
3078	int err;
3079
3080	set_fs(KERNEL_DS);
3081	if (level == SOL_SOCKET)
3082		err = sock_setsockopt(sock, level, optname, optval, optlen);
3083	else
3084		err = sock->ops->setsockopt(sock, level, optname, optval,
3085					    optlen);
3086	set_fs(oldfs);
3087	return err;
3088}
3089EXPORT_SYMBOL(kernel_setsockopt);
3090
3091int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3092		    size_t size, int flags)
3093{
3094	sock_update_classid(sock->sk);
3095
3096	if (sock->ops->sendpage)
3097		return sock->ops->sendpage(sock, page, offset, size, flags);
3098
3099	return sock_no_sendpage(sock, page, offset, size, flags);
3100}
3101EXPORT_SYMBOL(kernel_sendpage);
3102
3103int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3104{
3105	mm_segment_t oldfs = get_fs();
3106	int err;
3107
3108	set_fs(KERNEL_DS);
3109	err = sock->ops->ioctl(sock, cmd, arg);
3110	set_fs(oldfs);
3111
3112	return err;
3113}
3114EXPORT_SYMBOL(kernel_sock_ioctl);
3115
3116int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3117{
3118	return sock->ops->shutdown(sock, how);
3119}
3120EXPORT_SYMBOL(kernel_sock_shutdown);
3121