• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/net/rds/
1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <linux/pci.h>
36#include <linux/dma-mapping.h>
37#include <rdma/rdma_cm.h>
38
39#include "rds.h"
40#include "ib.h"
41
42static struct kmem_cache *rds_ib_incoming_slab;
43static struct kmem_cache *rds_ib_frag_slab;
44static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
45
46static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
47{
48	rdsdebug("frag %p page %p\n", frag, frag->f_page);
49	__free_page(frag->f_page);
50	frag->f_page = NULL;
51}
52
53static void rds_ib_frag_free(struct rds_page_frag *frag)
54{
55	rdsdebug("frag %p page %p\n", frag, frag->f_page);
56	BUG_ON(frag->f_page != NULL);
57	kmem_cache_free(rds_ib_frag_slab, frag);
58}
59
60/*
61 * We map a page at a time.  Its fragments are posted in order.  This
62 * is called in fragment order as the fragments get send completion events.
63 * Only the last frag in the page performs the unmapping.
64 *
65 * It's OK for ring cleanup to call this in whatever order it likes because
66 * DMA is not in flight and so we can unmap while other ring entries still
67 * hold page references in their frags.
68 */
69static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
70				   struct rds_ib_recv_work *recv)
71{
72	struct rds_page_frag *frag = recv->r_frag;
73
74	rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75	if (frag->f_mapped)
76		ib_dma_unmap_page(ic->i_cm_id->device,
77			       frag->f_mapped,
78			       RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79	frag->f_mapped = 0;
80}
81
82void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
83{
84	struct rds_ib_recv_work *recv;
85	u32 i;
86
87	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88		struct ib_sge *sge;
89
90		recv->r_ibinc = NULL;
91		recv->r_frag = NULL;
92
93		recv->r_wr.next = NULL;
94		recv->r_wr.wr_id = i;
95		recv->r_wr.sg_list = recv->r_sge;
96		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
97
98		sge = rds_ib_data_sge(ic, recv->r_sge);
99		sge->addr = 0;
100		sge->length = RDS_FRAG_SIZE;
101		sge->lkey = ic->i_mr->lkey;
102
103		sge = rds_ib_header_sge(ic, recv->r_sge);
104		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105		sge->length = sizeof(struct rds_header);
106		sge->lkey = ic->i_mr->lkey;
107	}
108}
109
110static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
111				  struct rds_ib_recv_work *recv)
112{
113	if (recv->r_ibinc) {
114		rds_inc_put(&recv->r_ibinc->ii_inc);
115		recv->r_ibinc = NULL;
116	}
117	if (recv->r_frag) {
118		rds_ib_recv_unmap_page(ic, recv);
119		if (recv->r_frag->f_page)
120			rds_ib_frag_drop_page(recv->r_frag);
121		rds_ib_frag_free(recv->r_frag);
122		recv->r_frag = NULL;
123	}
124}
125
126void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
127{
128	u32 i;
129
130	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
132
133	if (ic->i_frag.f_page)
134		rds_ib_frag_drop_page(&ic->i_frag);
135}
136
137static int rds_ib_recv_refill_one(struct rds_connection *conn,
138				  struct rds_ib_recv_work *recv,
139				  gfp_t kptr_gfp, gfp_t page_gfp)
140{
141	struct rds_ib_connection *ic = conn->c_transport_data;
142	dma_addr_t dma_addr;
143	struct ib_sge *sge;
144	int ret = -ENOMEM;
145
146	if (recv->r_ibinc == NULL) {
147		if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
148			rds_ib_stats_inc(s_ib_rx_alloc_limit);
149			goto out;
150		}
151		recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
152						 kptr_gfp);
153		if (recv->r_ibinc == NULL) {
154			atomic_dec(&rds_ib_allocation);
155			goto out;
156		}
157		INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
158		rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
159	}
160
161	if (recv->r_frag == NULL) {
162		recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
163		if (recv->r_frag == NULL)
164			goto out;
165		INIT_LIST_HEAD(&recv->r_frag->f_item);
166		recv->r_frag->f_page = NULL;
167	}
168
169	if (ic->i_frag.f_page == NULL) {
170		ic->i_frag.f_page = alloc_page(page_gfp);
171		if (ic->i_frag.f_page == NULL)
172			goto out;
173		ic->i_frag.f_offset = 0;
174	}
175
176	dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177				  ic->i_frag.f_page,
178				  ic->i_frag.f_offset,
179				  RDS_FRAG_SIZE,
180				  DMA_FROM_DEVICE);
181	if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182		goto out;
183
184	/*
185	 * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
186	 * must be called on this recv.  This happens as completions hit
187	 * in order or on connection shutdown.
188	 */
189	recv->r_frag->f_page = ic->i_frag.f_page;
190	recv->r_frag->f_offset = ic->i_frag.f_offset;
191	recv->r_frag->f_mapped = dma_addr;
192
193	sge = rds_ib_data_sge(ic, recv->r_sge);
194	sge->addr = dma_addr;
195	sge->length = RDS_FRAG_SIZE;
196
197	sge = rds_ib_header_sge(ic, recv->r_sge);
198	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199	sge->length = sizeof(struct rds_header);
200
201	get_page(recv->r_frag->f_page);
202
203	if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204		ic->i_frag.f_offset += RDS_FRAG_SIZE;
205	} else {
206		put_page(ic->i_frag.f_page);
207		ic->i_frag.f_page = NULL;
208		ic->i_frag.f_offset = 0;
209	}
210
211	ret = 0;
212out:
213	return ret;
214}
215
216/*
217 * This tries to allocate and post unused work requests after making sure that
218 * they have all the allocations they need to queue received fragments into
219 * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
220 * pairs don't go unmatched.
221 *
222 * -1 is returned if posting fails due to temporary resource exhaustion.
223 */
224int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225		       gfp_t page_gfp, int prefill)
226{
227	struct rds_ib_connection *ic = conn->c_transport_data;
228	struct rds_ib_recv_work *recv;
229	struct ib_recv_wr *failed_wr;
230	unsigned int posted = 0;
231	int ret = 0;
232	u32 pos;
233
234	while ((prefill || rds_conn_up(conn)) &&
235	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236		if (pos >= ic->i_recv_ring.w_nr) {
237			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238					pos);
239			ret = -EINVAL;
240			break;
241		}
242
243		recv = &ic->i_recvs[pos];
244		ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245		if (ret) {
246			ret = -1;
247			break;
248		}
249
250		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
251		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
252			 recv->r_ibinc, recv->r_frag->f_page,
253			 (long) recv->r_frag->f_mapped, ret);
254		if (ret) {
255			rds_ib_conn_error(conn, "recv post on "
256			       "%pI4 returned %d, disconnecting and "
257			       "reconnecting\n", &conn->c_faddr,
258			       ret);
259			ret = -1;
260			break;
261		}
262
263		posted++;
264	}
265
266	/* We're doing flow control - update the window. */
267	if (ic->i_flowctl && posted)
268		rds_ib_advertise_credits(conn, posted);
269
270	if (ret)
271		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
272	return ret;
273}
274
275void rds_ib_inc_purge(struct rds_incoming *inc)
276{
277	struct rds_ib_incoming *ibinc;
278	struct rds_page_frag *frag;
279	struct rds_page_frag *pos;
280
281	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
282	rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
283
284	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
285		list_del_init(&frag->f_item);
286		rds_ib_frag_drop_page(frag);
287		rds_ib_frag_free(frag);
288	}
289}
290
291void rds_ib_inc_free(struct rds_incoming *inc)
292{
293	struct rds_ib_incoming *ibinc;
294
295	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
296
297	rds_ib_inc_purge(inc);
298	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
299	BUG_ON(!list_empty(&ibinc->ii_frags));
300	kmem_cache_free(rds_ib_incoming_slab, ibinc);
301	atomic_dec(&rds_ib_allocation);
302	BUG_ON(atomic_read(&rds_ib_allocation) < 0);
303}
304
305int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
306			    size_t size)
307{
308	struct rds_ib_incoming *ibinc;
309	struct rds_page_frag *frag;
310	struct iovec *iov = first_iov;
311	unsigned long to_copy;
312	unsigned long frag_off = 0;
313	unsigned long iov_off = 0;
314	int copied = 0;
315	int ret;
316	u32 len;
317
318	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
319	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
320	len = be32_to_cpu(inc->i_hdr.h_len);
321
322	while (copied < size && copied < len) {
323		if (frag_off == RDS_FRAG_SIZE) {
324			frag = list_entry(frag->f_item.next,
325					  struct rds_page_frag, f_item);
326			frag_off = 0;
327		}
328		while (iov_off == iov->iov_len) {
329			iov_off = 0;
330			iov++;
331		}
332
333		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
334		to_copy = min_t(size_t, to_copy, size - copied);
335		to_copy = min_t(unsigned long, to_copy, len - copied);
336
337		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
338			 "[%p, %lu] + %lu\n",
339			 to_copy, iov->iov_base, iov->iov_len, iov_off,
340			 frag->f_page, frag->f_offset, frag_off);
341
342		ret = rds_page_copy_to_user(frag->f_page,
343					    frag->f_offset + frag_off,
344					    iov->iov_base + iov_off,
345					    to_copy);
346		if (ret) {
347			copied = ret;
348			break;
349		}
350
351		iov_off += to_copy;
352		frag_off += to_copy;
353		copied += to_copy;
354	}
355
356	return copied;
357}
358
359/* ic starts out kzalloc()ed */
360void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
361{
362	struct ib_send_wr *wr = &ic->i_ack_wr;
363	struct ib_sge *sge = &ic->i_ack_sge;
364
365	sge->addr = ic->i_ack_dma;
366	sge->length = sizeof(struct rds_header);
367	sge->lkey = ic->i_mr->lkey;
368
369	wr->sg_list = sge;
370	wr->num_sge = 1;
371	wr->opcode = IB_WR_SEND;
372	wr->wr_id = RDS_IB_ACK_WR_ID;
373	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
374}
375
376/*
377 * You'd think that with reliable IB connections you wouldn't need to ack
378 * messages that have been received.  The problem is that IB hardware generates
379 * an ack message before it has DMAed the message into memory.  This creates a
380 * potential message loss if the HCA is disabled for any reason between when it
381 * sends the ack and before the message is DMAed and processed.  This is only a
382 * potential issue if another HCA is available for fail-over.
383 *
384 * When the remote host receives our ack they'll free the sent message from
385 * their send queue.  To decrease the latency of this we always send an ack
386 * immediately after we've received messages.
387 *
388 * For simplicity, we only have one ack in flight at a time.  This puts
389 * pressure on senders to have deep enough send queues to absorb the latency of
390 * a single ack frame being in flight.  This might not be good enough.
391 *
392 * This is implemented by have a long-lived send_wr and sge which point to a
393 * statically allocated ack frame.  This ack wr does not fall under the ring
394 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
395 * room for it beyond the ring size.  Send completion notices its special
396 * wr_id and avoids working with the ring in that case.
397 */
398#ifndef KERNEL_HAS_ATOMIC64
399static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
400				int ack_required)
401{
402	unsigned long flags;
403
404	spin_lock_irqsave(&ic->i_ack_lock, flags);
405	ic->i_ack_next = seq;
406	if (ack_required)
407		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
408	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
409}
410
411static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
412{
413	unsigned long flags;
414	u64 seq;
415
416	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
417
418	spin_lock_irqsave(&ic->i_ack_lock, flags);
419	seq = ic->i_ack_next;
420	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
421
422	return seq;
423}
424#else
425static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
426				int ack_required)
427{
428	atomic64_set(&ic->i_ack_next, seq);
429	if (ack_required) {
430		smp_mb__before_clear_bit();
431		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
432	}
433}
434
435static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
436{
437	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
438	smp_mb__after_clear_bit();
439
440	return atomic64_read(&ic->i_ack_next);
441}
442#endif
443
444
445static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
446{
447	struct rds_header *hdr = ic->i_ack;
448	struct ib_send_wr *failed_wr;
449	u64 seq;
450	int ret;
451
452	seq = rds_ib_get_ack(ic);
453
454	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
455	rds_message_populate_header(hdr, 0, 0, 0);
456	hdr->h_ack = cpu_to_be64(seq);
457	hdr->h_credit = adv_credits;
458	rds_message_make_checksum(hdr);
459	ic->i_ack_queued = jiffies;
460
461	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
462	if (unlikely(ret)) {
463		/* Failed to send. Release the WR, and
464		 * force another ACK.
465		 */
466		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
467		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
468
469		rds_ib_stats_inc(s_ib_ack_send_failure);
470
471		rds_ib_conn_error(ic->conn, "sending ack failed\n");
472	} else
473		rds_ib_stats_inc(s_ib_ack_sent);
474}
475
476/*
477 * There are 3 ways of getting acknowledgements to the peer:
478 *  1.	We call rds_ib_attempt_ack from the recv completion handler
479 *	to send an ACK-only frame.
480 *	However, there can be only one such frame in the send queue
481 *	at any time, so we may have to postpone it.
482 *  2.	When another (data) packet is transmitted while there's
483 *	an ACK in the queue, we piggyback the ACK sequence number
484 *	on the data packet.
485 *  3.	If the ACK WR is done sending, we get called from the
486 *	send queue completion handler, and check whether there's
487 *	another ACK pending (postponed because the WR was on the
488 *	queue). If so, we transmit it.
489 *
490 * We maintain 2 variables:
491 *  -	i_ack_flags, which keeps track of whether the ACK WR
492 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
493 *  -	i_ack_next, which is the last sequence number we received
494 *
495 * Potentially, send queue and receive queue handlers can run concurrently.
496 * It would be nice to not have to use a spinlock to synchronize things,
497 * but the one problem that rules this out is that 64bit updates are
498 * not atomic on all platforms. Things would be a lot simpler if
499 * we had atomic64 or maybe cmpxchg64 everywhere.
500 *
501 * Reconnecting complicates this picture just slightly. When we
502 * reconnect, we may be seeing duplicate packets. The peer
503 * is retransmitting them, because it hasn't seen an ACK for
504 * them. It is important that we ACK these.
505 *
506 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
507 * this flag set *MUST* be acknowledged immediately.
508 */
509
510/*
511 * When we get here, we're called from the recv queue handler.
512 * Check whether we ought to transmit an ACK.
513 */
514void rds_ib_attempt_ack(struct rds_ib_connection *ic)
515{
516	unsigned int adv_credits;
517
518	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
519		return;
520
521	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
522		rds_ib_stats_inc(s_ib_ack_send_delayed);
523		return;
524	}
525
526	/* Can we get a send credit? */
527	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
528		rds_ib_stats_inc(s_ib_tx_throttle);
529		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
530		return;
531	}
532
533	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
534	rds_ib_send_ack(ic, adv_credits);
535}
536
537/*
538 * We get here from the send completion handler, when the
539 * adapter tells us the ACK frame was sent.
540 */
541void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
542{
543	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
544	rds_ib_attempt_ack(ic);
545}
546
547/*
548 * This is called by the regular xmit code when it wants to piggyback
549 * an ACK on an outgoing frame.
550 */
551u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
552{
553	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
554		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
555	return rds_ib_get_ack(ic);
556}
557
558static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
559					    struct rds_ib_recv_work *recv,
560					    u32 data_len)
561{
562	struct rds_ib_connection *ic = conn->c_transport_data;
563	void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
564	void *addr;
565	u32 misplaced_hdr_bytes;
566
567	/*
568	 * Support header at the front (RDS 3.1+) as well as header-at-end.
569	 *
570	 * Cases:
571	 * 1) header all in header buff (great!)
572	 * 2) header all in data page (copy all to header buff)
573	 * 3) header split across hdr buf + data page
574	 *    (move bit in hdr buff to end before copying other bit from data page)
575	 */
576	if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
577	        return hdr_buff;
578
579	if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
580		addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
581		memcpy(hdr_buff,
582		       addr + recv->r_frag->f_offset + data_len,
583		       sizeof(struct rds_header));
584		kunmap_atomic(addr, KM_SOFTIRQ0);
585		return hdr_buff;
586	}
587
588	misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
589
590	memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
591
592	addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
593	memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
594	       sizeof(struct rds_header) - misplaced_hdr_bytes);
595	kunmap_atomic(addr, KM_SOFTIRQ0);
596	return hdr_buff;
597}
598
599/*
600 * It's kind of lame that we're copying from the posted receive pages into
601 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
602 * them.  But receiving new congestion bitmaps should be a *rare* event, so
603 * hopefully we won't need to invest that complexity in making it more
604 * efficient.  By copying we can share a simpler core with TCP which has to
605 * copy.
606 */
607static void rds_ib_cong_recv(struct rds_connection *conn,
608			      struct rds_ib_incoming *ibinc)
609{
610	struct rds_cong_map *map;
611	unsigned int map_off;
612	unsigned int map_page;
613	struct rds_page_frag *frag;
614	unsigned long frag_off;
615	unsigned long to_copy;
616	unsigned long copied;
617	uint64_t uncongested = 0;
618	void *addr;
619
620	/* catch completely corrupt packets */
621	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
622		return;
623
624	map = conn->c_fcong;
625	map_page = 0;
626	map_off = 0;
627
628	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
629	frag_off = 0;
630
631	copied = 0;
632
633	while (copied < RDS_CONG_MAP_BYTES) {
634		uint64_t *src, *dst;
635		unsigned int k;
636
637		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
638		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
639
640		addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
641
642		src = addr + frag_off;
643		dst = (void *)map->m_page_addrs[map_page] + map_off;
644		for (k = 0; k < to_copy; k += 8) {
645			/* Record ports that became uncongested, ie
646			 * bits that changed from 0 to 1. */
647			uncongested |= ~(*src) & *dst;
648			*dst++ = *src++;
649		}
650		kunmap_atomic(addr, KM_SOFTIRQ0);
651
652		copied += to_copy;
653
654		map_off += to_copy;
655		if (map_off == PAGE_SIZE) {
656			map_off = 0;
657			map_page++;
658		}
659
660		frag_off += to_copy;
661		if (frag_off == RDS_FRAG_SIZE) {
662			frag = list_entry(frag->f_item.next,
663					  struct rds_page_frag, f_item);
664			frag_off = 0;
665		}
666	}
667
668	/* the congestion map is in little endian order */
669	uncongested = le64_to_cpu(uncongested);
670
671	rds_cong_map_updated(map, uncongested);
672}
673
674/*
675 * Rings are posted with all the allocations they'll need to queue the
676 * incoming message to the receiving socket so this can't fail.
677 * All fragments start with a header, so we can make sure we're not receiving
678 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
679 */
680struct rds_ib_ack_state {
681	u64		ack_next;
682	u64		ack_recv;
683	unsigned int	ack_required:1;
684	unsigned int	ack_next_valid:1;
685	unsigned int	ack_recv_valid:1;
686};
687
688static void rds_ib_process_recv(struct rds_connection *conn,
689				struct rds_ib_recv_work *recv, u32 data_len,
690				struct rds_ib_ack_state *state)
691{
692	struct rds_ib_connection *ic = conn->c_transport_data;
693	struct rds_ib_incoming *ibinc = ic->i_ibinc;
694	struct rds_header *ihdr, *hdr;
695
696
697	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
698		 data_len);
699
700	if (data_len < sizeof(struct rds_header)) {
701		rds_ib_conn_error(conn, "incoming message "
702		       "from %pI4 didn't inclue a "
703		       "header, disconnecting and "
704		       "reconnecting\n",
705		       &conn->c_faddr);
706		return;
707	}
708	data_len -= sizeof(struct rds_header);
709
710	ihdr = rds_ib_get_header(conn, recv, data_len);
711
712	/* Validate the checksum. */
713	if (!rds_message_verify_checksum(ihdr)) {
714		rds_ib_conn_error(conn, "incoming message "
715		       "from %pI4 has corrupted header - "
716		       "forcing a reconnect\n",
717		       &conn->c_faddr);
718		rds_stats_inc(s_recv_drop_bad_checksum);
719		return;
720	}
721
722	/* Process the ACK sequence which comes with every packet */
723	state->ack_recv = be64_to_cpu(ihdr->h_ack);
724	state->ack_recv_valid = 1;
725
726	/* Process the credits update if there was one */
727	if (ihdr->h_credit)
728		rds_ib_send_add_credits(conn, ihdr->h_credit);
729
730	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
731		/* This is an ACK-only packet. The fact that it gets
732		 * special treatment here is that historically, ACKs
733		 * were rather special beasts.
734		 */
735		rds_ib_stats_inc(s_ib_ack_received);
736
737		rds_ib_frag_drop_page(recv->r_frag);
738		return;
739	}
740
741	/*
742	 * If we don't already have an inc on the connection then this
743	 * fragment has a header and starts a message.. copy its header
744	 * into the inc and save the inc so we can hang upcoming fragments
745	 * off its list.
746	 */
747	if (ibinc == NULL) {
748		ibinc = recv->r_ibinc;
749		recv->r_ibinc = NULL;
750		ic->i_ibinc = ibinc;
751
752		hdr = &ibinc->ii_inc.i_hdr;
753		memcpy(hdr, ihdr, sizeof(*hdr));
754		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
755
756		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
757			 ic->i_recv_data_rem, hdr->h_flags);
758	} else {
759		hdr = &ibinc->ii_inc.i_hdr;
760		/* We can't just use memcmp here; fragments of a
761		 * single message may carry different ACKs */
762		if (hdr->h_sequence != ihdr->h_sequence ||
763		    hdr->h_len != ihdr->h_len ||
764		    hdr->h_sport != ihdr->h_sport ||
765		    hdr->h_dport != ihdr->h_dport) {
766			rds_ib_conn_error(conn,
767				"fragment header mismatch; forcing reconnect\n");
768			return;
769		}
770	}
771
772	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
773	recv->r_frag = NULL;
774
775	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
776		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
777	else {
778		ic->i_recv_data_rem = 0;
779		ic->i_ibinc = NULL;
780
781		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
782			rds_ib_cong_recv(conn, ibinc);
783		else {
784			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
785					  &ibinc->ii_inc, GFP_ATOMIC,
786					  KM_SOFTIRQ0);
787			state->ack_next = be64_to_cpu(hdr->h_sequence);
788			state->ack_next_valid = 1;
789		}
790
791		/* Evaluate the ACK_REQUIRED flag *after* we received
792		 * the complete frame, and after bumping the next_rx
793		 * sequence. */
794		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
795			rds_stats_inc(s_recv_ack_required);
796			state->ack_required = 1;
797		}
798
799		rds_inc_put(&ibinc->ii_inc);
800	}
801}
802
803/*
804 * Plucking the oldest entry from the ring can be done concurrently with
805 * the thread refilling the ring.  Each ring operation is protected by
806 * spinlocks and the transient state of refilling doesn't change the
807 * recording of which entry is oldest.
808 *
809 * This relies on IB only calling one cq comp_handler for each cq so that
810 * there will only be one caller of rds_recv_incoming() per RDS connection.
811 */
812void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
813{
814	struct rds_connection *conn = context;
815	struct rds_ib_connection *ic = conn->c_transport_data;
816
817	rdsdebug("conn %p cq %p\n", conn, cq);
818
819	rds_ib_stats_inc(s_ib_rx_cq_call);
820
821	tasklet_schedule(&ic->i_recv_tasklet);
822}
823
824static inline void rds_poll_cq(struct rds_ib_connection *ic,
825			       struct rds_ib_ack_state *state)
826{
827	struct rds_connection *conn = ic->conn;
828	struct ib_wc wc;
829	struct rds_ib_recv_work *recv;
830
831	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
832		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
833			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
834			 be32_to_cpu(wc.ex.imm_data));
835		rds_ib_stats_inc(s_ib_rx_cq_event);
836
837		recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
838
839		rds_ib_recv_unmap_page(ic, recv);
840
841		/*
842		 * Also process recvs in connecting state because it is possible
843		 * to get a recv completion _before_ the rdmacm ESTABLISHED
844		 * event is processed.
845		 */
846		if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
847			/* We expect errors as the qp is drained during shutdown */
848			if (wc.status == IB_WC_SUCCESS) {
849				rds_ib_process_recv(conn, recv, wc.byte_len, state);
850			} else {
851				rds_ib_conn_error(conn, "recv completion on "
852				       "%pI4 had status %u, disconnecting and "
853				       "reconnecting\n", &conn->c_faddr,
854				       wc.status);
855			}
856		}
857
858		rds_ib_ring_free(&ic->i_recv_ring, 1);
859	}
860}
861
862void rds_ib_recv_tasklet_fn(unsigned long data)
863{
864	struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
865	struct rds_connection *conn = ic->conn;
866	struct rds_ib_ack_state state = { 0, };
867
868	rds_poll_cq(ic, &state);
869	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
870	rds_poll_cq(ic, &state);
871
872	if (state.ack_next_valid)
873		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
874	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
875		rds_send_drop_acked(conn, state.ack_recv, NULL);
876		ic->i_ack_recv = state.ack_recv;
877	}
878	if (rds_conn_up(conn))
879		rds_ib_attempt_ack(ic);
880
881	/* If we ever end up with a really empty receive ring, we're
882	 * in deep trouble, as the sender will definitely see RNR
883	 * timeouts. */
884	if (rds_ib_ring_empty(&ic->i_recv_ring))
885		rds_ib_stats_inc(s_ib_rx_ring_empty);
886
887	/*
888	 * If the ring is running low, then schedule the thread to refill.
889	 */
890	if (rds_ib_ring_low(&ic->i_recv_ring))
891		queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
892}
893
894int rds_ib_recv(struct rds_connection *conn)
895{
896	struct rds_ib_connection *ic = conn->c_transport_data;
897	int ret = 0;
898
899	rdsdebug("conn %p\n", conn);
900
901	/*
902	 * If we get a temporary posting failure in this context then
903	 * we're really low and we want the caller to back off for a bit.
904	 */
905	mutex_lock(&ic->i_recv_mutex);
906	if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
907		ret = -ENOMEM;
908	else
909		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
910	mutex_unlock(&ic->i_recv_mutex);
911
912	if (rds_conn_up(conn))
913		rds_ib_attempt_ack(ic);
914
915	return ret;
916}
917
918int __init rds_ib_recv_init(void)
919{
920	struct sysinfo si;
921	int ret = -ENOMEM;
922
923	/* Default to 30% of all available RAM for recv memory */
924	si_meminfo(&si);
925	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
926
927	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
928					sizeof(struct rds_ib_incoming),
929					0, 0, NULL);
930	if (rds_ib_incoming_slab == NULL)
931		goto out;
932
933	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
934					sizeof(struct rds_page_frag),
935					0, 0, NULL);
936	if (rds_ib_frag_slab == NULL)
937		kmem_cache_destroy(rds_ib_incoming_slab);
938	else
939		ret = 0;
940out:
941	return ret;
942}
943
944void rds_ib_recv_exit(void)
945{
946	kmem_cache_destroy(rds_ib_incoming_slab);
947	kmem_cache_destroy(rds_ib_frag_slab);
948}
949