• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/net/irda/
1/*********************************************************************
2 *
3 * Filename:      irttp.c
4 * Version:       1.2
5 * Description:   Tiny Transport Protocol (TTP) implementation
6 * Status:        Stable
7 * Author:        Dag Brattli <dagb@cs.uit.no>
8 * Created at:    Sun Aug 31 20:14:31 1997
9 * Modified at:   Wed Jan  5 11:31:27 2000
10 * Modified by:   Dag Brattli <dagb@cs.uit.no>
11 *
12 *     Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 *     All Rights Reserved.
14 *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 *
16 *     This program is free software; you can redistribute it and/or
17 *     modify it under the terms of the GNU General Public License as
18 *     published by the Free Software Foundation; either version 2 of
19 *     the License, or (at your option) any later version.
20 *
21 *     Neither Dag Brattli nor University of Troms�� admit liability nor
22 *     provide warranty for any of this software. This material is
23 *     provided "AS-IS" and at no charge.
24 *
25 ********************************************************************/
26
27#include <linux/skbuff.h>
28#include <linux/init.h>
29#include <linux/fs.h>
30#include <linux/seq_file.h>
31#include <linux/slab.h>
32
33#include <asm/byteorder.h>
34#include <asm/unaligned.h>
35
36#include <net/irda/irda.h>
37#include <net/irda/irlap.h>
38#include <net/irda/irlmp.h>
39#include <net/irda/parameters.h>
40#include <net/irda/irttp.h>
41
42static struct irttp_cb *irttp;
43
44static void __irttp_close_tsap(struct tsap_cb *self);
45
46static int irttp_data_indication(void *instance, void *sap,
47				 struct sk_buff *skb);
48static int irttp_udata_indication(void *instance, void *sap,
49				  struct sk_buff *skb);
50static void irttp_disconnect_indication(void *instance, void *sap,
51					LM_REASON reason, struct sk_buff *);
52static void irttp_connect_indication(void *instance, void *sap,
53				     struct qos_info *qos, __u32 max_sdu_size,
54				     __u8 header_size, struct sk_buff *skb);
55static void irttp_connect_confirm(void *instance, void *sap,
56				  struct qos_info *qos, __u32 max_sdu_size,
57				  __u8 header_size, struct sk_buff *skb);
58static void irttp_run_tx_queue(struct tsap_cb *self);
59static void irttp_run_rx_queue(struct tsap_cb *self);
60
61static void irttp_flush_queues(struct tsap_cb *self);
62static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
63static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
64static void irttp_todo_expired(unsigned long data);
65static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
66				    int get);
67
68static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
69static void irttp_status_indication(void *instance,
70				    LINK_STATUS link, LOCK_STATUS lock);
71
72/* Information for parsing parameters in IrTTP */
73static pi_minor_info_t pi_minor_call_table[] = {
74	{ NULL, 0 },                                             /* 0x00 */
75	{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
76};
77static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
78static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
79
80/************************ GLOBAL PROCEDURES ************************/
81
82/*
83 * Function irttp_init (void)
84 *
85 *    Initialize the IrTTP layer. Called by module initialization code
86 *
87 */
88int __init irttp_init(void)
89{
90	irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
91	if (irttp == NULL)
92		return -ENOMEM;
93
94	irttp->magic = TTP_MAGIC;
95
96	irttp->tsaps = hashbin_new(HB_LOCK);
97	if (!irttp->tsaps) {
98		IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
99			   __func__);
100		kfree(irttp);
101		return -ENOMEM;
102	}
103
104	return 0;
105}
106
107/*
108 * Function irttp_cleanup (void)
109 *
110 *    Called by module destruction/cleanup code
111 *
112 */
113void irttp_cleanup(void)
114{
115	/* Check for main structure */
116	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
117
118	/*
119	 *  Delete hashbin and close all TSAP instances in it
120	 */
121	hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
122
123	irttp->magic = 0;
124
125	/* De-allocate main structure */
126	kfree(irttp);
127
128	irttp = NULL;
129}
130
131/*************************** SUBROUTINES ***************************/
132
133/*
134 * Function irttp_start_todo_timer (self, timeout)
135 *
136 *    Start todo timer.
137 *
138 * Made it more effient and unsensitive to race conditions - Jean II
139 */
140static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
141{
142	/* Set new value for timer */
143	mod_timer(&self->todo_timer, jiffies + timeout);
144}
145
146/*
147 * Function irttp_todo_expired (data)
148 *
149 *    Todo timer has expired!
150 *
151 * One of the restriction of the timer is that it is run only on the timer
152 * interrupt which run every 10ms. This mean that even if you set the timer
153 * with a delay of 0, it may take up to 10ms before it's run.
154 * So, to minimise latency and keep cache fresh, we try to avoid using
155 * it as much as possible.
156 * Note : we can't use tasklets, because they can't be asynchronously
157 * killed (need user context), and we can't guarantee that here...
158 * Jean II
159 */
160static void irttp_todo_expired(unsigned long data)
161{
162	struct tsap_cb *self = (struct tsap_cb *) data;
163
164	/* Check that we still exist */
165	if (!self || self->magic != TTP_TSAP_MAGIC)
166		return;
167
168	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
169
170	/* Try to make some progress, especially on Tx side - Jean II */
171	irttp_run_rx_queue(self);
172	irttp_run_tx_queue(self);
173
174	/* Check if time for disconnect */
175	if (test_bit(0, &self->disconnect_pend)) {
176		/* Check if it's possible to disconnect yet */
177		if (skb_queue_empty(&self->tx_queue)) {
178			/* Make sure disconnect is not pending anymore */
179			clear_bit(0, &self->disconnect_pend);	/* FALSE */
180
181			/* Note : self->disconnect_skb may be NULL */
182			irttp_disconnect_request(self, self->disconnect_skb,
183						 P_NORMAL);
184			self->disconnect_skb = NULL;
185		} else {
186			/* Try again later */
187			irttp_start_todo_timer(self, HZ/10);
188
189			/* No reason to try and close now */
190			return;
191		}
192	}
193
194	/* Check if it's closing time */
195	if (self->close_pend)
196		/* Finish cleanup */
197		irttp_close_tsap(self);
198}
199
200/*
201 * Function irttp_flush_queues (self)
202 *
203 *     Flushes (removes all frames) in transitt-buffer (tx_list)
204 */
205static void irttp_flush_queues(struct tsap_cb *self)
206{
207	struct sk_buff* skb;
208
209	IRDA_DEBUG(4, "%s()\n", __func__);
210
211	IRDA_ASSERT(self != NULL, return;);
212	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
213
214	/* Deallocate frames waiting to be sent */
215	while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
216		dev_kfree_skb(skb);
217
218	/* Deallocate received frames */
219	while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
220		dev_kfree_skb(skb);
221
222	/* Deallocate received fragments */
223	while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
224		dev_kfree_skb(skb);
225}
226
227/*
228 * Function irttp_reassemble (self)
229 *
230 *    Makes a new (continuous) skb of all the fragments in the fragment
231 *    queue
232 *
233 */
234static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
235{
236	struct sk_buff *skb, *frag;
237	int n = 0;  /* Fragment index */
238
239	IRDA_ASSERT(self != NULL, return NULL;);
240	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
241
242	IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
243		   self->rx_sdu_size);
244
245	skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
246	if (!skb)
247		return NULL;
248
249	/*
250	 * Need to reserve space for TTP header in case this skb needs to
251	 * be requeued in case delivery failes
252	 */
253	skb_reserve(skb, TTP_HEADER);
254	skb_put(skb, self->rx_sdu_size);
255
256	/*
257	 *  Copy all fragments to a new buffer
258	 */
259	while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
260		skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
261		n += frag->len;
262
263		dev_kfree_skb(frag);
264	}
265
266	IRDA_DEBUG(2,
267		   "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
268		   __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
269	/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
270	 * by summing the size of all fragments, so we should always
271	 * have n == self->rx_sdu_size, except in cases where we
272	 * droped the last fragment (when self->rx_sdu_size exceed
273	 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
274	 * Jean II */
275	IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
276
277	/* Set the new length */
278	skb_trim(skb, n);
279
280	self->rx_sdu_size = 0;
281
282	return skb;
283}
284
285/*
286 * Function irttp_fragment_skb (skb)
287 *
288 *    Fragments a frame and queues all the fragments for transmission
289 *
290 */
291static inline void irttp_fragment_skb(struct tsap_cb *self,
292				      struct sk_buff *skb)
293{
294	struct sk_buff *frag;
295	__u8 *frame;
296
297	IRDA_DEBUG(2, "%s()\n", __func__);
298
299	IRDA_ASSERT(self != NULL, return;);
300	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
301	IRDA_ASSERT(skb != NULL, return;);
302
303	/*
304	 *  Split frame into a number of segments
305	 */
306	while (skb->len > self->max_seg_size) {
307		IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
308
309		/* Make new segment */
310		frag = alloc_skb(self->max_seg_size+self->max_header_size,
311				 GFP_ATOMIC);
312		if (!frag)
313			return;
314
315		skb_reserve(frag, self->max_header_size);
316
317		/* Copy data from the original skb into this fragment. */
318		skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
319			      self->max_seg_size);
320
321		/* Insert TTP header, with the more bit set */
322		frame = skb_push(frag, TTP_HEADER);
323		frame[0] = TTP_MORE;
324
325		/* Hide the copied data from the original skb */
326		skb_pull(skb, self->max_seg_size);
327
328		/* Queue fragment */
329		skb_queue_tail(&self->tx_queue, frag);
330	}
331	/* Queue what is left of the original skb */
332	IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
333
334	frame = skb_push(skb, TTP_HEADER);
335	frame[0] = 0x00; /* Clear more bit */
336
337	/* Queue fragment */
338	skb_queue_tail(&self->tx_queue, skb);
339}
340
341/*
342 * Function irttp_param_max_sdu_size (self, param)
343 *
344 *    Handle the MaxSduSize parameter in the connect frames, this function
345 *    will be called both when this parameter needs to be inserted into, and
346 *    extracted from the connect frames
347 */
348static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
349				    int get)
350{
351	struct tsap_cb *self;
352
353	self = (struct tsap_cb *) instance;
354
355	IRDA_ASSERT(self != NULL, return -1;);
356	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
357
358	if (get)
359		param->pv.i = self->tx_max_sdu_size;
360	else
361		self->tx_max_sdu_size = param->pv.i;
362
363	IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
364
365	return 0;
366}
367
368/*************************** CLIENT CALLS ***************************/
369/************************** LMP CALLBACKS **************************/
370/* Everything is happily mixed up. Waiting for next clean up - Jean II */
371
372/*
373 * Initialization, that has to be done on new tsap
374 * instance allocation and on duplication
375 */
376static void irttp_init_tsap(struct tsap_cb *tsap)
377{
378	spin_lock_init(&tsap->lock);
379	init_timer(&tsap->todo_timer);
380
381	skb_queue_head_init(&tsap->rx_queue);
382	skb_queue_head_init(&tsap->tx_queue);
383	skb_queue_head_init(&tsap->rx_fragments);
384}
385
386/*
387 * Function irttp_open_tsap (stsap, notify)
388 *
389 *    Create TSAP connection endpoint,
390 */
391struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
392{
393	struct tsap_cb *self;
394	struct lsap_cb *lsap;
395	notify_t ttp_notify;
396
397	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
398
399	/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
400	 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
401	 * JeanII */
402	if((stsap_sel != LSAP_ANY) &&
403	   ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
404		IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
405		return NULL;
406	}
407
408	self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
409	if (self == NULL) {
410		IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
411		return NULL;
412	}
413
414	/* Initialize internal objects */
415	irttp_init_tsap(self);
416
417	/* Initialise todo timer */
418	self->todo_timer.data     = (unsigned long) self;
419	self->todo_timer.function = &irttp_todo_expired;
420
421	/* Initialize callbacks for IrLMP to use */
422	irda_notify_init(&ttp_notify);
423	ttp_notify.connect_confirm = irttp_connect_confirm;
424	ttp_notify.connect_indication = irttp_connect_indication;
425	ttp_notify.disconnect_indication = irttp_disconnect_indication;
426	ttp_notify.data_indication = irttp_data_indication;
427	ttp_notify.udata_indication = irttp_udata_indication;
428	ttp_notify.flow_indication = irttp_flow_indication;
429	if(notify->status_indication != NULL)
430		ttp_notify.status_indication = irttp_status_indication;
431	ttp_notify.instance = self;
432	strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
433
434	self->magic = TTP_TSAP_MAGIC;
435	self->connected = FALSE;
436
437	/*
438	 *  Create LSAP at IrLMP layer
439	 */
440	lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
441	if (lsap == NULL) {
442		IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__);
443		return NULL;
444	}
445
446	/*
447	 *  If user specified LSAP_ANY as source TSAP selector, then IrLMP
448	 *  will replace it with whatever source selector which is free, so
449	 *  the stsap_sel we have might not be valid anymore
450	 */
451	self->stsap_sel = lsap->slsap_sel;
452	IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
453
454	self->notify = *notify;
455	self->lsap = lsap;
456
457	hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
458
459	if (credit > TTP_RX_MAX_CREDIT)
460		self->initial_credit = TTP_RX_MAX_CREDIT;
461	else
462		self->initial_credit = credit;
463
464	return self;
465}
466EXPORT_SYMBOL(irttp_open_tsap);
467
468/*
469 * Function irttp_close (handle)
470 *
471 *    Remove an instance of a TSAP. This function should only deal with the
472 *    deallocation of the TSAP, and resetting of the TSAPs values;
473 *
474 */
475static void __irttp_close_tsap(struct tsap_cb *self)
476{
477	/* First make sure we're connected. */
478	IRDA_ASSERT(self != NULL, return;);
479	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
480
481	irttp_flush_queues(self);
482
483	del_timer(&self->todo_timer);
484
485	/* This one won't be cleaned up if we are disconnect_pend + close_pend
486	 * and we receive a disconnect_indication */
487	if (self->disconnect_skb)
488		dev_kfree_skb(self->disconnect_skb);
489
490	self->connected = FALSE;
491	self->magic = ~TTP_TSAP_MAGIC;
492
493	kfree(self);
494}
495
496/*
497 * Function irttp_close (self)
498 *
499 *    Remove TSAP from list of all TSAPs and then deallocate all resources
500 *    associated with this TSAP
501 *
502 * Note : because we *free* the tsap structure, it is the responsibility
503 * of the caller to make sure we are called only once and to deal with
504 * possible race conditions. - Jean II
505 */
506int irttp_close_tsap(struct tsap_cb *self)
507{
508	struct tsap_cb *tsap;
509
510	IRDA_DEBUG(4, "%s()\n", __func__);
511
512	IRDA_ASSERT(self != NULL, return -1;);
513	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
514
515	/* Make sure tsap has been disconnected */
516	if (self->connected) {
517		/* Check if disconnect is not pending */
518		if (!test_bit(0, &self->disconnect_pend)) {
519			IRDA_WARNING("%s: TSAP still connected!\n",
520				     __func__);
521			irttp_disconnect_request(self, NULL, P_NORMAL);
522		}
523		self->close_pend = TRUE;
524		irttp_start_todo_timer(self, HZ/10);
525
526		return 0; /* Will be back! */
527	}
528
529	tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
530
531	IRDA_ASSERT(tsap == self, return -1;);
532
533	/* Close corresponding LSAP */
534	if (self->lsap) {
535		irlmp_close_lsap(self->lsap);
536		self->lsap = NULL;
537	}
538
539	__irttp_close_tsap(self);
540
541	return 0;
542}
543EXPORT_SYMBOL(irttp_close_tsap);
544
545/*
546 * Function irttp_udata_request (self, skb)
547 *
548 *    Send unreliable data on this TSAP
549 *
550 */
551int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
552{
553	IRDA_ASSERT(self != NULL, return -1;);
554	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
555	IRDA_ASSERT(skb != NULL, return -1;);
556
557	IRDA_DEBUG(4, "%s()\n", __func__);
558
559	/* Check that nothing bad happens */
560	if ((skb->len == 0) || (!self->connected)) {
561		IRDA_DEBUG(1, "%s(), No data, or not connected\n",
562			   __func__);
563		goto err;
564	}
565
566	if (skb->len > self->max_seg_size) {
567		IRDA_DEBUG(1, "%s(), UData is too large for IrLAP!\n",
568			   __func__);
569		goto err;
570	}
571
572	irlmp_udata_request(self->lsap, skb);
573	self->stats.tx_packets++;
574
575	return 0;
576
577err:
578	dev_kfree_skb(skb);
579	return -1;
580}
581EXPORT_SYMBOL(irttp_udata_request);
582
583
584/*
585 * Function irttp_data_request (handle, skb)
586 *
587 *    Queue frame for transmission. If SAR is enabled, fragement the frame
588 *    and queue the fragments for transmission
589 */
590int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
591{
592	__u8 *frame;
593	int ret;
594
595	IRDA_ASSERT(self != NULL, return -1;);
596	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
597	IRDA_ASSERT(skb != NULL, return -1;);
598
599	IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
600		   skb_queue_len(&self->tx_queue));
601
602	/* Check that nothing bad happens */
603	if ((skb->len == 0) || (!self->connected)) {
604		IRDA_WARNING("%s: No data, or not connected\n", __func__);
605		ret = -ENOTCONN;
606		goto err;
607	}
608
609	/*
610	 *  Check if SAR is disabled, and the frame is larger than what fits
611	 *  inside an IrLAP frame
612	 */
613	if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
614		IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
615			   __func__);
616		ret = -EMSGSIZE;
617		goto err;
618	}
619
620	/*
621	 *  Check if SAR is enabled, and the frame is larger than the
622	 *  TxMaxSduSize
623	 */
624	if ((self->tx_max_sdu_size != 0) &&
625	    (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
626	    (skb->len > self->tx_max_sdu_size))
627	{
628		IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
629			   __func__);
630		ret = -EMSGSIZE;
631		goto err;
632	}
633	/*
634	 *  Check if transmit queue is full
635	 */
636	if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
637		/*
638		 *  Give it a chance to empty itself
639		 */
640		irttp_run_tx_queue(self);
641
642		/* Drop packet. This error code should trigger the caller
643		 * to resend the data in the client code - Jean II */
644		ret = -ENOBUFS;
645		goto err;
646	}
647
648	/* Queue frame, or queue frame segments */
649	if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
650		/* Queue frame */
651		IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
652		frame = skb_push(skb, TTP_HEADER);
653		frame[0] = 0x00; /* Clear more bit */
654
655		skb_queue_tail(&self->tx_queue, skb);
656	} else {
657		/*
658		 *  Fragment the frame, this function will also queue the
659		 *  fragments, we don't care about the fact the transmit
660		 *  queue may be overfilled by all the segments for a little
661		 *  while
662		 */
663		irttp_fragment_skb(self, skb);
664	}
665
666	/* Check if we can accept more data from client */
667	if ((!self->tx_sdu_busy) &&
668	    (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
669		/* Tx queue filling up, so stop client. */
670		if (self->notify.flow_indication) {
671			self->notify.flow_indication(self->notify.instance,
672						     self, FLOW_STOP);
673		}
674		/* self->tx_sdu_busy is the state of the client.
675		 * Update state after notifying client to avoid
676		 * race condition with irttp_flow_indication().
677		 * If the queue empty itself after our test but before
678		 * we set the flag, we will fix ourselves below in
679		 * irttp_run_tx_queue().
680		 * Jean II */
681		self->tx_sdu_busy = TRUE;
682	}
683
684	/* Try to make some progress */
685	irttp_run_tx_queue(self);
686
687	return 0;
688
689err:
690	dev_kfree_skb(skb);
691	return ret;
692}
693EXPORT_SYMBOL(irttp_data_request);
694
695/*
696 * Function irttp_run_tx_queue (self)
697 *
698 *    Transmit packets queued for transmission (if possible)
699 *
700 */
701static void irttp_run_tx_queue(struct tsap_cb *self)
702{
703	struct sk_buff *skb;
704	unsigned long flags;
705	int n;
706
707	IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
708		   __func__,
709		   self->send_credit, skb_queue_len(&self->tx_queue));
710
711	/* Get exclusive access to the tx queue, otherwise don't touch it */
712	if (irda_lock(&self->tx_queue_lock) == FALSE)
713		return;
714
715	/* Try to send out frames as long as we have credits
716	 * and as long as LAP is not full. If LAP is full, it will
717	 * poll us through irttp_flow_indication() - Jean II */
718	while ((self->send_credit > 0) &&
719	       (!irlmp_lap_tx_queue_full(self->lsap)) &&
720	       (skb = skb_dequeue(&self->tx_queue)))
721	{
722		/*
723		 *  Since we can transmit and receive frames concurrently,
724		 *  the code below is a critical region and we must assure that
725		 *  nobody messes with the credits while we update them.
726		 */
727		spin_lock_irqsave(&self->lock, flags);
728
729		n = self->avail_credit;
730		self->avail_credit = 0;
731
732		/* Only room for 127 credits in frame */
733		if (n > 127) {
734			self->avail_credit = n-127;
735			n = 127;
736		}
737		self->remote_credit += n;
738		self->send_credit--;
739
740		spin_unlock_irqrestore(&self->lock, flags);
741
742		/*
743		 *  More bit must be set by the data_request() or fragment()
744		 *  functions
745		 */
746		skb->data[0] |= (n & 0x7f);
747
748		/* Detach from socket.
749		 * The current skb has a reference to the socket that sent
750		 * it (skb->sk). When we pass it to IrLMP, the skb will be
751		 * stored in in IrLAP (self->wx_list). When we are within
752		 * IrLAP, we lose the notion of socket, so we should not
753		 * have a reference to a socket. So, we drop it here.
754		 *
755		 * Why does it matter ?
756		 * When the skb is freed (kfree_skb), if it is associated
757		 * with a socket, it release buffer space on the socket
758		 * (through sock_wfree() and sock_def_write_space()).
759		 * If the socket no longer exist, we may crash. Hard.
760		 * When we close a socket, we make sure that associated packets
761		 * in IrTTP are freed. However, we have no way to cancel
762		 * the packet that we have passed to IrLAP. So, if a packet
763		 * remains in IrLAP (retry on the link or else) after we
764		 * close the socket, we are dead !
765		 * Jean II */
766		if (skb->sk != NULL) {
767			/* IrSOCK application, IrOBEX, ... */
768			skb_orphan(skb);
769		}
770			/* IrCOMM over IrTTP, IrLAN, ... */
771
772		/* Pass the skb to IrLMP - done */
773		irlmp_data_request(self->lsap, skb);
774		self->stats.tx_packets++;
775	}
776
777	/* Check if we can accept more frames from client.
778	 * We don't want to wait until the todo timer to do that, and we
779	 * can't use tasklets (grr...), so we are obliged to give control
780	 * to client. That's ok, this test will be true not too often
781	 * (max once per LAP window) and we are called from places
782	 * where we can spend a bit of time doing stuff. - Jean II */
783	if ((self->tx_sdu_busy) &&
784	    (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
785	    (!self->close_pend))
786	{
787		if (self->notify.flow_indication)
788			self->notify.flow_indication(self->notify.instance,
789						     self, FLOW_START);
790
791		/* self->tx_sdu_busy is the state of the client.
792		 * We don't really have a race here, but it's always safer
793		 * to update our state after the client - Jean II */
794		self->tx_sdu_busy = FALSE;
795	}
796
797	/* Reset lock */
798	self->tx_queue_lock = 0;
799}
800
801/*
802 * Function irttp_give_credit (self)
803 *
804 *    Send a dataless flowdata TTP-PDU and give available credit to peer
805 *    TSAP
806 */
807static inline void irttp_give_credit(struct tsap_cb *self)
808{
809	struct sk_buff *tx_skb = NULL;
810	unsigned long flags;
811	int n;
812
813	IRDA_ASSERT(self != NULL, return;);
814	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
815
816	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
817		   __func__,
818		   self->send_credit, self->avail_credit, self->remote_credit);
819
820	/* Give credit to peer */
821	tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
822	if (!tx_skb)
823		return;
824
825	/* Reserve space for LMP, and LAP header */
826	skb_reserve(tx_skb, LMP_MAX_HEADER);
827
828	/*
829	 *  Since we can transmit and receive frames concurrently,
830	 *  the code below is a critical region and we must assure that
831	 *  nobody messes with the credits while we update them.
832	 */
833	spin_lock_irqsave(&self->lock, flags);
834
835	n = self->avail_credit;
836	self->avail_credit = 0;
837
838	/* Only space for 127 credits in frame */
839	if (n > 127) {
840		self->avail_credit = n - 127;
841		n = 127;
842	}
843	self->remote_credit += n;
844
845	spin_unlock_irqrestore(&self->lock, flags);
846
847	skb_put(tx_skb, 1);
848	tx_skb->data[0] = (__u8) (n & 0x7f);
849
850	irlmp_data_request(self->lsap, tx_skb);
851	self->stats.tx_packets++;
852}
853
854/*
855 * Function irttp_udata_indication (instance, sap, skb)
856 *
857 *    Received some unit-data (unreliable)
858 *
859 */
860static int irttp_udata_indication(void *instance, void *sap,
861				  struct sk_buff *skb)
862{
863	struct tsap_cb *self;
864	int err;
865
866	IRDA_DEBUG(4, "%s()\n", __func__);
867
868	self = (struct tsap_cb *) instance;
869
870	IRDA_ASSERT(self != NULL, return -1;);
871	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
872	IRDA_ASSERT(skb != NULL, return -1;);
873
874	self->stats.rx_packets++;
875
876	/* Just pass data to layer above */
877	if (self->notify.udata_indication) {
878		err = self->notify.udata_indication(self->notify.instance,
879						    self,skb);
880		/* Same comment as in irttp_do_data_indication() */
881		if (!err)
882			return 0;
883	}
884	/* Either no handler, or handler returns an error */
885	dev_kfree_skb(skb);
886
887	return 0;
888}
889
890/*
891 * Function irttp_data_indication (instance, sap, skb)
892 *
893 *    Receive segment from IrLMP.
894 *
895 */
896static int irttp_data_indication(void *instance, void *sap,
897				 struct sk_buff *skb)
898{
899	struct tsap_cb *self;
900	unsigned long flags;
901	int n;
902
903	self = (struct tsap_cb *) instance;
904
905	n = skb->data[0] & 0x7f;     /* Extract the credits */
906
907	self->stats.rx_packets++;
908
909	/*  Deal with inbound credit
910	 *  Since we can transmit and receive frames concurrently,
911	 *  the code below is a critical region and we must assure that
912	 *  nobody messes with the credits while we update them.
913	 */
914	spin_lock_irqsave(&self->lock, flags);
915	self->send_credit += n;
916	if (skb->len > 1)
917		self->remote_credit--;
918	spin_unlock_irqrestore(&self->lock, flags);
919
920	/*
921	 *  Data or dataless packet? Dataless frames contains only the
922	 *  TTP_HEADER.
923	 */
924	if (skb->len > 1) {
925		/*
926		 *  We don't remove the TTP header, since we must preserve the
927		 *  more bit, so the defragment routing knows what to do
928		 */
929		skb_queue_tail(&self->rx_queue, skb);
930	} else {
931		/* Dataless flowdata TTP-PDU */
932		dev_kfree_skb(skb);
933	}
934
935
936	/* Push data to the higher layer.
937	 * We do it synchronously because running the todo timer for each
938	 * receive packet would be too much overhead and latency.
939	 * By passing control to the higher layer, we run the risk that
940	 * it may take time or grab a lock. Most often, the higher layer
941	 * will only put packet in a queue.
942	 * Anyway, packets are only dripping through the IrDA, so we can
943	 * have time before the next packet.
944	 * Further, we are run from NET_BH, so the worse that can happen is
945	 * us missing the optimal time to send back the PF bit in LAP.
946	 * Jean II */
947	irttp_run_rx_queue(self);
948
949	/* We now give credits to peer in irttp_run_rx_queue().
950	 * We need to send credit *NOW*, otherwise we are going
951	 * to miss the next Tx window. The todo timer may take
952	 * a while before it's run... - Jean II */
953
954	/*
955	 * If the peer device has given us some credits and we didn't have
956	 * anyone from before, then we need to shedule the tx queue.
957	 * We need to do that because our Tx have stopped (so we may not
958	 * get any LAP flow indication) and the user may be stopped as
959	 * well. - Jean II
960	 */
961	if (self->send_credit == n) {
962		/* Restart pushing stuff to LAP */
963		irttp_run_tx_queue(self);
964		/* Note : we don't want to schedule the todo timer
965		 * because it has horrible latency. No tasklets
966		 * because the tasklet API is broken. - Jean II */
967	}
968
969	return 0;
970}
971
972/*
973 * Function irttp_status_indication (self, reason)
974 *
975 *    Status_indication, just pass to the higher layer...
976 *
977 */
978static void irttp_status_indication(void *instance,
979				    LINK_STATUS link, LOCK_STATUS lock)
980{
981	struct tsap_cb *self;
982
983	IRDA_DEBUG(4, "%s()\n", __func__);
984
985	self = (struct tsap_cb *) instance;
986
987	IRDA_ASSERT(self != NULL, return;);
988	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
989
990	/* Check if client has already closed the TSAP and gone away */
991	if (self->close_pend)
992		return;
993
994	/*
995	 *  Inform service user if he has requested it
996	 */
997	if (self->notify.status_indication != NULL)
998		self->notify.status_indication(self->notify.instance,
999					       link, lock);
1000	else
1001		IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1002}
1003
1004/*
1005 * Function irttp_flow_indication (self, reason)
1006 *
1007 *    Flow_indication : IrLAP tells us to send more data.
1008 *
1009 */
1010static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1011{
1012	struct tsap_cb *self;
1013
1014	self = (struct tsap_cb *) instance;
1015
1016	IRDA_ASSERT(self != NULL, return;);
1017	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1018
1019	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1020
1021	/* We are "polled" directly from LAP, and the LAP want to fill
1022	 * its Tx window. We want to do our best to send it data, so that
1023	 * we maximise the window. On the other hand, we want to limit the
1024	 * amount of work here so that LAP doesn't hang forever waiting
1025	 * for packets. - Jean II */
1026
1027	/* Try to send some packets. Currently, LAP calls us every time
1028	 * there is one free slot, so we will send only one packet.
1029	 * This allow the scheduler to do its round robin - Jean II */
1030	irttp_run_tx_queue(self);
1031
1032	/* Note regarding the interraction with higher layer.
1033	 * irttp_run_tx_queue() may call the client when its queue
1034	 * start to empty, via notify.flow_indication(). Initially.
1035	 * I wanted this to happen in a tasklet, to avoid client
1036	 * grabbing the CPU, but we can't use tasklets safely. And timer
1037	 * is definitely too slow.
1038	 * This will happen only once per LAP window, and usually at
1039	 * the third packet (unless window is smaller). LAP is still
1040	 * doing mtt and sending first packet so it's sort of OK
1041	 * to do that. Jean II */
1042
1043	/* If we need to send disconnect. try to do it now */
1044	if(self->disconnect_pend)
1045		irttp_start_todo_timer(self, 0);
1046}
1047
1048/*
1049 * Function irttp_flow_request (self, command)
1050 *
1051 *    This function could be used by the upper layers to tell IrTTP to stop
1052 *    delivering frames if the receive queues are starting to get full, or
1053 *    to tell IrTTP to start delivering frames again.
1054 */
1055void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1056{
1057	IRDA_DEBUG(1, "%s()\n", __func__);
1058
1059	IRDA_ASSERT(self != NULL, return;);
1060	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1061
1062	switch (flow) {
1063	case FLOW_STOP:
1064		IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1065		self->rx_sdu_busy = TRUE;
1066		break;
1067	case FLOW_START:
1068		IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1069		self->rx_sdu_busy = FALSE;
1070
1071		/* Client say he can accept more data, try to free our
1072		 * queues ASAP - Jean II */
1073		irttp_run_rx_queue(self);
1074
1075		break;
1076	default:
1077		IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1078	}
1079}
1080EXPORT_SYMBOL(irttp_flow_request);
1081
1082/*
1083 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1084 *
1085 *    Try to connect to remote destination TSAP selector
1086 *
1087 */
1088int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1089			  __u32 saddr, __u32 daddr,
1090			  struct qos_info *qos, __u32 max_sdu_size,
1091			  struct sk_buff *userdata)
1092{
1093	struct sk_buff *tx_skb;
1094	__u8 *frame;
1095	__u8 n;
1096
1097	IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1098
1099	IRDA_ASSERT(self != NULL, return -EBADR;);
1100	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1101
1102	if (self->connected) {
1103		if(userdata)
1104			dev_kfree_skb(userdata);
1105		return -EISCONN;
1106	}
1107
1108	/* Any userdata supplied? */
1109	if (userdata == NULL) {
1110		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1111				   GFP_ATOMIC);
1112		if (!tx_skb)
1113			return -ENOMEM;
1114
1115		/* Reserve space for MUX_CONTROL and LAP header */
1116		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1117	} else {
1118		tx_skb = userdata;
1119		/*
1120		 *  Check that the client has reserved enough space for
1121		 *  headers
1122		 */
1123		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1124			{ dev_kfree_skb(userdata); return -1; } );
1125	}
1126
1127	/* Initialize connection parameters */
1128	self->connected = FALSE;
1129	self->avail_credit = 0;
1130	self->rx_max_sdu_size = max_sdu_size;
1131	self->rx_sdu_size = 0;
1132	self->rx_sdu_busy = FALSE;
1133	self->dtsap_sel = dtsap_sel;
1134
1135	n = self->initial_credit;
1136
1137	self->remote_credit = 0;
1138	self->send_credit = 0;
1139
1140	/*
1141	 *  Give away max 127 credits for now
1142	 */
1143	if (n > 127) {
1144		self->avail_credit=n-127;
1145		n = 127;
1146	}
1147
1148	self->remote_credit = n;
1149
1150	/* SAR enabled? */
1151	if (max_sdu_size > 0) {
1152		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1153			{ dev_kfree_skb(tx_skb); return -1; } );
1154
1155		/* Insert SAR parameters */
1156		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1157
1158		frame[0] = TTP_PARAMETERS | n;
1159		frame[1] = 0x04; /* Length */
1160		frame[2] = 0x01; /* MaxSduSize */
1161		frame[3] = 0x02; /* Value length */
1162
1163		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1164			      (__be16 *)(frame+4));
1165	} else {
1166		/* Insert plain TTP header */
1167		frame = skb_push(tx_skb, TTP_HEADER);
1168
1169		/* Insert initial credit in frame */
1170		frame[0] = n & 0x7f;
1171	}
1172
1173	/* Connect with IrLMP. No QoS parameters for now */
1174	return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1175				     tx_skb);
1176}
1177EXPORT_SYMBOL(irttp_connect_request);
1178
1179/*
1180 * Function irttp_connect_confirm (handle, qos, skb)
1181 *
1182 *    Sevice user confirms TSAP connection with peer.
1183 *
1184 */
1185static void irttp_connect_confirm(void *instance, void *sap,
1186				  struct qos_info *qos, __u32 max_seg_size,
1187				  __u8 max_header_size, struct sk_buff *skb)
1188{
1189	struct tsap_cb *self;
1190	int parameters;
1191	int ret;
1192	__u8 plen;
1193	__u8 n;
1194
1195	IRDA_DEBUG(4, "%s()\n", __func__);
1196
1197	self = (struct tsap_cb *) instance;
1198
1199	IRDA_ASSERT(self != NULL, return;);
1200	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1201	IRDA_ASSERT(skb != NULL, return;);
1202
1203	self->max_seg_size = max_seg_size - TTP_HEADER;
1204	self->max_header_size = max_header_size + TTP_HEADER;
1205
1206	/*
1207	 *  Check if we have got some QoS parameters back! This should be the
1208	 *  negotiated QoS for the link.
1209	 */
1210	if (qos) {
1211		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1212		       qos->baud_rate.bits);
1213		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1214		       qos->baud_rate.value);
1215	}
1216
1217	n = skb->data[0] & 0x7f;
1218
1219	IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1220
1221	self->send_credit = n;
1222	self->tx_max_sdu_size = 0;
1223	self->connected = TRUE;
1224
1225	parameters = skb->data[0] & 0x80;
1226
1227	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1228	skb_pull(skb, TTP_HEADER);
1229
1230	if (parameters) {
1231		plen = skb->data[0];
1232
1233		ret = irda_param_extract_all(self, skb->data+1,
1234					     IRDA_MIN(skb->len-1, plen),
1235					     &param_info);
1236
1237		/* Any errors in the parameter list? */
1238		if (ret < 0) {
1239			IRDA_WARNING("%s: error extracting parameters\n",
1240				     __func__);
1241			dev_kfree_skb(skb);
1242
1243			/* Do not accept this connection attempt */
1244			return;
1245		}
1246		/* Remove parameters */
1247		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1248	}
1249
1250	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1251	      self->send_credit, self->avail_credit, self->remote_credit);
1252
1253	IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1254		   self->tx_max_sdu_size);
1255
1256	if (self->notify.connect_confirm) {
1257		self->notify.connect_confirm(self->notify.instance, self, qos,
1258					     self->tx_max_sdu_size,
1259					     self->max_header_size, skb);
1260	} else
1261		dev_kfree_skb(skb);
1262}
1263
1264/*
1265 * Function irttp_connect_indication (handle, skb)
1266 *
1267 *    Some other device is connecting to this TSAP
1268 *
1269 */
1270static void irttp_connect_indication(void *instance, void *sap,
1271		struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1272		struct sk_buff *skb)
1273{
1274	struct tsap_cb *self;
1275	struct lsap_cb *lsap;
1276	int parameters;
1277	int ret;
1278	__u8 plen;
1279	__u8 n;
1280
1281	self = (struct tsap_cb *) instance;
1282
1283	IRDA_ASSERT(self != NULL, return;);
1284	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1285	IRDA_ASSERT(skb != NULL, return;);
1286
1287	lsap = (struct lsap_cb *) sap;
1288
1289	self->max_seg_size = max_seg_size - TTP_HEADER;
1290	self->max_header_size = max_header_size+TTP_HEADER;
1291
1292	IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1293
1294	/* Need to update dtsap_sel if its equal to LSAP_ANY */
1295	self->dtsap_sel = lsap->dlsap_sel;
1296
1297	n = skb->data[0] & 0x7f;
1298
1299	self->send_credit = n;
1300	self->tx_max_sdu_size = 0;
1301
1302	parameters = skb->data[0] & 0x80;
1303
1304	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1305	skb_pull(skb, TTP_HEADER);
1306
1307	if (parameters) {
1308		plen = skb->data[0];
1309
1310		ret = irda_param_extract_all(self, skb->data+1,
1311					     IRDA_MIN(skb->len-1, plen),
1312					     &param_info);
1313
1314		/* Any errors in the parameter list? */
1315		if (ret < 0) {
1316			IRDA_WARNING("%s: error extracting parameters\n",
1317				     __func__);
1318			dev_kfree_skb(skb);
1319
1320			/* Do not accept this connection attempt */
1321			return;
1322		}
1323
1324		/* Remove parameters */
1325		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1326	}
1327
1328	if (self->notify.connect_indication) {
1329		self->notify.connect_indication(self->notify.instance, self,
1330						qos, self->tx_max_sdu_size,
1331						self->max_header_size, skb);
1332	} else
1333		dev_kfree_skb(skb);
1334}
1335
1336/*
1337 * Function irttp_connect_response (handle, userdata)
1338 *
1339 *    Service user is accepting the connection, just pass it down to
1340 *    IrLMP!
1341 *
1342 */
1343int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1344			   struct sk_buff *userdata)
1345{
1346	struct sk_buff *tx_skb;
1347	__u8 *frame;
1348	int ret;
1349	__u8 n;
1350
1351	IRDA_ASSERT(self != NULL, return -1;);
1352	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1353
1354	IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1355		   self->stsap_sel);
1356
1357	/* Any userdata supplied? */
1358	if (userdata == NULL) {
1359		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1360				   GFP_ATOMIC);
1361		if (!tx_skb)
1362			return -ENOMEM;
1363
1364		/* Reserve space for MUX_CONTROL and LAP header */
1365		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1366	} else {
1367		tx_skb = userdata;
1368		/*
1369		 *  Check that the client has reserved enough space for
1370		 *  headers
1371		 */
1372		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1373			{ dev_kfree_skb(userdata); return -1; } );
1374	}
1375
1376	self->avail_credit = 0;
1377	self->remote_credit = 0;
1378	self->rx_max_sdu_size = max_sdu_size;
1379	self->rx_sdu_size = 0;
1380	self->rx_sdu_busy = FALSE;
1381
1382	n = self->initial_credit;
1383
1384	/* Frame has only space for max 127 credits (7 bits) */
1385	if (n > 127) {
1386		self->avail_credit = n - 127;
1387		n = 127;
1388	}
1389
1390	self->remote_credit = n;
1391	self->connected = TRUE;
1392
1393	/* SAR enabled? */
1394	if (max_sdu_size > 0) {
1395		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1396			{ dev_kfree_skb(tx_skb); return -1; } );
1397
1398		/* Insert TTP header with SAR parameters */
1399		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1400
1401		frame[0] = TTP_PARAMETERS | n;
1402		frame[1] = 0x04; /* Length */
1403
1404		/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1,  */
1405/*				  TTP_SAR_HEADER, &param_info) */
1406
1407		frame[2] = 0x01; /* MaxSduSize */
1408		frame[3] = 0x02; /* Value length */
1409
1410		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1411			      (__be16 *)(frame+4));
1412	} else {
1413		/* Insert TTP header */
1414		frame = skb_push(tx_skb, TTP_HEADER);
1415
1416		frame[0] = n & 0x7f;
1417	}
1418
1419	ret = irlmp_connect_response(self->lsap, tx_skb);
1420
1421	return ret;
1422}
1423EXPORT_SYMBOL(irttp_connect_response);
1424
1425/*
1426 * Function irttp_dup (self, instance)
1427 *
1428 *    Duplicate TSAP, can be used by servers to confirm a connection on a
1429 *    new TSAP so it can keep listening on the old one.
1430 */
1431struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1432{
1433	struct tsap_cb *new;
1434	unsigned long flags;
1435
1436	IRDA_DEBUG(1, "%s()\n", __func__);
1437
1438	/* Protect our access to the old tsap instance */
1439	spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1440
1441	/* Find the old instance */
1442	if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1443		IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1444		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1445		return NULL;
1446	}
1447
1448	/* Allocate a new instance */
1449	new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1450	if (!new) {
1451		IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1452		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1453		return NULL;
1454	}
1455	/* Dup */
1456	memcpy(new, orig, sizeof(struct tsap_cb));
1457	spin_lock_init(&new->lock);
1458
1459	/* We don't need the old instance any more */
1460	spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1461
1462	/* Try to dup the LSAP (may fail if we were too slow) */
1463	new->lsap = irlmp_dup(orig->lsap, new);
1464	if (!new->lsap) {
1465		IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1466		kfree(new);
1467		return NULL;
1468	}
1469
1470	/* Not everything should be copied */
1471	new->notify.instance = instance;
1472
1473	/* Initialize internal objects */
1474	irttp_init_tsap(new);
1475
1476	/* This is locked */
1477	hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1478
1479	return new;
1480}
1481EXPORT_SYMBOL(irttp_dup);
1482
1483/*
1484 * Function irttp_disconnect_request (self)
1485 *
1486 *    Close this connection please! If priority is high, the queued data
1487 *    segments, if any, will be deallocated first
1488 *
1489 */
1490int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1491			     int priority)
1492{
1493	int ret;
1494
1495	IRDA_ASSERT(self != NULL, return -1;);
1496	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1497
1498	/* Already disconnected? */
1499	if (!self->connected) {
1500		IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1501		if (userdata)
1502			dev_kfree_skb(userdata);
1503		return -1;
1504	}
1505
1506	/* Disconnect already pending ?
1507	 * We need to use an atomic operation to prevent reentry. This
1508	 * function may be called from various context, like user, timer
1509	 * for following a disconnect_indication() (i.e. net_bh).
1510	 * Jean II */
1511	if(test_and_set_bit(0, &self->disconnect_pend)) {
1512		IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1513			   __func__);
1514		if (userdata)
1515			dev_kfree_skb(userdata);
1516
1517		/* Try to make some progress */
1518		irttp_run_tx_queue(self);
1519		return -1;
1520	}
1521
1522	/*
1523	 *  Check if there is still data segments in the transmit queue
1524	 */
1525	if (!skb_queue_empty(&self->tx_queue)) {
1526		if (priority == P_HIGH) {
1527			/*
1528			 *  No need to send the queued data, if we are
1529			 *  disconnecting right now since the data will
1530			 *  not have any usable connection to be sent on
1531			 */
1532			IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1533			irttp_flush_queues(self);
1534		} else if (priority == P_NORMAL) {
1535			/*
1536			 *  Must delay disconnect until after all data segments
1537			 *  have been sent and the tx_queue is empty
1538			 */
1539			/* We'll reuse this one later for the disconnect */
1540			self->disconnect_skb = userdata;  /* May be NULL */
1541
1542			irttp_run_tx_queue(self);
1543
1544			irttp_start_todo_timer(self, HZ/10);
1545			return -1;
1546		}
1547	}
1548	/* Note : we don't need to check if self->rx_queue is full and the
1549	 * state of self->rx_sdu_busy because the disconnect response will
1550	 * be sent at the LMP level (so even if the peer has its Tx queue
1551	 * full of data). - Jean II */
1552
1553	IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1554	self->connected = FALSE;
1555
1556	if (!userdata) {
1557		struct sk_buff *tx_skb;
1558		tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1559		if (!tx_skb)
1560			return -ENOMEM;
1561
1562		/*
1563		 *  Reserve space for MUX and LAP header
1564		 */
1565		skb_reserve(tx_skb, LMP_MAX_HEADER);
1566
1567		userdata = tx_skb;
1568	}
1569	ret = irlmp_disconnect_request(self->lsap, userdata);
1570
1571	/* The disconnect is no longer pending */
1572	clear_bit(0, &self->disconnect_pend);	/* FALSE */
1573
1574	return ret;
1575}
1576EXPORT_SYMBOL(irttp_disconnect_request);
1577
1578/*
1579 * Function irttp_disconnect_indication (self, reason)
1580 *
1581 *    Disconnect indication, TSAP disconnected by peer?
1582 *
1583 */
1584static void irttp_disconnect_indication(void *instance, void *sap,
1585		LM_REASON reason, struct sk_buff *skb)
1586{
1587	struct tsap_cb *self;
1588
1589	IRDA_DEBUG(4, "%s()\n", __func__);
1590
1591	self = (struct tsap_cb *) instance;
1592
1593	IRDA_ASSERT(self != NULL, return;);
1594	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1595
1596	/* Prevent higher layer to send more data */
1597	self->connected = FALSE;
1598
1599	/* Check if client has already tried to close the TSAP */
1600	if (self->close_pend) {
1601		/* In this case, the higher layer is probably gone. Don't
1602		 * bother it and clean up the remains - Jean II */
1603		if (skb)
1604			dev_kfree_skb(skb);
1605		irttp_close_tsap(self);
1606		return;
1607	}
1608
1609	/* If we are here, we assume that is the higher layer is still
1610	 * waiting for the disconnect notification and able to process it,
1611	 * even if he tried to disconnect. Otherwise, it would have already
1612	 * attempted to close the tsap and self->close_pend would be TRUE.
1613	 * Jean II */
1614
1615	/* No need to notify the client if has already tried to disconnect */
1616	if(self->notify.disconnect_indication)
1617		self->notify.disconnect_indication(self->notify.instance, self,
1618						   reason, skb);
1619	else
1620		if (skb)
1621			dev_kfree_skb(skb);
1622}
1623
1624/*
1625 * Function irttp_do_data_indication (self, skb)
1626 *
1627 *    Try to deliver reassembled skb to layer above, and requeue it if that
1628 *    for some reason should fail. We mark rx sdu as busy to apply back
1629 *    pressure is necessary.
1630 */
1631static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1632{
1633	int err;
1634
1635	/* Check if client has already closed the TSAP and gone away */
1636	if (self->close_pend) {
1637		dev_kfree_skb(skb);
1638		return;
1639	}
1640
1641	err = self->notify.data_indication(self->notify.instance, self, skb);
1642
1643	/* Usually the layer above will notify that it's input queue is
1644	 * starting to get filled by using the flow request, but this may
1645	 * be difficult, so it can instead just refuse to eat it and just
1646	 * give an error back
1647	 */
1648	if (err) {
1649		IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1650
1651		/* Make sure we take a break */
1652		self->rx_sdu_busy = TRUE;
1653
1654		/* Need to push the header in again */
1655		skb_push(skb, TTP_HEADER);
1656		skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1657
1658		/* Put skb back on queue */
1659		skb_queue_head(&self->rx_queue, skb);
1660	}
1661}
1662
1663/*
1664 * Function irttp_run_rx_queue (self)
1665 *
1666 *     Check if we have any frames to be transmitted, or if we have any
1667 *     available credit to give away.
1668 */
1669static void irttp_run_rx_queue(struct tsap_cb *self)
1670{
1671	struct sk_buff *skb;
1672	int more = 0;
1673
1674	IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1675		   self->send_credit, self->avail_credit, self->remote_credit);
1676
1677	/* Get exclusive access to the rx queue, otherwise don't touch it */
1678	if (irda_lock(&self->rx_queue_lock) == FALSE)
1679		return;
1680
1681	/*
1682	 *  Reassemble all frames in receive queue and deliver them
1683	 */
1684	while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1685		/* This bit will tell us if it's the last fragment or not */
1686		more = skb->data[0] & 0x80;
1687
1688		/* Remove TTP header */
1689		skb_pull(skb, TTP_HEADER);
1690
1691		/* Add the length of the remaining data */
1692		self->rx_sdu_size += skb->len;
1693
1694		/*
1695		 * If SAR is disabled, or user has requested no reassembly
1696		 * of received fragments then we just deliver them
1697		 * immediately. This can be requested by clients that
1698		 * implements byte streams without any message boundaries
1699		 */
1700		if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1701			irttp_do_data_indication(self, skb);
1702			self->rx_sdu_size = 0;
1703
1704			continue;
1705		}
1706
1707		/* Check if this is a fragment, and not the last fragment */
1708		if (more) {
1709			/*
1710			 *  Queue the fragment if we still are within the
1711			 *  limits of the maximum size of the rx_sdu
1712			 */
1713			if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1714				IRDA_DEBUG(4, "%s(), queueing frag\n",
1715					   __func__);
1716				skb_queue_tail(&self->rx_fragments, skb);
1717			} else {
1718				/* Free the part of the SDU that is too big */
1719				dev_kfree_skb(skb);
1720			}
1721			continue;
1722		}
1723		/*
1724		 *  This is the last fragment, so time to reassemble!
1725		 */
1726		if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1727		    (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1728		{
1729			/*
1730			 * A little optimizing. Only queue the fragment if
1731			 * there are other fragments. Since if this is the
1732			 * last and only fragment, there is no need to
1733			 * reassemble :-)
1734			 */
1735			if (!skb_queue_empty(&self->rx_fragments)) {
1736				skb_queue_tail(&self->rx_fragments,
1737					       skb);
1738
1739				skb = irttp_reassemble_skb(self);
1740			}
1741
1742			/* Now we can deliver the reassembled skb */
1743			irttp_do_data_indication(self, skb);
1744		} else {
1745			IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1746
1747			/* Free the part of the SDU that is too big */
1748			dev_kfree_skb(skb);
1749
1750			/* Deliver only the valid but truncated part of SDU */
1751			skb = irttp_reassemble_skb(self);
1752
1753			irttp_do_data_indication(self, skb);
1754		}
1755		self->rx_sdu_size = 0;
1756	}
1757
1758	/*
1759	 * It's not trivial to keep track of how many credits are available
1760	 * by incrementing at each packet, because delivery may fail
1761	 * (irttp_do_data_indication() may requeue the frame) and because
1762	 * we need to take care of fragmentation.
1763	 * We want the other side to send up to initial_credit packets.
1764	 * We have some frames in our queues, and we have already allowed it
1765	 * to send remote_credit.
1766	 * No need to spinlock, write is atomic and self correcting...
1767	 * Jean II
1768	 */
1769	self->avail_credit = (self->initial_credit -
1770			      (self->remote_credit +
1771			       skb_queue_len(&self->rx_queue) +
1772			       skb_queue_len(&self->rx_fragments)));
1773
1774	/* Do we have too much credits to send to peer ? */
1775	if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1776	    (self->avail_credit > 0)) {
1777		/* Send explicit credit frame */
1778		irttp_give_credit(self);
1779		/* Note : do *NOT* check if tx_queue is non-empty, that
1780		 * will produce deadlocks. I repeat : send a credit frame
1781		 * even if we have something to send in our Tx queue.
1782		 * If we have credits, it means that our Tx queue is blocked.
1783		 *
1784		 * Let's suppose the peer can't keep up with our Tx. He will
1785		 * flow control us by not sending us any credits, and we
1786		 * will stop Tx and start accumulating credits here.
1787		 * Up to the point where the peer will stop its Tx queue,
1788		 * for lack of credits.
1789		 * Let's assume the peer application is single threaded.
1790		 * It will block on Tx and never consume any Rx buffer.
1791		 * Deadlock. Guaranteed. - Jean II
1792		 */
1793	}
1794
1795	/* Reset lock */
1796	self->rx_queue_lock = 0;
1797}
1798
1799#ifdef CONFIG_PROC_FS
1800struct irttp_iter_state {
1801	int id;
1802};
1803
1804static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1805{
1806	struct irttp_iter_state *iter = seq->private;
1807	struct tsap_cb *self;
1808
1809	/* Protect our access to the tsap list */
1810	spin_lock_irq(&irttp->tsaps->hb_spinlock);
1811	iter->id = 0;
1812
1813	for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1814	     self != NULL;
1815	     self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1816		if (iter->id == *pos)
1817			break;
1818		++iter->id;
1819	}
1820
1821	return self;
1822}
1823
1824static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1825{
1826	struct irttp_iter_state *iter = seq->private;
1827
1828	++*pos;
1829	++iter->id;
1830	return (void *) hashbin_get_next(irttp->tsaps);
1831}
1832
1833static void irttp_seq_stop(struct seq_file *seq, void *v)
1834{
1835	spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1836}
1837
1838static int irttp_seq_show(struct seq_file *seq, void *v)
1839{
1840	const struct irttp_iter_state *iter = seq->private;
1841	const struct tsap_cb *self = v;
1842
1843	seq_printf(seq, "TSAP %d, ", iter->id);
1844	seq_printf(seq, "stsap_sel: %02x, ",
1845		   self->stsap_sel);
1846	seq_printf(seq, "dtsap_sel: %02x\n",
1847		   self->dtsap_sel);
1848	seq_printf(seq, "  connected: %s, ",
1849		   self->connected? "TRUE":"FALSE");
1850	seq_printf(seq, "avail credit: %d, ",
1851		   self->avail_credit);
1852	seq_printf(seq, "remote credit: %d, ",
1853		   self->remote_credit);
1854	seq_printf(seq, "send credit: %d\n",
1855		   self->send_credit);
1856	seq_printf(seq, "  tx packets: %lu, ",
1857		   self->stats.tx_packets);
1858	seq_printf(seq, "rx packets: %lu, ",
1859		   self->stats.rx_packets);
1860	seq_printf(seq, "tx_queue len: %u ",
1861		   skb_queue_len(&self->tx_queue));
1862	seq_printf(seq, "rx_queue len: %u\n",
1863		   skb_queue_len(&self->rx_queue));
1864	seq_printf(seq, "  tx_sdu_busy: %s, ",
1865		   self->tx_sdu_busy? "TRUE":"FALSE");
1866	seq_printf(seq, "rx_sdu_busy: %s\n",
1867		   self->rx_sdu_busy? "TRUE":"FALSE");
1868	seq_printf(seq, "  max_seg_size: %u, ",
1869		   self->max_seg_size);
1870	seq_printf(seq, "tx_max_sdu_size: %u, ",
1871		   self->tx_max_sdu_size);
1872	seq_printf(seq, "rx_max_sdu_size: %u\n",
1873		   self->rx_max_sdu_size);
1874
1875	seq_printf(seq, "  Used by (%s)\n\n",
1876		   self->notify.name);
1877	return 0;
1878}
1879
1880static const struct seq_operations irttp_seq_ops = {
1881	.start  = irttp_seq_start,
1882	.next   = irttp_seq_next,
1883	.stop   = irttp_seq_stop,
1884	.show   = irttp_seq_show,
1885};
1886
1887static int irttp_seq_open(struct inode *inode, struct file *file)
1888{
1889	return seq_open_private(file, &irttp_seq_ops,
1890			sizeof(struct irttp_iter_state));
1891}
1892
1893const struct file_operations irttp_seq_fops = {
1894	.owner		= THIS_MODULE,
1895	.open           = irttp_seq_open,
1896	.read           = seq_read,
1897	.llseek         = seq_lseek,
1898	.release	= seq_release_private,
1899};
1900
1901#endif /* PROC_FS */
1902