• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/net/ipv4/
1/* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 *		Pedro Roque	:	Fast Retransmit/Recovery.
25 *					Two receive queues.
26 *					Retransmit queue handled by TCP.
27 *					Better retransmit timer handling.
28 *					New congestion avoidance.
29 *					Header prediction.
30 *					Variable renaming.
31 *
32 *		Eric		:	Fast Retransmit.
33 *		Randy Scott	:	MSS option defines.
34 *		Eric Schenk	:	Fixes to slow start algorithm.
35 *		Eric Schenk	:	Yet another double ACK bug.
36 *		Eric Schenk	:	Delayed ACK bug fixes.
37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38 *		David S. Miller	:	Don't allow zero congestion window.
39 *		Eric Schenk	:	Fix retransmitter so that it sends
40 *					next packet on ack of previous packet.
41 *		Andi Kleen	:	Moved open_request checking here
42 *					and process RSTs for open_requests.
43 *		Andi Kleen	:	Better prune_queue, and other fixes.
44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
45 *					timestamps.
46 *		Andrey Savochkin:	Check sequence numbers correctly when
47 *					removing SACKs due to in sequence incoming
48 *					data segments.
49 *		Andi Kleen:		Make sure we never ack data there is not
50 *					enough room for. Also make this condition
51 *					a fatal error if it might still happen.
52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53 *					connections with MSS<min(MTU,ann. MSS)
54 *					work without delayed acks.
55 *		Andi Kleen:		Process packets with PSH set in the
56 *					fast path.
57 *		J Hadi Salim:		ECN support
58 *	 	Andrei Gurtov,
59 *		Pasi Sarolahti,
60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61 *					engine. Lots of bugs are found.
62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63 */
64
65#include <linux/mm.h>
66#include <linux/slab.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <linux/kernel.h>
70#include <net/dst.h>
71#include <net/tcp.h>
72#include <net/inet_common.h>
73#include <linux/ipsec.h>
74#include <asm/unaligned.h>
75#include <net/netdma.h>
76
77#include <typedefs.h>
78#include <bcmdefs.h>
79
80int sysctl_tcp_timestamps __read_mostly = 1;
81int sysctl_tcp_window_scaling __read_mostly = 1;
82int sysctl_tcp_sack __read_mostly = 1;
83int sysctl_tcp_fack __read_mostly = 1;
84int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
85EXPORT_SYMBOL(sysctl_tcp_reordering);
86int sysctl_tcp_ecn __read_mostly = 2;
87EXPORT_SYMBOL(sysctl_tcp_ecn);
88int sysctl_tcp_dsack __read_mostly = 1;
89int sysctl_tcp_app_win __read_mostly = 31;
90int sysctl_tcp_adv_win_scale __read_mostly = 2;
91EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
92
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96int sysctl_tcp_frto __read_mostly = 2;
97int sysctl_tcp_frto_response __read_mostly;
98int sysctl_tcp_nometrics_save __read_mostly;
99
100int sysctl_tcp_thin_dupack __read_mostly;
101
102int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103int sysctl_tcp_abc __read_mostly;
104
105#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111#define FLAG_ECE		0x40 /* ECE in this ACK				*/
112#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
113#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
115#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
118#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
119
120#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
123#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
124#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125
126#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129/* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
131 */
132static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133{
134	struct inet_connection_sock *icsk = inet_csk(sk);
135	const unsigned int lss = icsk->icsk_ack.last_seg_size;
136	unsigned int len;
137
138	icsk->icsk_ack.last_seg_size = 0;
139
140	/* skb->len may jitter because of SACKs, even if peer
141	 * sends good full-sized frames.
142	 */
143	len = skb_shinfo(skb)->gso_size ? : skb->len;
144	if (len >= icsk->icsk_ack.rcv_mss) {
145		icsk->icsk_ack.rcv_mss = len;
146	} else {
147		/* Otherwise, we make more careful check taking into account,
148		 * that SACKs block is variable.
149		 *
150		 * "len" is invariant segment length, including TCP header.
151		 */
152		len += skb->data - skb_transport_header(skb);
153		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154		    /* If PSH is not set, packet should be
155		     * full sized, provided peer TCP is not badly broken.
156		     * This observation (if it is correct 8)) allows
157		     * to handle super-low mtu links fairly.
158		     */
159		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161			/* Subtract also invariant (if peer is RFC compliant),
162			 * tcp header plus fixed timestamp option length.
163			 * Resulting "len" is MSS free of SACK jitter.
164			 */
165			len -= tcp_sk(sk)->tcp_header_len;
166			icsk->icsk_ack.last_seg_size = len;
167			if (len == lss) {
168				icsk->icsk_ack.rcv_mss = len;
169				return;
170			}
171		}
172		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175	}
176}
177
178static void tcp_incr_quickack(struct sock *sk)
179{
180	struct inet_connection_sock *icsk = inet_csk(sk);
181	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183	if (quickacks == 0)
184		quickacks = 2;
185	if (quickacks > icsk->icsk_ack.quick)
186		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187}
188
189void tcp_enter_quickack_mode(struct sock *sk)
190{
191	struct inet_connection_sock *icsk = inet_csk(sk);
192	tcp_incr_quickack(sk);
193	icsk->icsk_ack.pingpong = 0;
194	icsk->icsk_ack.ato = TCP_ATO_MIN;
195}
196
197/* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
201static inline int tcp_in_quickack_mode(const struct sock *sk)
202{
203	const struct inet_connection_sock *icsk = inet_csk(sk);
204	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
205}
206
207static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
208{
209	if (tp->ecn_flags & TCP_ECN_OK)
210		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
211}
212
213static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
214{
215	if (tcp_hdr(skb)->cwr)
216		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217}
218
219static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
220{
221	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222}
223
224static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
225{
226	if (tp->ecn_flags & TCP_ECN_OK) {
227		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
228			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
229		/* Funny extension: if ECT is not set on a segment,
230		 * it is surely retransmit. It is not in ECN RFC,
231		 * but Linux follows this rule. */
232		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
233			tcp_enter_quickack_mode((struct sock *)tp);
234	}
235}
236
237static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
238{
239	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
240		tp->ecn_flags &= ~TCP_ECN_OK;
241}
242
243static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
244{
245	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
246		tp->ecn_flags &= ~TCP_ECN_OK;
247}
248
249static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
250{
251	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
252		return 1;
253	return 0;
254}
255
256/* Buffer size and advertised window tuning.
257 *
258 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
259 */
260
261static void tcp_fixup_sndbuf(struct sock *sk)
262{
263	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
264		     sizeof(struct sk_buff);
265
266	if (sk->sk_sndbuf < 3 * sndmem)
267		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
268}
269
270/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
271 *
272 * All tcp_full_space() is split to two parts: "network" buffer, allocated
273 * forward and advertised in receiver window (tp->rcv_wnd) and
274 * "application buffer", required to isolate scheduling/application
275 * latencies from network.
276 * window_clamp is maximal advertised window. It can be less than
277 * tcp_full_space(), in this case tcp_full_space() - window_clamp
278 * is reserved for "application" buffer. The less window_clamp is
279 * the smoother our behaviour from viewpoint of network, but the lower
280 * throughput and the higher sensitivity of the connection to losses. 8)
281 *
282 * rcv_ssthresh is more strict window_clamp used at "slow start"
283 * phase to predict further behaviour of this connection.
284 * It is used for two goals:
285 * - to enforce header prediction at sender, even when application
286 *   requires some significant "application buffer". It is check #1.
287 * - to prevent pruning of receive queue because of misprediction
288 *   of receiver window. Check #2.
289 *
290 * The scheme does not work when sender sends good segments opening
291 * window and then starts to feed us spaghetti. But it should work
292 * in common situations. Otherwise, we have to rely on queue collapsing.
293 */
294
295/* Slow part of check#2. */
296static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
297{
298	struct tcp_sock *tp = tcp_sk(sk);
299	/* Optimize this! */
300	int truesize = tcp_win_from_space(skb->truesize) >> 1;
301	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
302
303	while (tp->rcv_ssthresh <= window) {
304		if (truesize <= skb->len)
305			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
306
307		truesize >>= 1;
308		window >>= 1;
309	}
310	return 0;
311}
312
313static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
314{
315	struct tcp_sock *tp = tcp_sk(sk);
316
317	/* Check #1 */
318	if (tp->rcv_ssthresh < tp->window_clamp &&
319	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
320	    !tcp_memory_pressure) {
321		int incr;
322
323		/* Check #2. Increase window, if skb with such overhead
324		 * will fit to rcvbuf in future.
325		 */
326		if (tcp_win_from_space(skb->truesize) <= skb->len)
327			incr = 2 * tp->advmss;
328		else
329			incr = __tcp_grow_window(sk, skb);
330
331		if (incr) {
332			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
333					       tp->window_clamp);
334			inet_csk(sk)->icsk_ack.quick |= 1;
335		}
336	}
337}
338
339/* 3. Tuning rcvbuf, when connection enters established state. */
340
341static void tcp_fixup_rcvbuf(struct sock *sk)
342{
343	struct tcp_sock *tp = tcp_sk(sk);
344	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
345
346	/* Try to select rcvbuf so that 4 mss-sized segments
347	 * will fit to window and corresponding skbs will fit to our rcvbuf.
348	 * (was 3; 4 is minimum to allow fast retransmit to work.)
349	 */
350	while (tcp_win_from_space(rcvmem) < tp->advmss)
351		rcvmem += 128;
352	if (sk->sk_rcvbuf < 4 * rcvmem)
353		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
354}
355
356/* 4. Try to fixup all. It is made immediately after connection enters
357 *    established state.
358 */
359static void tcp_init_buffer_space(struct sock *sk)
360{
361	struct tcp_sock *tp = tcp_sk(sk);
362	int maxwin;
363
364	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
365		tcp_fixup_rcvbuf(sk);
366	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
367		tcp_fixup_sndbuf(sk);
368
369	tp->rcvq_space.space = tp->rcv_wnd;
370
371	maxwin = tcp_full_space(sk);
372
373	if (tp->window_clamp >= maxwin) {
374		tp->window_clamp = maxwin;
375
376		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
377			tp->window_clamp = max(maxwin -
378					       (maxwin >> sysctl_tcp_app_win),
379					       4 * tp->advmss);
380	}
381
382	/* Force reservation of one segment. */
383	if (sysctl_tcp_app_win &&
384	    tp->window_clamp > 2 * tp->advmss &&
385	    tp->window_clamp + tp->advmss > maxwin)
386		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
387
388	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
389	tp->snd_cwnd_stamp = tcp_time_stamp;
390}
391
392/* 5. Recalculate window clamp after socket hit its memory bounds. */
393static void tcp_clamp_window(struct sock *sk)
394{
395	struct tcp_sock *tp = tcp_sk(sk);
396	struct inet_connection_sock *icsk = inet_csk(sk);
397
398	icsk->icsk_ack.quick = 0;
399
400	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
401	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
402	    !tcp_memory_pressure &&
403	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
404		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
405				    sysctl_tcp_rmem[2]);
406	}
407	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
408		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
409}
410
411/* Initialize RCV_MSS value.
412 * RCV_MSS is an our guess about MSS used by the peer.
413 * We haven't any direct information about the MSS.
414 * It's better to underestimate the RCV_MSS rather than overestimate.
415 * Overestimations make us ACKing less frequently than needed.
416 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
417 */
418void tcp_initialize_rcv_mss(struct sock *sk)
419{
420	struct tcp_sock *tp = tcp_sk(sk);
421	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
422
423	hint = min(hint, tp->rcv_wnd / 2);
424	hint = min(hint, TCP_MSS_DEFAULT);
425	hint = max(hint, TCP_MIN_MSS);
426
427	inet_csk(sk)->icsk_ack.rcv_mss = hint;
428}
429EXPORT_SYMBOL(tcp_initialize_rcv_mss);
430
431/* Receiver "autotuning" code.
432 *
433 * The algorithm for RTT estimation w/o timestamps is based on
434 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
435 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
436 *
437 * More detail on this code can be found at
438 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
439 * though this reference is out of date.  A new paper
440 * is pending.
441 */
442static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
443{
444	u32 new_sample = tp->rcv_rtt_est.rtt;
445	long m = sample;
446
447	if (m == 0)
448		m = 1;
449
450	if (new_sample != 0) {
451		/* If we sample in larger samples in the non-timestamp
452		 * case, we could grossly overestimate the RTT especially
453		 * with chatty applications or bulk transfer apps which
454		 * are stalled on filesystem I/O.
455		 *
456		 * Also, since we are only going for a minimum in the
457		 * non-timestamp case, we do not smooth things out
458		 * else with timestamps disabled convergence takes too
459		 * long.
460		 */
461		if (!win_dep) {
462			m -= (new_sample >> 3);
463			new_sample += m;
464		} else if (m < new_sample)
465			new_sample = m << 3;
466	} else {
467		/* No previous measure. */
468		new_sample = m << 3;
469	}
470
471	if (tp->rcv_rtt_est.rtt != new_sample)
472		tp->rcv_rtt_est.rtt = new_sample;
473}
474
475static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
476{
477	if (tp->rcv_rtt_est.time == 0)
478		goto new_measure;
479	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
480		return;
481	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
482
483new_measure:
484	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
485	tp->rcv_rtt_est.time = tcp_time_stamp;
486}
487
488static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
489					  const struct sk_buff *skb)
490{
491	struct tcp_sock *tp = tcp_sk(sk);
492	if (tp->rx_opt.rcv_tsecr &&
493	    (TCP_SKB_CB(skb)->end_seq -
494	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
495		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
496}
497
498/*
499 * This function should be called every time data is copied to user space.
500 * It calculates the appropriate TCP receive buffer space.
501 */
502void tcp_rcv_space_adjust(struct sock *sk)
503{
504	struct tcp_sock *tp = tcp_sk(sk);
505	int time;
506	int space;
507
508	if (tp->rcvq_space.time == 0)
509		goto new_measure;
510
511	time = tcp_time_stamp - tp->rcvq_space.time;
512	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
513		return;
514
515	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
516
517	space = max(tp->rcvq_space.space, space);
518
519	if (tp->rcvq_space.space != space) {
520		int rcvmem;
521
522		tp->rcvq_space.space = space;
523
524		if (sysctl_tcp_moderate_rcvbuf &&
525		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
526			int new_clamp = space;
527
528			/* Receive space grows, normalize in order to
529			 * take into account packet headers and sk_buff
530			 * structure overhead.
531			 */
532			space /= tp->advmss;
533			if (!space)
534				space = 1;
535			rcvmem = (tp->advmss + MAX_TCP_HEADER +
536				  16 + sizeof(struct sk_buff));
537			while (tcp_win_from_space(rcvmem) < tp->advmss)
538				rcvmem += 128;
539			space *= rcvmem;
540			space = min(space, sysctl_tcp_rmem[2]);
541			if (space > sk->sk_rcvbuf) {
542				sk->sk_rcvbuf = space;
543
544				/* Make the window clamp follow along.  */
545				tp->window_clamp = new_clamp;
546			}
547		}
548	}
549
550new_measure:
551	tp->rcvq_space.seq = tp->copied_seq;
552	tp->rcvq_space.time = tcp_time_stamp;
553}
554
555/* There is something which you must keep in mind when you analyze the
556 * behavior of the tp->ato delayed ack timeout interval.  When a
557 * connection starts up, we want to ack as quickly as possible.  The
558 * problem is that "good" TCP's do slow start at the beginning of data
559 * transmission.  The means that until we send the first few ACK's the
560 * sender will sit on his end and only queue most of his data, because
561 * he can only send snd_cwnd unacked packets at any given time.  For
562 * each ACK we send, he increments snd_cwnd and transmits more of his
563 * queue.  -DaveM
564 */
565static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
566{
567	struct tcp_sock *tp = tcp_sk(sk);
568	struct inet_connection_sock *icsk = inet_csk(sk);
569	u32 now;
570
571	inet_csk_schedule_ack(sk);
572
573	tcp_measure_rcv_mss(sk, skb);
574
575	tcp_rcv_rtt_measure(tp);
576
577	now = tcp_time_stamp;
578
579	if (!icsk->icsk_ack.ato) {
580		/* The _first_ data packet received, initialize
581		 * delayed ACK engine.
582		 */
583		tcp_incr_quickack(sk);
584		icsk->icsk_ack.ato = TCP_ATO_MIN;
585	} else {
586		int m = now - icsk->icsk_ack.lrcvtime;
587
588		if (m <= TCP_ATO_MIN / 2) {
589			/* The fastest case is the first. */
590			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
591		} else if (m < icsk->icsk_ack.ato) {
592			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
593			if (icsk->icsk_ack.ato > icsk->icsk_rto)
594				icsk->icsk_ack.ato = icsk->icsk_rto;
595		} else if (m > icsk->icsk_rto) {
596			/* Too long gap. Apparently sender failed to
597			 * restart window, so that we send ACKs quickly.
598			 */
599			tcp_incr_quickack(sk);
600			sk_mem_reclaim(sk);
601		}
602	}
603	icsk->icsk_ack.lrcvtime = now;
604
605	TCP_ECN_check_ce(tp, skb);
606
607	if (skb->len >= 128)
608		tcp_grow_window(sk, skb);
609}
610
611/* Called to compute a smoothed rtt estimate. The data fed to this
612 * routine either comes from timestamps, or from segments that were
613 * known _not_ to have been retransmitted [see Karn/Partridge
614 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
615 * piece by Van Jacobson.
616 * NOTE: the next three routines used to be one big routine.
617 * To save cycles in the RFC 1323 implementation it was better to break
618 * it up into three procedures. -- erics
619 */
620static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621{
622	struct tcp_sock *tp = tcp_sk(sk);
623	long m = mrtt; /* RTT */
624
625	/*	The following amusing code comes from Jacobson's
626	 *	article in SIGCOMM '88.  Note that rtt and mdev
627	 *	are scaled versions of rtt and mean deviation.
628	 *	This is designed to be as fast as possible
629	 *	m stands for "measurement".
630	 *
631	 *	On a 1990 paper the rto value is changed to:
632	 *	RTO = rtt + 4 * mdev
633	 *
634	 * Funny. This algorithm seems to be very broken.
635	 * These formulae increase RTO, when it should be decreased, increase
636	 * too slowly, when it should be increased quickly, decrease too quickly
637	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
638	 * does not matter how to _calculate_ it. Seems, it was trap
639	 * that VJ failed to avoid. 8)
640	 */
641	if (m == 0)
642		m = 1;
643	if (tp->srtt != 0) {
644		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
645		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
646		if (m < 0) {
647			m = -m;		/* m is now abs(error) */
648			m -= (tp->mdev >> 2);   /* similar update on mdev */
649			/* This is similar to one of Eifel findings.
650			 * Eifel blocks mdev updates when rtt decreases.
651			 * This solution is a bit different: we use finer gain
652			 * for mdev in this case (alpha*beta).
653			 * Like Eifel it also prevents growth of rto,
654			 * but also it limits too fast rto decreases,
655			 * happening in pure Eifel.
656			 */
657			if (m > 0)
658				m >>= 3;
659		} else {
660			m -= (tp->mdev >> 2);   /* similar update on mdev */
661		}
662		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
663		if (tp->mdev > tp->mdev_max) {
664			tp->mdev_max = tp->mdev;
665			if (tp->mdev_max > tp->rttvar)
666				tp->rttvar = tp->mdev_max;
667		}
668		if (after(tp->snd_una, tp->rtt_seq)) {
669			if (tp->mdev_max < tp->rttvar)
670				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
671			tp->rtt_seq = tp->snd_nxt;
672			tp->mdev_max = tcp_rto_min(sk);
673		}
674	} else {
675		/* no previous measure. */
676		tp->srtt = m << 3;	/* take the measured time to be rtt */
677		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
678		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
679		tp->rtt_seq = tp->snd_nxt;
680	}
681}
682
683/* Calculate rto without backoff.  This is the second half of Van Jacobson's
684 * routine referred to above.
685 */
686static inline void tcp_set_rto(struct sock *sk)
687{
688	const struct tcp_sock *tp = tcp_sk(sk);
689	/* Old crap is replaced with new one. 8)
690	 *
691	 * More seriously:
692	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
693	 *    It cannot be less due to utterly erratic ACK generation made
694	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
695	 *    to do with delayed acks, because at cwnd>2 true delack timeout
696	 *    is invisible. Actually, Linux-2.4 also generates erratic
697	 *    ACKs in some circumstances.
698	 */
699	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
700
701	/* 2. Fixups made earlier cannot be right.
702	 *    If we do not estimate RTO correctly without them,
703	 *    all the algo is pure shit and should be replaced
704	 *    with correct one. It is exactly, which we pretend to do.
705	 */
706
707	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
708	 * guarantees that rto is higher.
709	 */
710	tcp_bound_rto(sk);
711}
712
713/* Save metrics learned by this TCP session.
714   This function is called only, when TCP finishes successfully
715   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 */
717void tcp_update_metrics(struct sock *sk)
718{
719	struct tcp_sock *tp = tcp_sk(sk);
720	struct dst_entry *dst = __sk_dst_get(sk);
721
722	if (sysctl_tcp_nometrics_save)
723		return;
724
725	dst_confirm(dst);
726
727	if (dst && (dst->flags & DST_HOST)) {
728		const struct inet_connection_sock *icsk = inet_csk(sk);
729		int m;
730		unsigned long rtt;
731
732		if (icsk->icsk_backoff || !tp->srtt) {
733			/* This session failed to estimate rtt. Why?
734			 * Probably, no packets returned in time.
735			 * Reset our results.
736			 */
737			if (!(dst_metric_locked(dst, RTAX_RTT)))
738				dst->metrics[RTAX_RTT - 1] = 0;
739			return;
740		}
741
742		rtt = dst_metric_rtt(dst, RTAX_RTT);
743		m = rtt - tp->srtt;
744
745		/* If newly calculated rtt larger than stored one,
746		 * store new one. Otherwise, use EWMA. Remember,
747		 * rtt overestimation is always better than underestimation.
748		 */
749		if (!(dst_metric_locked(dst, RTAX_RTT))) {
750			if (m <= 0)
751				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
752			else
753				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
754		}
755
756		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757			unsigned long var;
758			if (m < 0)
759				m = -m;
760
761			/* Scale deviation to rttvar fixed point */
762			m >>= 1;
763			if (m < tp->mdev)
764				m = tp->mdev;
765
766			var = dst_metric_rtt(dst, RTAX_RTTVAR);
767			if (m >= var)
768				var = m;
769			else
770				var -= (var - m) >> 2;
771
772			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
773		}
774
775		if (tcp_in_initial_slowstart(tp)) {
776			/* Slow start still did not finish. */
777			if (dst_metric(dst, RTAX_SSTHRESH) &&
778			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781			if (!dst_metric_locked(dst, RTAX_CWND) &&
782			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
785			   icsk->icsk_ca_state == TCP_CA_Open) {
786			/* Cong. avoidance phase, cwnd is reliable. */
787			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788				dst->metrics[RTAX_SSTHRESH-1] =
789					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790			if (!dst_metric_locked(dst, RTAX_CWND))
791				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
792		} else {
793			/* Else slow start did not finish, cwnd is non-sense,
794			   ssthresh may be also invalid.
795			 */
796			if (!dst_metric_locked(dst, RTAX_CWND))
797				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
798			if (dst_metric(dst, RTAX_SSTHRESH) &&
799			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
801				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802		}
803
804		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
806			    tp->reordering != sysctl_tcp_reordering)
807				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808		}
809	}
810}
811
812/* Numbers are taken from RFC3390.
813 *
814 * John Heffner states:
815 *
816 *	The RFC specifies a window of no more than 4380 bytes
817 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818 *	is a bit misleading because they use a clamp at 4380 bytes
819 *	rather than use a multiplier in the relevant range.
820 */
821__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822{
823	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825	if (!cwnd) {
826		if (tp->mss_cache > 1460)
827			cwnd = 2;
828		else
829			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830	}
831	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832}
833
834/* Set slow start threshold and cwnd not falling to slow start */
835void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836{
837	struct tcp_sock *tp = tcp_sk(sk);
838	const struct inet_connection_sock *icsk = inet_csk(sk);
839
840	tp->prior_ssthresh = 0;
841	tp->bytes_acked = 0;
842	if (icsk->icsk_ca_state < TCP_CA_CWR) {
843		tp->undo_marker = 0;
844		if (set_ssthresh)
845			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846		tp->snd_cwnd = min(tp->snd_cwnd,
847				   tcp_packets_in_flight(tp) + 1U);
848		tp->snd_cwnd_cnt = 0;
849		tp->high_seq = tp->snd_nxt;
850		tp->snd_cwnd_stamp = tcp_time_stamp;
851		TCP_ECN_queue_cwr(tp);
852
853		tcp_set_ca_state(sk, TCP_CA_CWR);
854	}
855}
856
857/*
858 * Packet counting of FACK is based on in-order assumptions, therefore TCP
859 * disables it when reordering is detected
860 */
861static void tcp_disable_fack(struct tcp_sock *tp)
862{
863	/* RFC3517 uses different metric in lost marker => reset on change */
864	if (tcp_is_fack(tp))
865		tp->lost_skb_hint = NULL;
866	tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending D-SACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872	tp->rx_opt.sack_ok |= 4;
873}
874
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879	struct tcp_sock *tp = tcp_sk(sk);
880	struct dst_entry *dst = __sk_dst_get(sk);
881
882	if (dst == NULL)
883		goto reset;
884
885	dst_confirm(dst);
886
887	if (dst_metric_locked(dst, RTAX_CWND))
888		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889	if (dst_metric(dst, RTAX_SSTHRESH)) {
890		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893	}
894	if (dst_metric(dst, RTAX_REORDERING) &&
895	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896		tcp_disable_fack(tp);
897		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898	}
899
900	if (dst_metric(dst, RTAX_RTT) == 0)
901		goto reset;
902
903	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904		goto reset;
905
906	/* Initial rtt is determined from SYN,SYN-ACK.
907	 * The segment is small and rtt may appear much
908	 * less than real one. Use per-dst memory
909	 * to make it more realistic.
910	 *
911	 * A bit of theory. RTT is time passed after "normal" sized packet
912	 * is sent until it is ACKed. In normal circumstances sending small
913	 * packets force peer to delay ACKs and calculation is correct too.
914	 * The algorithm is adaptive and, provided we follow specs, it
915	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916	 * tricks sort of "quick acks" for time long enough to decrease RTT
917	 * to low value, and then abruptly stops to do it and starts to delay
918	 * ACKs, wait for troubles.
919	 */
920	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
921		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
922		tp->rtt_seq = tp->snd_nxt;
923	}
924	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
925		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
926		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927	}
928	tcp_set_rto(sk);
929	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930		goto reset;
931
932cwnd:
933	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
934	tp->snd_cwnd_stamp = tcp_time_stamp;
935	return;
936
937reset:
938	/* Play conservative. If timestamps are not
939	 * supported, TCP will fail to recalculate correct
940	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
941	 */
942	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
943		tp->srtt = 0;
944		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
945		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
946	}
947	goto cwnd;
948}
949
950static void tcp_update_reordering(struct sock *sk, const int metric,
951				  const int ts)
952{
953	struct tcp_sock *tp = tcp_sk(sk);
954	if (metric > tp->reordering) {
955		int mib_idx;
956
957		tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959		/* This exciting event is worth to be remembered. 8) */
960		if (ts)
961			mib_idx = LINUX_MIB_TCPTSREORDER;
962		else if (tcp_is_reno(tp))
963			mib_idx = LINUX_MIB_TCPRENOREORDER;
964		else if (tcp_is_fack(tp))
965			mib_idx = LINUX_MIB_TCPFACKREORDER;
966		else
967			mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969		NET_INC_STATS_BH(sock_net(sk), mib_idx);
970#if FASTRETRANS_DEBUG > 1
971		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973		       tp->reordering,
974		       tp->fackets_out,
975		       tp->sacked_out,
976		       tp->undo_marker ? tp->undo_retrans : 0);
977#endif
978		tcp_disable_fack(tp);
979	}
980}
981
982/* This must be called before lost_out is incremented */
983static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984{
985	if ((tp->retransmit_skb_hint == NULL) ||
986	    before(TCP_SKB_CB(skb)->seq,
987		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988		tp->retransmit_skb_hint = skb;
989
990	if (!tp->lost_out ||
991	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993}
994
995static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996{
997	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998		tcp_verify_retransmit_hint(tp, skb);
999
1000		tp->lost_out += tcp_skb_pcount(skb);
1001		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002	}
1003}
1004
1005static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006					    struct sk_buff *skb)
1007{
1008	tcp_verify_retransmit_hint(tp, skb);
1009
1010	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011		tp->lost_out += tcp_skb_pcount(skb);
1012		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013	}
1014}
1015
1016/* This procedure tags the retransmission queue when SACKs arrive.
1017 *
1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019 * Packets in queue with these bits set are counted in variables
1020 * sacked_out, retrans_out and lost_out, correspondingly.
1021 *
1022 * Valid combinations are:
1023 * Tag  InFlight	Description
1024 * 0	1		- orig segment is in flight.
1025 * S	0		- nothing flies, orig reached receiver.
1026 * L	0		- nothing flies, orig lost by net.
1027 * R	2		- both orig and retransmit are in flight.
1028 * L|R	1		- orig is lost, retransmit is in flight.
1029 * S|R  1		- orig reached receiver, retrans is still in flight.
1030 * (L|S|R is logically valid, it could occur when L|R is sacked,
1031 *  but it is equivalent to plain S and code short-curcuits it to S.
1032 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033 *
1034 * These 6 states form finite state machine, controlled by the following events:
1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037 * 3. Loss detection event of one of three flavors:
1038 *	A. Scoreboard estimator decided the packet is lost.
1039 *	   A'. Reno "three dupacks" marks head of queue lost.
1040 *	   A''. Its FACK modfication, head until snd.fack is lost.
1041 *	B. SACK arrives sacking data transmitted after never retransmitted
1042 *	   hole was sent out.
1043 *	C. SACK arrives sacking SND.NXT at the moment, when the
1044 *	   segment was retransmitted.
1045 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046 *
1047 * It is pleasant to note, that state diagram turns out to be commutative,
1048 * so that we are allowed not to be bothered by order of our actions,
1049 * when multiple events arrive simultaneously. (see the function below).
1050 *
1051 * Reordering detection.
1052 * --------------------
1053 * Reordering metric is maximal distance, which a packet can be displaced
1054 * in packet stream. With SACKs we can estimate it:
1055 *
1056 * 1. SACK fills old hole and the corresponding segment was not
1057 *    ever retransmitted -> reordering. Alas, we cannot use it
1058 *    when segment was retransmitted.
1059 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060 *    for retransmitted and already SACKed segment -> reordering..
1061 * Both of these heuristics are not used in Loss state, when we cannot
1062 * account for retransmits accurately.
1063 *
1064 * SACK block validation.
1065 * ----------------------
1066 *
1067 * SACK block range validation checks that the received SACK block fits to
1068 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069 * Note that SND.UNA is not included to the range though being valid because
1070 * it means that the receiver is rather inconsistent with itself reporting
1071 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072 * perfectly valid, however, in light of RFC2018 which explicitly states
1073 * that "SACK block MUST reflect the newest segment.  Even if the newest
1074 * segment is going to be discarded ...", not that it looks very clever
1075 * in case of head skb. Due to potentional receiver driven attacks, we
1076 * choose to avoid immediate execution of a walk in write queue due to
1077 * reneging and defer head skb's loss recovery to standard loss recovery
1078 * procedure that will eventually trigger (nothing forbids us doing this).
1079 *
1080 * Implements also blockage to start_seq wrap-around. Problem lies in the
1081 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082 * there's no guarantee that it will be before snd_nxt (n). The problem
1083 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084 * wrap (s_w):
1085 *
1086 *         <- outs wnd ->                          <- wrapzone ->
1087 *         u     e      n                         u_w   e_w  s n_w
1088 *         |     |      |                          |     |   |  |
1089 * |<------------+------+----- TCP seqno space --------------+---------->|
1090 * ...-- <2^31 ->|                                           |<--------...
1091 * ...---- >2^31 ------>|                                    |<--------...
1092 *
1093 * Current code wouldn't be vulnerable but it's better still to discard such
1094 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097 * equal to the ideal case (infinite seqno space without wrap caused issues).
1098 *
1099 * With D-SACK the lower bound is extended to cover sequence space below
1100 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101 * again, D-SACK block must not to go across snd_una (for the same reason as
1102 * for the normal SACK blocks, explained above). But there all simplicity
1103 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104 * fully below undo_marker they do not affect behavior in anyway and can
1105 * therefore be safely ignored. In rare cases (which are more or less
1106 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107 * fragmentation and packet reordering past skb's retransmission. To consider
1108 * them correctly, the acceptable range must be extended even more though
1109 * the exact amount is rather hard to quantify. However, tp->max_window can
1110 * be used as an exaggerated estimate.
1111 */
1112static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113				  u32 start_seq, u32 end_seq)
1114{
1115	/* Too far in future, or reversed (interpretation is ambiguous) */
1116	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117		return 0;
1118
1119	/* Nasty start_seq wrap-around check (see comments above) */
1120	if (!before(start_seq, tp->snd_nxt))
1121		return 0;
1122
1123	/* In outstanding window? ...This is valid exit for D-SACKs too.
1124	 * start_seq == snd_una is non-sensical (see comments above)
1125	 */
1126	if (after(start_seq, tp->snd_una))
1127		return 1;
1128
1129	if (!is_dsack || !tp->undo_marker)
1130		return 0;
1131
1132	/* ...Then it's D-SACK, and must reside below snd_una completely */
1133	if (!after(end_seq, tp->snd_una))
1134		return 0;
1135
1136	if (!before(start_seq, tp->undo_marker))
1137		return 1;
1138
1139	/* Too old */
1140	if (!after(end_seq, tp->undo_marker))
1141		return 0;
1142
1143	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1144	 *   start_seq < undo_marker and end_seq >= undo_marker.
1145	 */
1146	return !before(start_seq, end_seq - tp->max_window);
1147}
1148
1149/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150 * Event "C". Later note: FACK people cheated me again 8), we have to account
1151 * for reordering! Ugly, but should help.
1152 *
1153 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154 * less than what is now known to be received by the other end (derived from
1155 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156 * retransmitted skbs to avoid some costly processing per ACKs.
1157 */
1158static void tcp_mark_lost_retrans(struct sock *sk)
1159{
1160	const struct inet_connection_sock *icsk = inet_csk(sk);
1161	struct tcp_sock *tp = tcp_sk(sk);
1162	struct sk_buff *skb;
1163	int cnt = 0;
1164	u32 new_low_seq = tp->snd_nxt;
1165	u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168	    !after(received_upto, tp->lost_retrans_low) ||
1169	    icsk->icsk_ca_state != TCP_CA_Recovery)
1170		return;
1171
1172	tcp_for_write_queue(skb, sk) {
1173		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175		if (skb == tcp_send_head(sk))
1176			break;
1177		if (cnt == tp->retrans_out)
1178			break;
1179		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180			continue;
1181
1182		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183			continue;
1184
1185		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1186		 * constraint here (see above) but figuring out that at
1187		 * least tp->reordering SACK blocks reside between ack_seq
1188		 * and received_upto is not easy task to do cheaply with
1189		 * the available datastructures.
1190		 *
1191		 * Whether FACK should check here for tp->reordering segs
1192		 * in-between one could argue for either way (it would be
1193		 * rather simple to implement as we could count fack_count
1194		 * during the walk and do tp->fackets_out - fack_count).
1195		 */
1196		if (after(received_upto, ack_seq)) {
1197			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1198			tp->retrans_out -= tcp_skb_pcount(skb);
1199
1200			tcp_skb_mark_lost_uncond_verify(tp, skb);
1201			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1202		} else {
1203			if (before(ack_seq, new_low_seq))
1204				new_low_seq = ack_seq;
1205			cnt += tcp_skb_pcount(skb);
1206		}
1207	}
1208
1209	if (tp->retrans_out)
1210		tp->lost_retrans_low = new_low_seq;
1211}
1212
1213static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1214			   struct tcp_sack_block_wire *sp, int num_sacks,
1215			   u32 prior_snd_una)
1216{
1217	struct tcp_sock *tp = tcp_sk(sk);
1218	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1219	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1220	int dup_sack = 0;
1221
1222	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1223		dup_sack = 1;
1224		tcp_dsack_seen(tp);
1225		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1226	} else if (num_sacks > 1) {
1227		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1228		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1229
1230		if (!after(end_seq_0, end_seq_1) &&
1231		    !before(start_seq_0, start_seq_1)) {
1232			dup_sack = 1;
1233			tcp_dsack_seen(tp);
1234			NET_INC_STATS_BH(sock_net(sk),
1235					LINUX_MIB_TCPDSACKOFORECV);
1236		}
1237	}
1238
1239	/* D-SACK for already forgotten data... Do dumb counting. */
1240	if (dup_sack &&
1241	    !after(end_seq_0, prior_snd_una) &&
1242	    after(end_seq_0, tp->undo_marker))
1243		tp->undo_retrans--;
1244
1245	return dup_sack;
1246}
1247
1248struct tcp_sacktag_state {
1249	int reord;
1250	int fack_count;
1251	int flag;
1252};
1253
1254static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1255				 u32 start_seq, u32 end_seq)
1256{
1257	int in_sack, err;
1258	unsigned int pkt_len;
1259	unsigned int mss;
1260
1261	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1262		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1263
1264	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1265	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1266		mss = tcp_skb_mss(skb);
1267		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1268
1269		if (!in_sack) {
1270			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1271			if (pkt_len < mss)
1272				pkt_len = mss;
1273		} else {
1274			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1275			if (pkt_len < mss)
1276				return -EINVAL;
1277		}
1278
1279		/* Round if necessary so that SACKs cover only full MSSes
1280		 * and/or the remaining small portion (if present)
1281		 */
1282		if (pkt_len > mss) {
1283			unsigned int new_len = (pkt_len / mss) * mss;
1284			if (!in_sack && new_len < pkt_len) {
1285				new_len += mss;
1286				if (new_len > skb->len)
1287					return 0;
1288			}
1289			pkt_len = new_len;
1290		}
1291		err = tcp_fragment(sk, skb, pkt_len, mss);
1292		if (err < 0)
1293			return err;
1294	}
1295
1296	return in_sack;
1297}
1298
1299static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1300			  struct tcp_sacktag_state *state,
1301			  int dup_sack, int pcount)
1302{
1303	struct tcp_sock *tp = tcp_sk(sk);
1304	u8 sacked = TCP_SKB_CB(skb)->sacked;
1305	int fack_count = state->fack_count;
1306
1307	/* Account D-SACK for retransmitted packet. */
1308	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1309		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1310			tp->undo_retrans--;
1311		if (sacked & TCPCB_SACKED_ACKED)
1312			state->reord = min(fack_count, state->reord);
1313	}
1314
1315	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1316	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1317		return sacked;
1318
1319	if (!(sacked & TCPCB_SACKED_ACKED)) {
1320		if (sacked & TCPCB_SACKED_RETRANS) {
1321			/* If the segment is not tagged as lost,
1322			 * we do not clear RETRANS, believing
1323			 * that retransmission is still in flight.
1324			 */
1325			if (sacked & TCPCB_LOST) {
1326				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1327				tp->lost_out -= pcount;
1328				tp->retrans_out -= pcount;
1329			}
1330		} else {
1331			if (!(sacked & TCPCB_RETRANS)) {
1332				/* New sack for not retransmitted frame,
1333				 * which was in hole. It is reordering.
1334				 */
1335				if (before(TCP_SKB_CB(skb)->seq,
1336					   tcp_highest_sack_seq(tp)))
1337					state->reord = min(fack_count,
1338							   state->reord);
1339
1340				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1341				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1342					state->flag |= FLAG_ONLY_ORIG_SACKED;
1343			}
1344
1345			if (sacked & TCPCB_LOST) {
1346				sacked &= ~TCPCB_LOST;
1347				tp->lost_out -= pcount;
1348			}
1349		}
1350
1351		sacked |= TCPCB_SACKED_ACKED;
1352		state->flag |= FLAG_DATA_SACKED;
1353		tp->sacked_out += pcount;
1354
1355		fack_count += pcount;
1356
1357		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1358		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1359		    before(TCP_SKB_CB(skb)->seq,
1360			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1361			tp->lost_cnt_hint += pcount;
1362
1363		if (fack_count > tp->fackets_out)
1364			tp->fackets_out = fack_count;
1365	}
1366
1367	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1368	 * frames and clear it. undo_retrans is decreased above, L|R frames
1369	 * are accounted above as well.
1370	 */
1371	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1372		sacked &= ~TCPCB_SACKED_RETRANS;
1373		tp->retrans_out -= pcount;
1374	}
1375
1376	return sacked;
1377}
1378
1379static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1380			   struct tcp_sacktag_state *state,
1381			   unsigned int pcount, int shifted, int mss,
1382			   int dup_sack)
1383{
1384	struct tcp_sock *tp = tcp_sk(sk);
1385	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1386
1387	BUG_ON(!pcount);
1388
1389	/* Tweak before seqno plays */
1390	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1391	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1392		tp->lost_cnt_hint += pcount;
1393
1394	TCP_SKB_CB(prev)->end_seq += shifted;
1395	TCP_SKB_CB(skb)->seq += shifted;
1396
1397	skb_shinfo(prev)->gso_segs += pcount;
1398	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1399	skb_shinfo(skb)->gso_segs -= pcount;
1400
1401	/* When we're adding to gso_segs == 1, gso_size will be zero,
1402	 * in theory this shouldn't be necessary but as long as DSACK
1403	 * code can come after this skb later on it's better to keep
1404	 * setting gso_size to something.
1405	 */
1406	if (!skb_shinfo(prev)->gso_size) {
1407		skb_shinfo(prev)->gso_size = mss;
1408		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1409	}
1410
1411	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1412	if (skb_shinfo(skb)->gso_segs <= 1) {
1413		skb_shinfo(skb)->gso_size = 0;
1414		skb_shinfo(skb)->gso_type = 0;
1415	}
1416
1417	/* We discard results */
1418	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1419
1420	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1421	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1422
1423	if (skb->len > 0) {
1424		BUG_ON(!tcp_skb_pcount(skb));
1425		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1426		return 0;
1427	}
1428
1429	/* Whole SKB was eaten :-) */
1430
1431	if (skb == tp->retransmit_skb_hint)
1432		tp->retransmit_skb_hint = prev;
1433	if (skb == tp->scoreboard_skb_hint)
1434		tp->scoreboard_skb_hint = prev;
1435	if (skb == tp->lost_skb_hint) {
1436		tp->lost_skb_hint = prev;
1437		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1438	}
1439
1440	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1441	if (skb == tcp_highest_sack(sk))
1442		tcp_advance_highest_sack(sk, skb);
1443
1444	tcp_unlink_write_queue(skb, sk);
1445	sk_wmem_free_skb(sk, skb);
1446
1447	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1448
1449	return 1;
1450}
1451
1452/* I wish gso_size would have a bit more sane initialization than
1453 * something-or-zero which complicates things
1454 */
1455static int tcp_skb_seglen(struct sk_buff *skb)
1456{
1457	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1458}
1459
1460/* Shifting pages past head area doesn't work */
1461static int skb_can_shift(struct sk_buff *skb)
1462{
1463	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1464}
1465
1466/* Try collapsing SACK blocks spanning across multiple skbs to a single
1467 * skb.
1468 */
1469static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1470					  struct tcp_sacktag_state *state,
1471					  u32 start_seq, u32 end_seq,
1472					  int dup_sack)
1473{
1474	struct tcp_sock *tp = tcp_sk(sk);
1475	struct sk_buff *prev;
1476	int mss;
1477	int pcount = 0;
1478	int len;
1479	int in_sack;
1480
1481	if (!sk_can_gso(sk))
1482		goto fallback;
1483
1484	/* Normally R but no L won't result in plain S */
1485	if (!dup_sack &&
1486	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1487		goto fallback;
1488	if (!skb_can_shift(skb))
1489		goto fallback;
1490	/* This frame is about to be dropped (was ACKed). */
1491	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1492		goto fallback;
1493
1494	/* Can only happen with delayed DSACK + discard craziness */
1495	if (unlikely(skb == tcp_write_queue_head(sk)))
1496		goto fallback;
1497	prev = tcp_write_queue_prev(sk, skb);
1498
1499	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1500		goto fallback;
1501
1502	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1503		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1504
1505	if (in_sack) {
1506		len = skb->len;
1507		pcount = tcp_skb_pcount(skb);
1508		mss = tcp_skb_seglen(skb);
1509
1510		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1511		 * drop this restriction as unnecessary
1512		 */
1513		if (mss != tcp_skb_seglen(prev))
1514			goto fallback;
1515	} else {
1516		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1517			goto noop;
1518		/* CHECKME: This is non-MSS split case only?, this will
1519		 * cause skipped skbs due to advancing loop btw, original
1520		 * has that feature too
1521		 */
1522		if (tcp_skb_pcount(skb) <= 1)
1523			goto noop;
1524
1525		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1526		if (!in_sack) {
1527			/* TODO: head merge to next could be attempted here
1528			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1529			 * though it might not be worth of the additional hassle
1530			 *
1531			 * ...we can probably just fallback to what was done
1532			 * previously. We could try merging non-SACKed ones
1533			 * as well but it probably isn't going to buy off
1534			 * because later SACKs might again split them, and
1535			 * it would make skb timestamp tracking considerably
1536			 * harder problem.
1537			 */
1538			goto fallback;
1539		}
1540
1541		len = end_seq - TCP_SKB_CB(skb)->seq;
1542		BUG_ON(len < 0);
1543		BUG_ON(len > skb->len);
1544
1545		/* MSS boundaries should be honoured or else pcount will
1546		 * severely break even though it makes things bit trickier.
1547		 * Optimize common case to avoid most of the divides
1548		 */
1549		mss = tcp_skb_mss(skb);
1550
1551		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1552		 * drop this restriction as unnecessary
1553		 */
1554		if (mss != tcp_skb_seglen(prev))
1555			goto fallback;
1556
1557		if (len == mss) {
1558			pcount = 1;
1559		} else if (len < mss) {
1560			goto noop;
1561		} else {
1562			pcount = len / mss;
1563			len = pcount * mss;
1564		}
1565	}
1566
1567	if (!skb_shift(prev, skb, len))
1568		goto fallback;
1569	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1570		goto out;
1571
1572	/* Hole filled allows collapsing with the next as well, this is very
1573	 * useful when hole on every nth skb pattern happens
1574	 */
1575	if (prev == tcp_write_queue_tail(sk))
1576		goto out;
1577	skb = tcp_write_queue_next(sk, prev);
1578
1579	if (!skb_can_shift(skb) ||
1580	    (skb == tcp_send_head(sk)) ||
1581	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1582	    (mss != tcp_skb_seglen(skb)))
1583		goto out;
1584
1585	len = skb->len;
1586	if (skb_shift(prev, skb, len)) {
1587		pcount += tcp_skb_pcount(skb);
1588		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1589	}
1590
1591out:
1592	state->fack_count += pcount;
1593	return prev;
1594
1595noop:
1596	return skb;
1597
1598fallback:
1599	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1600	return NULL;
1601}
1602
1603static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1604					struct tcp_sack_block *next_dup,
1605					struct tcp_sacktag_state *state,
1606					u32 start_seq, u32 end_seq,
1607					int dup_sack_in)
1608{
1609	struct tcp_sock *tp = tcp_sk(sk);
1610	struct sk_buff *tmp;
1611
1612	tcp_for_write_queue_from(skb, sk) {
1613		int in_sack = 0;
1614		int dup_sack = dup_sack_in;
1615
1616		if (skb == tcp_send_head(sk))
1617			break;
1618
1619		/* queue is in-order => we can short-circuit the walk early */
1620		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1621			break;
1622
1623		if ((next_dup != NULL) &&
1624		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1625			in_sack = tcp_match_skb_to_sack(sk, skb,
1626							next_dup->start_seq,
1627							next_dup->end_seq);
1628			if (in_sack > 0)
1629				dup_sack = 1;
1630		}
1631
1632		/* skb reference here is a bit tricky to get right, since
1633		 * shifting can eat and free both this skb and the next,
1634		 * so not even _safe variant of the loop is enough.
1635		 */
1636		if (in_sack <= 0) {
1637			tmp = tcp_shift_skb_data(sk, skb, state,
1638						 start_seq, end_seq, dup_sack);
1639			if (tmp != NULL) {
1640				if (tmp != skb) {
1641					skb = tmp;
1642					continue;
1643				}
1644
1645				in_sack = 0;
1646			} else {
1647				in_sack = tcp_match_skb_to_sack(sk, skb,
1648								start_seq,
1649								end_seq);
1650			}
1651		}
1652
1653		if (unlikely(in_sack < 0))
1654			break;
1655
1656		if (in_sack) {
1657			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1658								  state,
1659								  dup_sack,
1660								  tcp_skb_pcount(skb));
1661
1662			if (!before(TCP_SKB_CB(skb)->seq,
1663				    tcp_highest_sack_seq(tp)))
1664				tcp_advance_highest_sack(sk, skb);
1665		}
1666
1667		state->fack_count += tcp_skb_pcount(skb);
1668	}
1669	return skb;
1670}
1671
1672/* Avoid all extra work that is being done by sacktag while walking in
1673 * a normal way
1674 */
1675static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1676					struct tcp_sacktag_state *state,
1677					u32 skip_to_seq)
1678{
1679	tcp_for_write_queue_from(skb, sk) {
1680		if (skb == tcp_send_head(sk))
1681			break;
1682
1683		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1684			break;
1685
1686		state->fack_count += tcp_skb_pcount(skb);
1687	}
1688	return skb;
1689}
1690
1691static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1692						struct sock *sk,
1693						struct tcp_sack_block *next_dup,
1694						struct tcp_sacktag_state *state,
1695						u32 skip_to_seq)
1696{
1697	if (next_dup == NULL)
1698		return skb;
1699
1700	if (before(next_dup->start_seq, skip_to_seq)) {
1701		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1702		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1703				       next_dup->start_seq, next_dup->end_seq,
1704				       1);
1705	}
1706
1707	return skb;
1708}
1709
1710static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1711{
1712	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1713}
1714
1715static int
1716tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1717			u32 prior_snd_una)
1718{
1719	const struct inet_connection_sock *icsk = inet_csk(sk);
1720	struct tcp_sock *tp = tcp_sk(sk);
1721	unsigned char *ptr = (skb_transport_header(ack_skb) +
1722			      TCP_SKB_CB(ack_skb)->sacked);
1723	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1724	struct tcp_sack_block sp[TCP_NUM_SACKS];
1725	struct tcp_sack_block *cache;
1726	struct tcp_sacktag_state state;
1727	struct sk_buff *skb;
1728	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1729	int used_sacks;
1730	int found_dup_sack = 0;
1731	int i, j;
1732	int first_sack_index;
1733
1734	state.flag = 0;
1735	state.reord = tp->packets_out;
1736
1737	if (!tp->sacked_out) {
1738		if (WARN_ON(tp->fackets_out))
1739			tp->fackets_out = 0;
1740		tcp_highest_sack_reset(sk);
1741	}
1742
1743	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1744					 num_sacks, prior_snd_una);
1745	if (found_dup_sack)
1746		state.flag |= FLAG_DSACKING_ACK;
1747
1748	/* Eliminate too old ACKs, but take into
1749	 * account more or less fresh ones, they can
1750	 * contain valid SACK info.
1751	 */
1752	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1753		return 0;
1754
1755	if (!tp->packets_out)
1756		goto out;
1757
1758	used_sacks = 0;
1759	first_sack_index = 0;
1760	for (i = 0; i < num_sacks; i++) {
1761		int dup_sack = !i && found_dup_sack;
1762
1763		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1764		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1765
1766		if (!tcp_is_sackblock_valid(tp, dup_sack,
1767					    sp[used_sacks].start_seq,
1768					    sp[used_sacks].end_seq)) {
1769			int mib_idx;
1770
1771			if (dup_sack) {
1772				if (!tp->undo_marker)
1773					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1774				else
1775					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1776			} else {
1777				/* Don't count olds caused by ACK reordering */
1778				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1779				    !after(sp[used_sacks].end_seq, tp->snd_una))
1780					continue;
1781				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1782			}
1783
1784			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1785			if (i == 0)
1786				first_sack_index = -1;
1787			continue;
1788		}
1789
1790		/* Ignore very old stuff early */
1791		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1792			continue;
1793
1794		used_sacks++;
1795	}
1796
1797	/* order SACK blocks to allow in order walk of the retrans queue */
1798	for (i = used_sacks - 1; i > 0; i--) {
1799		for (j = 0; j < i; j++) {
1800			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1801				swap(sp[j], sp[j + 1]);
1802
1803				/* Track where the first SACK block goes to */
1804				if (j == first_sack_index)
1805					first_sack_index = j + 1;
1806			}
1807		}
1808	}
1809
1810	skb = tcp_write_queue_head(sk);
1811	state.fack_count = 0;
1812	i = 0;
1813
1814	if (!tp->sacked_out) {
1815		/* It's already past, so skip checking against it */
1816		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1817	} else {
1818		cache = tp->recv_sack_cache;
1819		/* Skip empty blocks in at head of the cache */
1820		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1821		       !cache->end_seq)
1822			cache++;
1823	}
1824
1825	while (i < used_sacks) {
1826		u32 start_seq = sp[i].start_seq;
1827		u32 end_seq = sp[i].end_seq;
1828		int dup_sack = (found_dup_sack && (i == first_sack_index));
1829		struct tcp_sack_block *next_dup = NULL;
1830
1831		if (found_dup_sack && ((i + 1) == first_sack_index))
1832			next_dup = &sp[i + 1];
1833
1834		/* Event "B" in the comment above. */
1835		if (after(end_seq, tp->high_seq))
1836			state.flag |= FLAG_DATA_LOST;
1837
1838		/* Skip too early cached blocks */
1839		while (tcp_sack_cache_ok(tp, cache) &&
1840		       !before(start_seq, cache->end_seq))
1841			cache++;
1842
1843		/* Can skip some work by looking recv_sack_cache? */
1844		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1845		    after(end_seq, cache->start_seq)) {
1846
1847			/* Head todo? */
1848			if (before(start_seq, cache->start_seq)) {
1849				skb = tcp_sacktag_skip(skb, sk, &state,
1850						       start_seq);
1851				skb = tcp_sacktag_walk(skb, sk, next_dup,
1852						       &state,
1853						       start_seq,
1854						       cache->start_seq,
1855						       dup_sack);
1856			}
1857
1858			/* Rest of the block already fully processed? */
1859			if (!after(end_seq, cache->end_seq))
1860				goto advance_sp;
1861
1862			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1863						       &state,
1864						       cache->end_seq);
1865
1866			/* ...tail remains todo... */
1867			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1868				/* ...but better entrypoint exists! */
1869				skb = tcp_highest_sack(sk);
1870				if (skb == NULL)
1871					break;
1872				state.fack_count = tp->fackets_out;
1873				cache++;
1874				goto walk;
1875			}
1876
1877			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1878			/* Check overlap against next cached too (past this one already) */
1879			cache++;
1880			continue;
1881		}
1882
1883		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1884			skb = tcp_highest_sack(sk);
1885			if (skb == NULL)
1886				break;
1887			state.fack_count = tp->fackets_out;
1888		}
1889		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1890
1891walk:
1892		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1893				       start_seq, end_seq, dup_sack);
1894
1895advance_sp:
1896		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1897		 * due to in-order walk
1898		 */
1899		if (after(end_seq, tp->frto_highmark))
1900			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1901
1902		i++;
1903	}
1904
1905	/* Clear the head of the cache sack blocks so we can skip it next time */
1906	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1907		tp->recv_sack_cache[i].start_seq = 0;
1908		tp->recv_sack_cache[i].end_seq = 0;
1909	}
1910	for (j = 0; j < used_sacks; j++)
1911		tp->recv_sack_cache[i++] = sp[j];
1912
1913	tcp_mark_lost_retrans(sk);
1914
1915	tcp_verify_left_out(tp);
1916
1917	if ((state.reord < tp->fackets_out) &&
1918	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1919	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1920		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1921
1922out:
1923
1924#if FASTRETRANS_DEBUG > 0
1925	WARN_ON((int)tp->sacked_out < 0);
1926	WARN_ON((int)tp->lost_out < 0);
1927	WARN_ON((int)tp->retrans_out < 0);
1928	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1929#endif
1930	return state.flag;
1931}
1932
1933/* Limits sacked_out so that sum with lost_out isn't ever larger than
1934 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935 */
1936static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1937{
1938	u32 holes;
1939
1940	holes = max(tp->lost_out, 1U);
1941	holes = min(holes, tp->packets_out);
1942
1943	if ((tp->sacked_out + holes) > tp->packets_out) {
1944		tp->sacked_out = tp->packets_out - holes;
1945		return 1;
1946	}
1947	return 0;
1948}
1949
1950/* If we receive more dupacks than we expected counting segments
1951 * in assumption of absent reordering, interpret this as reordering.
1952 * The only another reason could be bug in receiver TCP.
1953 */
1954static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1955{
1956	struct tcp_sock *tp = tcp_sk(sk);
1957	if (tcp_limit_reno_sacked(tp))
1958		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1959}
1960
1961/* Emulate SACKs for SACKless connection: account for a new dupack. */
1962
1963static void tcp_add_reno_sack(struct sock *sk)
1964{
1965	struct tcp_sock *tp = tcp_sk(sk);
1966	tp->sacked_out++;
1967	tcp_check_reno_reordering(sk, 0);
1968	tcp_verify_left_out(tp);
1969}
1970
1971/* Account for ACK, ACKing some data in Reno Recovery phase. */
1972
1973static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1974{
1975	struct tcp_sock *tp = tcp_sk(sk);
1976
1977	if (acked > 0) {
1978		/* One ACK acked hole. The rest eat duplicate ACKs. */
1979		if (acked - 1 >= tp->sacked_out)
1980			tp->sacked_out = 0;
1981		else
1982			tp->sacked_out -= acked - 1;
1983	}
1984	tcp_check_reno_reordering(sk, acked);
1985	tcp_verify_left_out(tp);
1986}
1987
1988static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1989{
1990	tp->sacked_out = 0;
1991}
1992
1993static int tcp_is_sackfrto(const struct tcp_sock *tp)
1994{
1995	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1996}
1997
1998/* F-RTO can only be used if TCP has never retransmitted anything other than
1999 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000 */
2001int tcp_use_frto(struct sock *sk)
2002{
2003	const struct tcp_sock *tp = tcp_sk(sk);
2004	const struct inet_connection_sock *icsk = inet_csk(sk);
2005	struct sk_buff *skb;
2006
2007	if (!sysctl_tcp_frto)
2008		return 0;
2009
2010	/* MTU probe and F-RTO won't really play nicely along currently */
2011	if (icsk->icsk_mtup.probe_size)
2012		return 0;
2013
2014	if (tcp_is_sackfrto(tp))
2015		return 1;
2016
2017	/* Avoid expensive walking of rexmit queue if possible */
2018	if (tp->retrans_out > 1)
2019		return 0;
2020
2021	skb = tcp_write_queue_head(sk);
2022	if (tcp_skb_is_last(sk, skb))
2023		return 1;
2024	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2025	tcp_for_write_queue_from(skb, sk) {
2026		if (skb == tcp_send_head(sk))
2027			break;
2028		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2029			return 0;
2030		/* Short-circuit when first non-SACKed skb has been checked */
2031		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2032			break;
2033	}
2034	return 1;
2035}
2036
2037/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2038 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2039 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2040 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2041 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2042 * bits are handled if the Loss state is really to be entered (in
2043 * tcp_enter_frto_loss).
2044 *
2045 * Do like tcp_enter_loss() would; when RTO expires the second time it
2046 * does:
2047 *  "Reduce ssthresh if it has not yet been made inside this window."
2048 */
2049void tcp_enter_frto(struct sock *sk)
2050{
2051	const struct inet_connection_sock *icsk = inet_csk(sk);
2052	struct tcp_sock *tp = tcp_sk(sk);
2053	struct sk_buff *skb;
2054
2055	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2056	    tp->snd_una == tp->high_seq ||
2057	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2058	     !icsk->icsk_retransmits)) {
2059		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2060		/* Our state is too optimistic in ssthresh() call because cwnd
2061		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2062		 * recovery has not yet completed. Pattern would be this: RTO,
2063		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2064		 * up here twice).
2065		 * RFC4138 should be more specific on what to do, even though
2066		 * RTO is quite unlikely to occur after the first Cumulative ACK
2067		 * due to back-off and complexity of triggering events ...
2068		 */
2069		if (tp->frto_counter) {
2070			u32 stored_cwnd;
2071			stored_cwnd = tp->snd_cwnd;
2072			tp->snd_cwnd = 2;
2073			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074			tp->snd_cwnd = stored_cwnd;
2075		} else {
2076			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077		}
2078		/* ... in theory, cong.control module could do "any tricks" in
2079		 * ssthresh(), which means that ca_state, lost bits and lost_out
2080		 * counter would have to be faked before the call occurs. We
2081		 * consider that too expensive, unlikely and hacky, so modules
2082		 * using these in ssthresh() must deal these incompatibility
2083		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084		 */
2085		tcp_ca_event(sk, CA_EVENT_FRTO);
2086	}
2087
2088	tp->undo_marker = tp->snd_una;
2089	tp->undo_retrans = 0;
2090
2091	skb = tcp_write_queue_head(sk);
2092	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2093		tp->undo_marker = 0;
2094	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2095		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2096		tp->retrans_out -= tcp_skb_pcount(skb);
2097	}
2098	tcp_verify_left_out(tp);
2099
2100	/* Too bad if TCP was application limited */
2101	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2102
2103	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2104	 * The last condition is necessary at least in tp->frto_counter case.
2105	 */
2106	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2107	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2108	    after(tp->high_seq, tp->snd_una)) {
2109		tp->frto_highmark = tp->high_seq;
2110	} else {
2111		tp->frto_highmark = tp->snd_nxt;
2112	}
2113	tcp_set_ca_state(sk, TCP_CA_Disorder);
2114	tp->high_seq = tp->snd_nxt;
2115	tp->frto_counter = 1;
2116}
2117
2118/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2119 * which indicates that we should follow the traditional RTO recovery,
2120 * i.e. mark everything lost and do go-back-N retransmission.
2121 */
2122static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2123{
2124	struct tcp_sock *tp = tcp_sk(sk);
2125	struct sk_buff *skb;
2126
2127	tp->lost_out = 0;
2128	tp->retrans_out = 0;
2129	if (tcp_is_reno(tp))
2130		tcp_reset_reno_sack(tp);
2131
2132	tcp_for_write_queue(skb, sk) {
2133		if (skb == tcp_send_head(sk))
2134			break;
2135
2136		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2137		/*
2138		 * Count the retransmission made on RTO correctly (only when
2139		 * waiting for the first ACK and did not get it)...
2140		 */
2141		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2142			/* For some reason this R-bit might get cleared? */
2143			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2144				tp->retrans_out += tcp_skb_pcount(skb);
2145			/* ...enter this if branch just for the first segment */
2146			flag |= FLAG_DATA_ACKED;
2147		} else {
2148			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2149				tp->undo_marker = 0;
2150			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2151		}
2152
2153		/* Marking forward transmissions that were made after RTO lost
2154		 * can cause unnecessary retransmissions in some scenarios,
2155		 * SACK blocks will mitigate that in some but not in all cases.
2156		 * We used to not mark them but it was causing break-ups with
2157		 * receivers that do only in-order receival.
2158		 *
2159		 * TODO: we could detect presence of such receiver and select
2160		 * different behavior per flow.
2161		 */
2162		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2163			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2164			tp->lost_out += tcp_skb_pcount(skb);
2165			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2166		}
2167	}
2168	tcp_verify_left_out(tp);
2169
2170	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2171	tp->snd_cwnd_cnt = 0;
2172	tp->snd_cwnd_stamp = tcp_time_stamp;
2173	tp->frto_counter = 0;
2174	tp->bytes_acked = 0;
2175
2176	tp->reordering = min_t(unsigned int, tp->reordering,
2177			       sysctl_tcp_reordering);
2178	tcp_set_ca_state(sk, TCP_CA_Loss);
2179	tp->high_seq = tp->snd_nxt;
2180	TCP_ECN_queue_cwr(tp);
2181
2182	tcp_clear_all_retrans_hints(tp);
2183}
2184
2185static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2186{
2187	tp->retrans_out = 0;
2188	tp->lost_out = 0;
2189
2190	tp->undo_marker = 0;
2191	tp->undo_retrans = 0;
2192}
2193
2194void tcp_clear_retrans(struct tcp_sock *tp)
2195{
2196	tcp_clear_retrans_partial(tp);
2197
2198	tp->fackets_out = 0;
2199	tp->sacked_out = 0;
2200}
2201
2202/* Enter Loss state. If "how" is not zero, forget all SACK information
2203 * and reset tags completely, otherwise preserve SACKs. If receiver
2204 * dropped its ofo queue, we will know this due to reneging detection.
2205 */
2206void tcp_enter_loss(struct sock *sk, int how)
2207{
2208	const struct inet_connection_sock *icsk = inet_csk(sk);
2209	struct tcp_sock *tp = tcp_sk(sk);
2210	struct sk_buff *skb;
2211
2212	/* Reduce ssthresh if it has not yet been made inside this window. */
2213	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2214	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2215		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2216		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2217		tcp_ca_event(sk, CA_EVENT_LOSS);
2218	}
2219	tp->snd_cwnd	   = 1;
2220	tp->snd_cwnd_cnt   = 0;
2221	tp->snd_cwnd_stamp = tcp_time_stamp;
2222
2223	tp->bytes_acked = 0;
2224	tcp_clear_retrans_partial(tp);
2225
2226	if (tcp_is_reno(tp))
2227		tcp_reset_reno_sack(tp);
2228
2229	if (!how) {
2230		/* Push undo marker, if it was plain RTO and nothing
2231		 * was retransmitted. */
2232		tp->undo_marker = tp->snd_una;
2233	} else {
2234		tp->sacked_out = 0;
2235		tp->fackets_out = 0;
2236	}
2237	tcp_clear_all_retrans_hints(tp);
2238
2239	tcp_for_write_queue(skb, sk) {
2240		if (skb == tcp_send_head(sk))
2241			break;
2242
2243		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2244			tp->undo_marker = 0;
2245		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2246		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2247			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2248			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2249			tp->lost_out += tcp_skb_pcount(skb);
2250			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2251		}
2252	}
2253	tcp_verify_left_out(tp);
2254
2255	tp->reordering = min_t(unsigned int, tp->reordering,
2256			       sysctl_tcp_reordering);
2257	tcp_set_ca_state(sk, TCP_CA_Loss);
2258	tp->high_seq = tp->snd_nxt;
2259	TCP_ECN_queue_cwr(tp);
2260	/* Abort F-RTO algorithm if one is in progress */
2261	tp->frto_counter = 0;
2262}
2263
2264/* If ACK arrived pointing to a remembered SACK, it means that our
2265 * remembered SACKs do not reflect real state of receiver i.e.
2266 * receiver _host_ is heavily congested (or buggy).
2267 *
2268 * Do processing similar to RTO timeout.
2269 */
2270static int tcp_check_sack_reneging(struct sock *sk, int flag)
2271{
2272	if (flag & FLAG_SACK_RENEGING) {
2273		struct inet_connection_sock *icsk = inet_csk(sk);
2274		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2275
2276		tcp_enter_loss(sk, 1);
2277		icsk->icsk_retransmits++;
2278		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2279		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2280					  icsk->icsk_rto, TCP_RTO_MAX);
2281		return 1;
2282	}
2283	return 0;
2284}
2285
2286static inline int tcp_fackets_out(struct tcp_sock *tp)
2287{
2288	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2289}
2290
2291/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2292 * counter when SACK is enabled (without SACK, sacked_out is used for
2293 * that purpose).
2294 *
2295 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2296 * segments up to the highest received SACK block so far and holes in
2297 * between them.
2298 *
2299 * With reordering, holes may still be in flight, so RFC3517 recovery
2300 * uses pure sacked_out (total number of SACKed segments) even though
2301 * it violates the RFC that uses duplicate ACKs, often these are equal
2302 * but when e.g. out-of-window ACKs or packet duplication occurs,
2303 * they differ. Since neither occurs due to loss, TCP should really
2304 * ignore them.
2305 */
2306static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2307{
2308	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2309}
2310
2311static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2312{
2313	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2314}
2315
2316static inline int tcp_head_timedout(struct sock *sk)
2317{
2318	struct tcp_sock *tp = tcp_sk(sk);
2319
2320	return tp->packets_out &&
2321	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2322}
2323
2324/* Linux NewReno/SACK/FACK/ECN state machine.
2325 * --------------------------------------
2326 *
2327 * "Open"	Normal state, no dubious events, fast path.
2328 * "Disorder"   In all the respects it is "Open",
2329 *		but requires a bit more attention. It is entered when
2330 *		we see some SACKs or dupacks. It is split of "Open"
2331 *		mainly to move some processing from fast path to slow one.
2332 * "CWR"	CWND was reduced due to some Congestion Notification event.
2333 *		It can be ECN, ICMP source quench, local device congestion.
2334 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2335 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2336 *
2337 * tcp_fastretrans_alert() is entered:
2338 * - each incoming ACK, if state is not "Open"
2339 * - when arrived ACK is unusual, namely:
2340 *	* SACK
2341 *	* Duplicate ACK.
2342 *	* ECN ECE.
2343 *
2344 * Counting packets in flight is pretty simple.
2345 *
2346 *	in_flight = packets_out - left_out + retrans_out
2347 *
2348 *	packets_out is SND.NXT-SND.UNA counted in packets.
2349 *
2350 *	retrans_out is number of retransmitted segments.
2351 *
2352 *	left_out is number of segments left network, but not ACKed yet.
2353 *
2354 *		left_out = sacked_out + lost_out
2355 *
2356 *     sacked_out: Packets, which arrived to receiver out of order
2357 *		   and hence not ACKed. With SACKs this number is simply
2358 *		   amount of SACKed data. Even without SACKs
2359 *		   it is easy to give pretty reliable estimate of this number,
2360 *		   counting duplicate ACKs.
2361 *
2362 *       lost_out: Packets lost by network. TCP has no explicit
2363 *		   "loss notification" feedback from network (for now).
2364 *		   It means that this number can be only _guessed_.
2365 *		   Actually, it is the heuristics to predict lossage that
2366 *		   distinguishes different algorithms.
2367 *
2368 *	F.e. after RTO, when all the queue is considered as lost,
2369 *	lost_out = packets_out and in_flight = retrans_out.
2370 *
2371 *		Essentially, we have now two algorithms counting
2372 *		lost packets.
2373 *
2374 *		FACK: It is the simplest heuristics. As soon as we decided
2375 *		that something is lost, we decide that _all_ not SACKed
2376 *		packets until the most forward SACK are lost. I.e.
2377 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2378 *		It is absolutely correct estimate, if network does not reorder
2379 *		packets. And it loses any connection to reality when reordering
2380 *		takes place. We use FACK by default until reordering
2381 *		is suspected on the path to this destination.
2382 *
2383 *		NewReno: when Recovery is entered, we assume that one segment
2384 *		is lost (classic Reno). While we are in Recovery and
2385 *		a partial ACK arrives, we assume that one more packet
2386 *		is lost (NewReno). This heuristics are the same in NewReno
2387 *		and SACK.
2388 *
2389 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2390 *  deflation etc. CWND is real congestion window, never inflated, changes
2391 *  only according to classic VJ rules.
2392 *
2393 * Really tricky (and requiring careful tuning) part of algorithm
2394 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2395 * The first determines the moment _when_ we should reduce CWND and,
2396 * hence, slow down forward transmission. In fact, it determines the moment
2397 * when we decide that hole is caused by loss, rather than by a reorder.
2398 *
2399 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2400 * holes, caused by lost packets.
2401 *
2402 * And the most logically complicated part of algorithm is undo
2403 * heuristics. We detect false retransmits due to both too early
2404 * fast retransmit (reordering) and underestimated RTO, analyzing
2405 * timestamps and D-SACKs. When we detect that some segments were
2406 * retransmitted by mistake and CWND reduction was wrong, we undo
2407 * window reduction and abort recovery phase. This logic is hidden
2408 * inside several functions named tcp_try_undo_<something>.
2409 */
2410
2411/* This function decides, when we should leave Disordered state
2412 * and enter Recovery phase, reducing congestion window.
2413 *
2414 * Main question: may we further continue forward transmission
2415 * with the same cwnd?
2416 */
2417static int tcp_time_to_recover(struct sock *sk)
2418{
2419	struct tcp_sock *tp = tcp_sk(sk);
2420	__u32 packets_out;
2421
2422	/* Do not perform any recovery during F-RTO algorithm */
2423	if (tp->frto_counter)
2424		return 0;
2425
2426	/* Trick#1: The loss is proven. */
2427	if (tp->lost_out)
2428		return 1;
2429
2430	/* Not-A-Trick#2 : Classic rule... */
2431	if (tcp_dupack_heuristics(tp) > tp->reordering)
2432		return 1;
2433
2434	/* Trick#3 : when we use RFC2988 timer restart, fast
2435	 * retransmit can be triggered by timeout of queue head.
2436	 */
2437	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2438		return 1;
2439
2440	/* Trick#4: It is still not OK... But will it be useful to delay
2441	 * recovery more?
2442	 */
2443	packets_out = tp->packets_out;
2444	if (packets_out <= tp->reordering &&
2445	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2446	    !tcp_may_send_now(sk)) {
2447		/* We have nothing to send. This connection is limited
2448		 * either by receiver window or by application.
2449		 */
2450		return 1;
2451	}
2452
2453	/* If a thin stream is detected, retransmit after first
2454	 * received dupack. Employ only if SACK is supported in order
2455	 * to avoid possible corner-case series of spurious retransmissions
2456	 * Use only if there are no unsent data.
2457	 */
2458	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2459	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2460	    tcp_is_sack(tp) && !tcp_send_head(sk))
2461		return 1;
2462
2463	return 0;
2464}
2465
2466/* New heuristics: it is possible only after we switched to restart timer
2467 * each time when something is ACKed. Hence, we can detect timed out packets
2468 * during fast retransmit without falling to slow start.
2469 *
2470 * Usefulness of this as is very questionable, since we should know which of
2471 * the segments is the next to timeout which is relatively expensive to find
2472 * in general case unless we add some data structure just for that. The
2473 * current approach certainly won't find the right one too often and when it
2474 * finally does find _something_ it usually marks large part of the window
2475 * right away (because a retransmission with a larger timestamp blocks the
2476 * loop from advancing). -ij
2477 */
2478static void tcp_timeout_skbs(struct sock *sk)
2479{
2480	struct tcp_sock *tp = tcp_sk(sk);
2481	struct sk_buff *skb;
2482
2483	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2484		return;
2485
2486	skb = tp->scoreboard_skb_hint;
2487	if (tp->scoreboard_skb_hint == NULL)
2488		skb = tcp_write_queue_head(sk);
2489
2490	tcp_for_write_queue_from(skb, sk) {
2491		if (skb == tcp_send_head(sk))
2492			break;
2493		if (!tcp_skb_timedout(sk, skb))
2494			break;
2495
2496		tcp_skb_mark_lost(tp, skb);
2497	}
2498
2499	tp->scoreboard_skb_hint = skb;
2500
2501	tcp_verify_left_out(tp);
2502}
2503
2504/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2505 * is against sacked "cnt", otherwise it's against facked "cnt"
2506 */
2507static void tcp_mark_head_lost(struct sock *sk, int packets)
2508{
2509	struct tcp_sock *tp = tcp_sk(sk);
2510	struct sk_buff *skb;
2511	int cnt, oldcnt;
2512	int err;
2513	unsigned int mss;
2514
2515	if (packets == 0)
2516		return;
2517
2518	WARN_ON(packets > tp->packets_out);
2519	if (tp->lost_skb_hint) {
2520		skb = tp->lost_skb_hint;
2521		cnt = tp->lost_cnt_hint;
2522	} else {
2523		skb = tcp_write_queue_head(sk);
2524		cnt = 0;
2525	}
2526
2527	tcp_for_write_queue_from(skb, sk) {
2528		if (skb == tcp_send_head(sk))
2529			break;
2530		/* TODO: do this better */
2531		/* this is not the most efficient way to do this... */
2532		tp->lost_skb_hint = skb;
2533		tp->lost_cnt_hint = cnt;
2534
2535		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2536			break;
2537
2538		oldcnt = cnt;
2539		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2540		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2541			cnt += tcp_skb_pcount(skb);
2542
2543		if (cnt > packets) {
2544			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2545			    (oldcnt >= packets))
2546				break;
2547
2548			mss = skb_shinfo(skb)->gso_size;
2549			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2550			if (err < 0)
2551				break;
2552			cnt = packets;
2553		}
2554
2555		tcp_skb_mark_lost(tp, skb);
2556	}
2557	tcp_verify_left_out(tp);
2558}
2559
2560/* Account newly detected lost packet(s) */
2561
2562static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2563{
2564	struct tcp_sock *tp = tcp_sk(sk);
2565
2566	if (tcp_is_reno(tp)) {
2567		tcp_mark_head_lost(sk, 1);
2568	} else if (tcp_is_fack(tp)) {
2569		int lost = tp->fackets_out - tp->reordering;
2570		if (lost <= 0)
2571			lost = 1;
2572		tcp_mark_head_lost(sk, lost);
2573	} else {
2574		int sacked_upto = tp->sacked_out - tp->reordering;
2575		if (sacked_upto < fast_rexmit)
2576			sacked_upto = fast_rexmit;
2577		tcp_mark_head_lost(sk, sacked_upto);
2578	}
2579
2580	tcp_timeout_skbs(sk);
2581}
2582
2583/* CWND moderation, preventing bursts due to too big ACKs
2584 * in dubious situations.
2585 */
2586static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2587{
2588	tp->snd_cwnd = min(tp->snd_cwnd,
2589			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2590	tp->snd_cwnd_stamp = tcp_time_stamp;
2591}
2592
2593/* Lower bound on congestion window is slow start threshold
2594 * unless congestion avoidance choice decides to overide it.
2595 */
2596static inline u32 tcp_cwnd_min(const struct sock *sk)
2597{
2598	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2599
2600	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2601}
2602
2603/* Decrease cwnd each second ack. */
2604static void tcp_cwnd_down(struct sock *sk, int flag)
2605{
2606	struct tcp_sock *tp = tcp_sk(sk);
2607	int decr = tp->snd_cwnd_cnt + 1;
2608
2609	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2610	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2611		tp->snd_cwnd_cnt = decr & 1;
2612		decr >>= 1;
2613
2614		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2615			tp->snd_cwnd -= decr;
2616
2617		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2618		tp->snd_cwnd_stamp = tcp_time_stamp;
2619	}
2620}
2621
2622/* Nothing was retransmitted or returned timestamp is less
2623 * than timestamp of the first retransmission.
2624 */
2625static inline int tcp_packet_delayed(struct tcp_sock *tp)
2626{
2627	return !tp->retrans_stamp ||
2628		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2629		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2630}
2631
2632/* Undo procedures. */
2633
2634#if FASTRETRANS_DEBUG > 1
2635static void DBGUNDO(struct sock *sk, const char *msg)
2636{
2637	struct tcp_sock *tp = tcp_sk(sk);
2638	struct inet_sock *inet = inet_sk(sk);
2639
2640	if (sk->sk_family == AF_INET) {
2641		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2642		       msg,
2643		       &inet->inet_daddr, ntohs(inet->inet_dport),
2644		       tp->snd_cwnd, tcp_left_out(tp),
2645		       tp->snd_ssthresh, tp->prior_ssthresh,
2646		       tp->packets_out);
2647	}
2648#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2649	else if (sk->sk_family == AF_INET6) {
2650		struct ipv6_pinfo *np = inet6_sk(sk);
2651		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2652		       msg,
2653		       &np->daddr, ntohs(inet->inet_dport),
2654		       tp->snd_cwnd, tcp_left_out(tp),
2655		       tp->snd_ssthresh, tp->prior_ssthresh,
2656		       tp->packets_out);
2657	}
2658#endif
2659}
2660#else
2661#define DBGUNDO(x...) do { } while (0)
2662#endif
2663
2664static void tcp_undo_cwr(struct sock *sk, const int undo)
2665{
2666	struct tcp_sock *tp = tcp_sk(sk);
2667
2668	if (tp->prior_ssthresh) {
2669		const struct inet_connection_sock *icsk = inet_csk(sk);
2670
2671		if (icsk->icsk_ca_ops->undo_cwnd)
2672			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2673		else
2674			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2675
2676		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2677			tp->snd_ssthresh = tp->prior_ssthresh;
2678			TCP_ECN_withdraw_cwr(tp);
2679		}
2680	} else {
2681		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2682	}
2683	tcp_moderate_cwnd(tp);
2684	tp->snd_cwnd_stamp = tcp_time_stamp;
2685}
2686
2687static inline int tcp_may_undo(struct tcp_sock *tp)
2688{
2689	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2690}
2691
2692/* People celebrate: "We love our President!" */
2693static int tcp_try_undo_recovery(struct sock *sk)
2694{
2695	struct tcp_sock *tp = tcp_sk(sk);
2696
2697	if (tcp_may_undo(tp)) {
2698		int mib_idx;
2699
2700		/* Happy end! We did not retransmit anything
2701		 * or our original transmission succeeded.
2702		 */
2703		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2704		tcp_undo_cwr(sk, 1);
2705		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2706			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2707		else
2708			mib_idx = LINUX_MIB_TCPFULLUNDO;
2709
2710		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2711		tp->undo_marker = 0;
2712	}
2713	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2714		/* Hold old state until something *above* high_seq
2715		 * is ACKed. For Reno it is MUST to prevent false
2716		 * fast retransmits (RFC2582). SACK TCP is safe. */
2717		tcp_moderate_cwnd(tp);
2718		return 1;
2719	}
2720	tcp_set_ca_state(sk, TCP_CA_Open);
2721	return 0;
2722}
2723
2724/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2725static void tcp_try_undo_dsack(struct sock *sk)
2726{
2727	struct tcp_sock *tp = tcp_sk(sk);
2728
2729	if (tp->undo_marker && !tp->undo_retrans) {
2730		DBGUNDO(sk, "D-SACK");
2731		tcp_undo_cwr(sk, 1);
2732		tp->undo_marker = 0;
2733		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2734	}
2735}
2736
2737/* We can clear retrans_stamp when there are no retransmissions in the
2738 * window. It would seem that it is trivially available for us in
2739 * tp->retrans_out, however, that kind of assumptions doesn't consider
2740 * what will happen if errors occur when sending retransmission for the
2741 * second time. ...It could the that such segment has only
2742 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2743 * the head skb is enough except for some reneging corner cases that
2744 * are not worth the effort.
2745 *
2746 * Main reason for all this complexity is the fact that connection dying
2747 * time now depends on the validity of the retrans_stamp, in particular,
2748 * that successive retransmissions of a segment must not advance
2749 * retrans_stamp under any conditions.
2750 */
2751static int tcp_any_retrans_done(struct sock *sk)
2752{
2753	struct tcp_sock *tp = tcp_sk(sk);
2754	struct sk_buff *skb;
2755
2756	if (tp->retrans_out)
2757		return 1;
2758
2759	skb = tcp_write_queue_head(sk);
2760	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2761		return 1;
2762
2763	return 0;
2764}
2765
2766/* Undo during fast recovery after partial ACK. */
2767
2768static int tcp_try_undo_partial(struct sock *sk, int acked)
2769{
2770	struct tcp_sock *tp = tcp_sk(sk);
2771	/* Partial ACK arrived. Force Hoe's retransmit. */
2772	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2773
2774	if (tcp_may_undo(tp)) {
2775		/* Plain luck! Hole if filled with delayed
2776		 * packet, rather than with a retransmit.
2777		 */
2778		if (!tcp_any_retrans_done(sk))
2779			tp->retrans_stamp = 0;
2780
2781		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2782
2783		DBGUNDO(sk, "Hoe");
2784		tcp_undo_cwr(sk, 0);
2785		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2786
2787		/* So... Do not make Hoe's retransmit yet.
2788		 * If the first packet was delayed, the rest
2789		 * ones are most probably delayed as well.
2790		 */
2791		failed = 0;
2792	}
2793	return failed;
2794}
2795
2796/* Undo during loss recovery after partial ACK. */
2797static int tcp_try_undo_loss(struct sock *sk)
2798{
2799	struct tcp_sock *tp = tcp_sk(sk);
2800
2801	if (tcp_may_undo(tp)) {
2802		struct sk_buff *skb;
2803		tcp_for_write_queue(skb, sk) {
2804			if (skb == tcp_send_head(sk))
2805				break;
2806			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2807		}
2808
2809		tcp_clear_all_retrans_hints(tp);
2810
2811		DBGUNDO(sk, "partial loss");
2812		tp->lost_out = 0;
2813		tcp_undo_cwr(sk, 1);
2814		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2815		inet_csk(sk)->icsk_retransmits = 0;
2816		tp->undo_marker = 0;
2817		if (tcp_is_sack(tp))
2818			tcp_set_ca_state(sk, TCP_CA_Open);
2819		return 1;
2820	}
2821	return 0;
2822}
2823
2824static inline void tcp_complete_cwr(struct sock *sk)
2825{
2826	struct tcp_sock *tp = tcp_sk(sk);
2827	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2828	tp->snd_cwnd_stamp = tcp_time_stamp;
2829	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2830}
2831
2832static void tcp_try_keep_open(struct sock *sk)
2833{
2834	struct tcp_sock *tp = tcp_sk(sk);
2835	int state = TCP_CA_Open;
2836
2837	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2838		state = TCP_CA_Disorder;
2839
2840	if (inet_csk(sk)->icsk_ca_state != state) {
2841		tcp_set_ca_state(sk, state);
2842		tp->high_seq = tp->snd_nxt;
2843	}
2844}
2845
2846static void tcp_try_to_open(struct sock *sk, int flag)
2847{
2848	struct tcp_sock *tp = tcp_sk(sk);
2849
2850	tcp_verify_left_out(tp);
2851
2852	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2853		tp->retrans_stamp = 0;
2854
2855	if (flag & FLAG_ECE)
2856		tcp_enter_cwr(sk, 1);
2857
2858	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2859		tcp_try_keep_open(sk);
2860		tcp_moderate_cwnd(tp);
2861	} else {
2862		tcp_cwnd_down(sk, flag);
2863	}
2864}
2865
2866static void tcp_mtup_probe_failed(struct sock *sk)
2867{
2868	struct inet_connection_sock *icsk = inet_csk(sk);
2869
2870	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2871	icsk->icsk_mtup.probe_size = 0;
2872}
2873
2874static void tcp_mtup_probe_success(struct sock *sk)
2875{
2876	struct tcp_sock *tp = tcp_sk(sk);
2877	struct inet_connection_sock *icsk = inet_csk(sk);
2878
2879	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880	tp->snd_cwnd = tp->snd_cwnd *
2881		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2882		       icsk->icsk_mtup.probe_size;
2883	tp->snd_cwnd_cnt = 0;
2884	tp->snd_cwnd_stamp = tcp_time_stamp;
2885	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2886
2887	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2888	icsk->icsk_mtup.probe_size = 0;
2889	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2890}
2891
2892/* Do a simple retransmit without using the backoff mechanisms in
2893 * tcp_timer. This is used for path mtu discovery.
2894 * The socket is already locked here.
2895 */
2896void tcp_simple_retransmit(struct sock *sk)
2897{
2898	const struct inet_connection_sock *icsk = inet_csk(sk);
2899	struct tcp_sock *tp = tcp_sk(sk);
2900	struct sk_buff *skb;
2901	unsigned int mss = tcp_current_mss(sk);
2902	u32 prior_lost = tp->lost_out;
2903
2904	tcp_for_write_queue(skb, sk) {
2905		if (skb == tcp_send_head(sk))
2906			break;
2907		if (tcp_skb_seglen(skb) > mss &&
2908		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2909			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2910				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2911				tp->retrans_out -= tcp_skb_pcount(skb);
2912			}
2913			tcp_skb_mark_lost_uncond_verify(tp, skb);
2914		}
2915	}
2916
2917	tcp_clear_retrans_hints_partial(tp);
2918
2919	if (prior_lost == tp->lost_out)
2920		return;
2921
2922	if (tcp_is_reno(tp))
2923		tcp_limit_reno_sacked(tp);
2924
2925	tcp_verify_left_out(tp);
2926
2927	/* Don't muck with the congestion window here.
2928	 * Reason is that we do not increase amount of _data_
2929	 * in network, but units changed and effective
2930	 * cwnd/ssthresh really reduced now.
2931	 */
2932	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2933		tp->high_seq = tp->snd_nxt;
2934		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2935		tp->prior_ssthresh = 0;
2936		tp->undo_marker = 0;
2937		tcp_set_ca_state(sk, TCP_CA_Loss);
2938	}
2939	tcp_xmit_retransmit_queue(sk);
2940}
2941EXPORT_SYMBOL(tcp_simple_retransmit);
2942
2943/* Process an event, which can update packets-in-flight not trivially.
2944 * Main goal of this function is to calculate new estimate for left_out,
2945 * taking into account both packets sitting in receiver's buffer and
2946 * packets lost by network.
2947 *
2948 * Besides that it does CWND reduction, when packet loss is detected
2949 * and changes state of machine.
2950 *
2951 * It does _not_ decide what to send, it is made in function
2952 * tcp_xmit_retransmit_queue().
2953 */
2954static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2955{
2956	struct inet_connection_sock *icsk = inet_csk(sk);
2957	struct tcp_sock *tp = tcp_sk(sk);
2958	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2959	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2960				    (tcp_fackets_out(tp) > tp->reordering));
2961	int fast_rexmit = 0, mib_idx;
2962
2963	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2964		tp->sacked_out = 0;
2965	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2966		tp->fackets_out = 0;
2967
2968	/* Now state machine starts.
2969	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2970	if (flag & FLAG_ECE)
2971		tp->prior_ssthresh = 0;
2972
2973	/* B. In all the states check for reneging SACKs. */
2974	if (tcp_check_sack_reneging(sk, flag))
2975		return;
2976
2977	/* C. Process data loss notification, provided it is valid. */
2978	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2979	    before(tp->snd_una, tp->high_seq) &&
2980	    icsk->icsk_ca_state != TCP_CA_Open &&
2981	    tp->fackets_out > tp->reordering) {
2982		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2983		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2984	}
2985
2986	/* D. Check consistency of the current state. */
2987	tcp_verify_left_out(tp);
2988
2989	/* E. Check state exit conditions. State can be terminated
2990	 *    when high_seq is ACKed. */
2991	if (icsk->icsk_ca_state == TCP_CA_Open) {
2992		WARN_ON(tp->retrans_out != 0);
2993		tp->retrans_stamp = 0;
2994	} else if (!before(tp->snd_una, tp->high_seq)) {
2995		switch (icsk->icsk_ca_state) {
2996		case TCP_CA_Loss:
2997			icsk->icsk_retransmits = 0;
2998			if (tcp_try_undo_recovery(sk))
2999				return;
3000			break;
3001
3002		case TCP_CA_CWR:
3003			/* CWR is to be held something *above* high_seq
3004			 * is ACKed for CWR bit to reach receiver. */
3005			if (tp->snd_una != tp->high_seq) {
3006				tcp_complete_cwr(sk);
3007				tcp_set_ca_state(sk, TCP_CA_Open);
3008			}
3009			break;
3010
3011		case TCP_CA_Disorder:
3012			tcp_try_undo_dsack(sk);
3013			if (!tp->undo_marker ||
3014			    /* For SACK case do not Open to allow to undo
3015			     * catching for all duplicate ACKs. */
3016			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3017				tp->undo_marker = 0;
3018				tcp_set_ca_state(sk, TCP_CA_Open);
3019			}
3020			break;
3021
3022		case TCP_CA_Recovery:
3023			if (tcp_is_reno(tp))
3024				tcp_reset_reno_sack(tp);
3025			if (tcp_try_undo_recovery(sk))
3026				return;
3027			tcp_complete_cwr(sk);
3028			break;
3029		}
3030	}
3031
3032	/* F. Process state. */
3033	switch (icsk->icsk_ca_state) {
3034	case TCP_CA_Recovery:
3035		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3036			if (tcp_is_reno(tp) && is_dupack)
3037				tcp_add_reno_sack(sk);
3038		} else
3039			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3040		break;
3041	case TCP_CA_Loss:
3042		if (flag & FLAG_DATA_ACKED)
3043			icsk->icsk_retransmits = 0;
3044		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3045			tcp_reset_reno_sack(tp);
3046		if (!tcp_try_undo_loss(sk)) {
3047			tcp_moderate_cwnd(tp);
3048			tcp_xmit_retransmit_queue(sk);
3049			return;
3050		}
3051		if (icsk->icsk_ca_state != TCP_CA_Open)
3052			return;
3053		/* Loss is undone; fall through to processing in Open state. */
3054	default:
3055		if (tcp_is_reno(tp)) {
3056			if (flag & FLAG_SND_UNA_ADVANCED)
3057				tcp_reset_reno_sack(tp);
3058			if (is_dupack)
3059				tcp_add_reno_sack(sk);
3060		}
3061
3062		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3063			tcp_try_undo_dsack(sk);
3064
3065		if (!tcp_time_to_recover(sk)) {
3066			tcp_try_to_open(sk, flag);
3067			return;
3068		}
3069
3070		/* MTU probe failure: don't reduce cwnd */
3071		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3072		    icsk->icsk_mtup.probe_size &&
3073		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3074			tcp_mtup_probe_failed(sk);
3075			/* Restores the reduction we did in tcp_mtup_probe() */
3076			tp->snd_cwnd++;
3077			tcp_simple_retransmit(sk);
3078			return;
3079		}
3080
3081		/* Otherwise enter Recovery state */
3082
3083		if (tcp_is_reno(tp))
3084			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3085		else
3086			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3087
3088		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3089
3090		tp->high_seq = tp->snd_nxt;
3091		tp->prior_ssthresh = 0;
3092		tp->undo_marker = tp->snd_una;
3093		tp->undo_retrans = tp->retrans_out;
3094
3095		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3096			if (!(flag & FLAG_ECE))
3097				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3098			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3099			TCP_ECN_queue_cwr(tp);
3100		}
3101
3102		tp->bytes_acked = 0;
3103		tp->snd_cwnd_cnt = 0;
3104		tcp_set_ca_state(sk, TCP_CA_Recovery);
3105		fast_rexmit = 1;
3106	}
3107
3108	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3109		tcp_update_scoreboard(sk, fast_rexmit);
3110	tcp_cwnd_down(sk, flag);
3111	tcp_xmit_retransmit_queue(sk);
3112}
3113
3114static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3115{
3116	tcp_rtt_estimator(sk, seq_rtt);
3117	tcp_set_rto(sk);
3118	inet_csk(sk)->icsk_backoff = 0;
3119}
3120
3121/* Read draft-ietf-tcplw-high-performance before mucking
3122 * with this code. (Supersedes RFC1323)
3123 */
3124static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3125{
3126	/* RTTM Rule: A TSecr value received in a segment is used to
3127	 * update the averaged RTT measurement only if the segment
3128	 * acknowledges some new data, i.e., only if it advances the
3129	 * left edge of the send window.
3130	 *
3131	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3132	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3133	 *
3134	 * Changed: reset backoff as soon as we see the first valid sample.
3135	 * If we do not, we get strongly overestimated rto. With timestamps
3136	 * samples are accepted even from very old segments: f.e., when rtt=1
3137	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3138	 * answer arrives rto becomes 120 seconds! If at least one of segments
3139	 * in window is lost... Voila.	 			--ANK (010210)
3140	 */
3141	struct tcp_sock *tp = tcp_sk(sk);
3142
3143	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3144}
3145
3146static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3147{
3148	/* We don't have a timestamp. Can only use
3149	 * packets that are not retransmitted to determine
3150	 * rtt estimates. Also, we must not reset the
3151	 * backoff for rto until we get a non-retransmitted
3152	 * packet. This allows us to deal with a situation
3153	 * where the network delay has increased suddenly.
3154	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3155	 */
3156
3157	if (flag & FLAG_RETRANS_DATA_ACKED)
3158		return;
3159
3160	tcp_valid_rtt_meas(sk, seq_rtt);
3161}
3162
3163static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3164				      const s32 seq_rtt)
3165{
3166	const struct tcp_sock *tp = tcp_sk(sk);
3167	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3168	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3169		tcp_ack_saw_tstamp(sk, flag);
3170	else if (seq_rtt >= 0)
3171		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3172}
3173
3174static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3175{
3176	const struct inet_connection_sock *icsk = inet_csk(sk);
3177	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3178	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3179}
3180
3181/* Restart timer after forward progress on connection.
3182 * RFC2988 recommends to restart timer to now+rto.
3183 */
3184static void tcp_rearm_rto(struct sock *sk)
3185{
3186	struct tcp_sock *tp = tcp_sk(sk);
3187
3188	if (!tp->packets_out) {
3189		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3190	} else {
3191		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3192					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3193	}
3194}
3195
3196/* If we get here, the whole TSO packet has not been acked. */
3197static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3198{
3199	struct tcp_sock *tp = tcp_sk(sk);
3200	u32 packets_acked;
3201
3202	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3203
3204	packets_acked = tcp_skb_pcount(skb);
3205	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3206		return 0;
3207	packets_acked -= tcp_skb_pcount(skb);
3208
3209	if (packets_acked) {
3210		BUG_ON(tcp_skb_pcount(skb) == 0);
3211		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3212	}
3213
3214	return packets_acked;
3215}
3216
3217/* Remove acknowledged frames from the retransmission queue. If our packet
3218 * is before the ack sequence we can discard it as it's confirmed to have
3219 * arrived at the other end.
3220 */
3221static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3222			       u32 prior_snd_una)
3223{
3224	struct tcp_sock *tp = tcp_sk(sk);
3225	const struct inet_connection_sock *icsk = inet_csk(sk);
3226	struct sk_buff *skb;
3227	u32 now = tcp_time_stamp;
3228	int fully_acked = 1;
3229	int flag = 0;
3230	u32 pkts_acked = 0;
3231	u32 reord = tp->packets_out;
3232	u32 prior_sacked = tp->sacked_out;
3233	s32 seq_rtt = -1;
3234	s32 ca_seq_rtt = -1;
3235	ktime_t last_ackt = net_invalid_timestamp();
3236
3237	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3238		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3239		u32 acked_pcount;
3240		u8 sacked = scb->sacked;
3241
3242		/* Determine how many packets and what bytes were acked, tso and else */
3243		if (after(scb->end_seq, tp->snd_una)) {
3244			if (tcp_skb_pcount(skb) == 1 ||
3245			    !after(tp->snd_una, scb->seq))
3246				break;
3247
3248			acked_pcount = tcp_tso_acked(sk, skb);
3249			if (!acked_pcount)
3250				break;
3251
3252			fully_acked = 0;
3253		} else {
3254			acked_pcount = tcp_skb_pcount(skb);
3255		}
3256
3257		if (sacked & TCPCB_RETRANS) {
3258			if (sacked & TCPCB_SACKED_RETRANS)
3259				tp->retrans_out -= acked_pcount;
3260			flag |= FLAG_RETRANS_DATA_ACKED;
3261			ca_seq_rtt = -1;
3262			seq_rtt = -1;
3263			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3264				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3265		} else {
3266			ca_seq_rtt = now - scb->when;
3267			last_ackt = skb->tstamp;
3268			if (seq_rtt < 0) {
3269				seq_rtt = ca_seq_rtt;
3270			}
3271			if (!(sacked & TCPCB_SACKED_ACKED))
3272				reord = min(pkts_acked, reord);
3273		}
3274
3275		if (sacked & TCPCB_SACKED_ACKED)
3276			tp->sacked_out -= acked_pcount;
3277		if (sacked & TCPCB_LOST)
3278			tp->lost_out -= acked_pcount;
3279
3280		tp->packets_out -= acked_pcount;
3281		pkts_acked += acked_pcount;
3282
3283		/* Initial outgoing SYN's get put onto the write_queue
3284		 * just like anything else we transmit.  It is not
3285		 * true data, and if we misinform our callers that
3286		 * this ACK acks real data, we will erroneously exit
3287		 * connection startup slow start one packet too
3288		 * quickly.  This is severely frowned upon behavior.
3289		 */
3290		if (!(scb->flags & TCPHDR_SYN)) {
3291			flag |= FLAG_DATA_ACKED;
3292		} else {
3293			flag |= FLAG_SYN_ACKED;
3294			tp->retrans_stamp = 0;
3295		}
3296
3297		if (!fully_acked)
3298			break;
3299
3300		tcp_unlink_write_queue(skb, sk);
3301		sk_wmem_free_skb(sk, skb);
3302		tp->scoreboard_skb_hint = NULL;
3303		if (skb == tp->retransmit_skb_hint)
3304			tp->retransmit_skb_hint = NULL;
3305		if (skb == tp->lost_skb_hint)
3306			tp->lost_skb_hint = NULL;
3307	}
3308
3309	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3310		tp->snd_up = tp->snd_una;
3311
3312	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3313		flag |= FLAG_SACK_RENEGING;
3314
3315	if (flag & FLAG_ACKED) {
3316		const struct tcp_congestion_ops *ca_ops
3317			= inet_csk(sk)->icsk_ca_ops;
3318
3319		if (unlikely(icsk->icsk_mtup.probe_size &&
3320			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3321			tcp_mtup_probe_success(sk);
3322		}
3323
3324		tcp_ack_update_rtt(sk, flag, seq_rtt);
3325		tcp_rearm_rto(sk);
3326
3327		if (tcp_is_reno(tp)) {
3328			tcp_remove_reno_sacks(sk, pkts_acked);
3329		} else {
3330			int delta;
3331
3332			/* Non-retransmitted hole got filled? That's reordering */
3333			if (reord < prior_fackets)
3334				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3335
3336			delta = tcp_is_fack(tp) ? pkts_acked :
3337						  prior_sacked - tp->sacked_out;
3338			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3339		}
3340
3341		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3342
3343		if (ca_ops->pkts_acked) {
3344			s32 rtt_us = -1;
3345
3346			/* Is the ACK triggering packet unambiguous? */
3347			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3348				/* High resolution needed and available? */
3349				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3350				    !ktime_equal(last_ackt,
3351						 net_invalid_timestamp()))
3352					rtt_us = ktime_us_delta(ktime_get_real(),
3353								last_ackt);
3354				else if (ca_seq_rtt > 0)
3355					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3356			}
3357
3358			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3359		}
3360	}
3361
3362#if FASTRETRANS_DEBUG > 0
3363	WARN_ON((int)tp->sacked_out < 0);
3364	WARN_ON((int)tp->lost_out < 0);
3365	WARN_ON((int)tp->retrans_out < 0);
3366	if (!tp->packets_out && tcp_is_sack(tp)) {
3367		icsk = inet_csk(sk);
3368		if (tp->lost_out) {
3369			printk(KERN_DEBUG "Leak l=%u %d\n",
3370			       tp->lost_out, icsk->icsk_ca_state);
3371			tp->lost_out = 0;
3372		}
3373		if (tp->sacked_out) {
3374			printk(KERN_DEBUG "Leak s=%u %d\n",
3375			       tp->sacked_out, icsk->icsk_ca_state);
3376			tp->sacked_out = 0;
3377		}
3378		if (tp->retrans_out) {
3379			printk(KERN_DEBUG "Leak r=%u %d\n",
3380			       tp->retrans_out, icsk->icsk_ca_state);
3381			tp->retrans_out = 0;
3382		}
3383	}
3384#endif
3385	return flag;
3386}
3387
3388static void tcp_ack_probe(struct sock *sk)
3389{
3390	const struct tcp_sock *tp = tcp_sk(sk);
3391	struct inet_connection_sock *icsk = inet_csk(sk);
3392
3393	/* Was it a usable window open? */
3394
3395	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3396		icsk->icsk_backoff = 0;
3397		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3398		/* Socket must be waked up by subsequent tcp_data_snd_check().
3399		 * This function is not for random using!
3400		 */
3401	} else {
3402		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3403					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3404					  TCP_RTO_MAX);
3405	}
3406}
3407
3408static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3409{
3410	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3411		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3412}
3413
3414static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3415{
3416	const struct tcp_sock *tp = tcp_sk(sk);
3417	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3418		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3419}
3420
3421/* Check that window update is acceptable.
3422 * The function assumes that snd_una<=ack<=snd_next.
3423 */
3424static inline int tcp_may_update_window(const struct tcp_sock *tp,
3425					const u32 ack, const u32 ack_seq,
3426					const u32 nwin)
3427{
3428	return (after(ack, tp->snd_una) ||
3429		after(ack_seq, tp->snd_wl1) ||
3430		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3431}
3432
3433/* Update our send window.
3434 *
3435 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3436 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3437 */
3438static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3439				 u32 ack_seq)
3440{
3441	struct tcp_sock *tp = tcp_sk(sk);
3442	int flag = 0;
3443	u32 nwin = ntohs(tcp_hdr(skb)->window);
3444
3445	if (likely(!tcp_hdr(skb)->syn))
3446		nwin <<= tp->rx_opt.snd_wscale;
3447
3448	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3449		flag |= FLAG_WIN_UPDATE;
3450		tcp_update_wl(tp, ack_seq);
3451
3452		if (tp->snd_wnd != nwin) {
3453			tp->snd_wnd = nwin;
3454
3455			/* Note, it is the only place, where
3456			 * fast path is recovered for sending TCP.
3457			 */
3458			tp->pred_flags = 0;
3459			tcp_fast_path_check(sk);
3460
3461			if (nwin > tp->max_window) {
3462				tp->max_window = nwin;
3463				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3464			}
3465		}
3466	}
3467
3468	tp->snd_una = ack;
3469
3470	return flag;
3471}
3472
3473/* A very conservative spurious RTO response algorithm: reduce cwnd and
3474 * continue in congestion avoidance.
3475 */
3476static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3477{
3478	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3479	tp->snd_cwnd_cnt = 0;
3480	tp->bytes_acked = 0;
3481	TCP_ECN_queue_cwr(tp);
3482	tcp_moderate_cwnd(tp);
3483}
3484
3485/* A conservative spurious RTO response algorithm: reduce cwnd using
3486 * rate halving and continue in congestion avoidance.
3487 */
3488static void tcp_ratehalving_spur_to_response(struct sock *sk)
3489{
3490	tcp_enter_cwr(sk, 0);
3491}
3492
3493static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3494{
3495	if (flag & FLAG_ECE)
3496		tcp_ratehalving_spur_to_response(sk);
3497	else
3498		tcp_undo_cwr(sk, 1);
3499}
3500
3501/* F-RTO spurious RTO detection algorithm (RFC4138)
3502 *
3503 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3504 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3505 * window (but not to or beyond highest sequence sent before RTO):
3506 *   On First ACK,  send two new segments out.
3507 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3508 *                  algorithm is not part of the F-RTO detection algorithm
3509 *                  given in RFC4138 but can be selected separately).
3510 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3511 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3512 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3513 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3514 *
3515 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3516 * original window even after we transmit two new data segments.
3517 *
3518 * SACK version:
3519 *   on first step, wait until first cumulative ACK arrives, then move to
3520 *   the second step. In second step, the next ACK decides.
3521 *
3522 * F-RTO is implemented (mainly) in four functions:
3523 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3524 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3525 *     called when tcp_use_frto() showed green light
3526 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3527 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3528 *     to prove that the RTO is indeed spurious. It transfers the control
3529 *     from F-RTO to the conventional RTO recovery
3530 */
3531static int tcp_process_frto(struct sock *sk, int flag)
3532{
3533	struct tcp_sock *tp = tcp_sk(sk);
3534
3535	tcp_verify_left_out(tp);
3536
3537	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3538	if (flag & FLAG_DATA_ACKED)
3539		inet_csk(sk)->icsk_retransmits = 0;
3540
3541	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3542	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3543		tp->undo_marker = 0;
3544
3545	if (!before(tp->snd_una, tp->frto_highmark)) {
3546		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3547		return 1;
3548	}
3549
3550	if (!tcp_is_sackfrto(tp)) {
3551		/* RFC4138 shortcoming in step 2; should also have case c):
3552		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3553		 * data, winupdate
3554		 */
3555		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3556			return 1;
3557
3558		if (!(flag & FLAG_DATA_ACKED)) {
3559			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3560					    flag);
3561			return 1;
3562		}
3563	} else {
3564		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3565			/* Prevent sending of new data. */
3566			tp->snd_cwnd = min(tp->snd_cwnd,
3567					   tcp_packets_in_flight(tp));
3568			return 1;
3569		}
3570
3571		if ((tp->frto_counter >= 2) &&
3572		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3573		     ((flag & FLAG_DATA_SACKED) &&
3574		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3575			/* RFC4138 shortcoming (see comment above) */
3576			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3577			    (flag & FLAG_NOT_DUP))
3578				return 1;
3579
3580			tcp_enter_frto_loss(sk, 3, flag);
3581			return 1;
3582		}
3583	}
3584
3585	if (tp->frto_counter == 1) {
3586		/* tcp_may_send_now needs to see updated state */
3587		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3588		tp->frto_counter = 2;
3589
3590		if (!tcp_may_send_now(sk))
3591			tcp_enter_frto_loss(sk, 2, flag);
3592
3593		return 1;
3594	} else {
3595		switch (sysctl_tcp_frto_response) {
3596		case 2:
3597			tcp_undo_spur_to_response(sk, flag);
3598			break;
3599		case 1:
3600			tcp_conservative_spur_to_response(tp);
3601			break;
3602		default:
3603			tcp_ratehalving_spur_to_response(sk);
3604			break;
3605		}
3606		tp->frto_counter = 0;
3607		tp->undo_marker = 0;
3608		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3609	}
3610	return 0;
3611}
3612
3613/* This routine deals with incoming acks, but not outgoing ones. */
3614static int BCMFASTPATH_HOST tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3615{
3616	struct inet_connection_sock *icsk = inet_csk(sk);
3617	struct tcp_sock *tp = tcp_sk(sk);
3618	u32 prior_snd_una = tp->snd_una;
3619	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3620	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3621	u32 prior_in_flight;
3622	u32 prior_fackets;
3623	int prior_packets;
3624	int frto_cwnd = 0;
3625
3626	/* If the ack is older than previous acks
3627	 * then we can probably ignore it.
3628	 */
3629	if (before(ack, prior_snd_una))
3630		goto old_ack;
3631
3632	/* If the ack includes data we haven't sent yet, discard
3633	 * this segment (RFC793 Section 3.9).
3634	 */
3635	if (after(ack, tp->snd_nxt))
3636		goto invalid_ack;
3637
3638	if (after(ack, prior_snd_una))
3639		flag |= FLAG_SND_UNA_ADVANCED;
3640
3641	if (sysctl_tcp_abc) {
3642		if (icsk->icsk_ca_state < TCP_CA_CWR)
3643			tp->bytes_acked += ack - prior_snd_una;
3644		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3645			/* we assume just one segment left network */
3646			tp->bytes_acked += min(ack - prior_snd_una,
3647					       tp->mss_cache);
3648	}
3649
3650	prior_fackets = tp->fackets_out;
3651	prior_in_flight = tcp_packets_in_flight(tp);
3652
3653	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3654		/* Window is constant, pure forward advance.
3655		 * No more checks are required.
3656		 * Note, we use the fact that SND.UNA>=SND.WL2.
3657		 */
3658		tcp_update_wl(tp, ack_seq);
3659		tp->snd_una = ack;
3660		flag |= FLAG_WIN_UPDATE;
3661
3662		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3663
3664		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3665	} else {
3666		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3667			flag |= FLAG_DATA;
3668		else
3669			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3670
3671		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3672
3673		if (TCP_SKB_CB(skb)->sacked)
3674			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3675
3676		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3677			flag |= FLAG_ECE;
3678
3679		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3680	}
3681
3682	/* We passed data and got it acked, remove any soft error
3683	 * log. Something worked...
3684	 */
3685	sk->sk_err_soft = 0;
3686	icsk->icsk_probes_out = 0;
3687	tp->rcv_tstamp = tcp_time_stamp;
3688	prior_packets = tp->packets_out;
3689	if (!prior_packets)
3690		goto no_queue;
3691
3692	/* See if we can take anything off of the retransmit queue. */
3693	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3694
3695	if (tp->frto_counter)
3696		frto_cwnd = tcp_process_frto(sk, flag);
3697	/* Guarantee sacktag reordering detection against wrap-arounds */
3698	if (before(tp->frto_highmark, tp->snd_una))
3699		tp->frto_highmark = 0;
3700
3701	if (tcp_ack_is_dubious(sk, flag)) {
3702		/* Advance CWND, if state allows this. */
3703		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3704		    tcp_may_raise_cwnd(sk, flag))
3705			tcp_cong_avoid(sk, ack, prior_in_flight);
3706		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3707				      flag);
3708	} else {
3709		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3710			tcp_cong_avoid(sk, ack, prior_in_flight);
3711	}
3712
3713	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3714		dst_confirm(__sk_dst_get(sk));
3715
3716	return 1;
3717
3718no_queue:
3719	/* If this ack opens up a zero window, clear backoff.  It was
3720	 * being used to time the probes, and is probably far higher than
3721	 * it needs to be for normal retransmission.
3722	 */
3723	if (tcp_send_head(sk))
3724		tcp_ack_probe(sk);
3725	return 1;
3726
3727invalid_ack:
3728	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3729	return -1;
3730
3731old_ack:
3732	if (TCP_SKB_CB(skb)->sacked) {
3733		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3734		if (icsk->icsk_ca_state == TCP_CA_Open)
3735			tcp_try_keep_open(sk);
3736	}
3737
3738	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3739	return 0;
3740}
3741
3742/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3743 * But, this can also be called on packets in the established flow when
3744 * the fast version below fails.
3745 */
3746void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3747		       u8 **hvpp, int estab)
3748{
3749	unsigned char *ptr;
3750	struct tcphdr *th = tcp_hdr(skb);
3751	int length = (th->doff * 4) - sizeof(struct tcphdr);
3752
3753	ptr = (unsigned char *)(th + 1);
3754	opt_rx->saw_tstamp = 0;
3755
3756	while (length > 0) {
3757		int opcode = *ptr++;
3758		int opsize;
3759
3760		switch (opcode) {
3761		case TCPOPT_EOL:
3762			return;
3763		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3764			length--;
3765			continue;
3766		default:
3767			opsize = *ptr++;
3768			if (opsize < 2) /* "silly options" */
3769				return;
3770			if (opsize > length)
3771				return;	/* don't parse partial options */
3772			switch (opcode) {
3773			case TCPOPT_MSS:
3774				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775					u16 in_mss = get_unaligned_be16(ptr);
3776					if (in_mss) {
3777						if (opt_rx->user_mss &&
3778						    opt_rx->user_mss < in_mss)
3779							in_mss = opt_rx->user_mss;
3780						opt_rx->mss_clamp = in_mss;
3781					}
3782				}
3783				break;
3784			case TCPOPT_WINDOW:
3785				if (opsize == TCPOLEN_WINDOW && th->syn &&
3786				    !estab && sysctl_tcp_window_scaling) {
3787					__u8 snd_wscale = *(__u8 *)ptr;
3788					opt_rx->wscale_ok = 1;
3789					if (snd_wscale > 14) {
3790						if (net_ratelimit())
3791							printk(KERN_INFO "tcp_parse_options: Illegal window "
3792							       "scaling value %d >14 received.\n",
3793							       snd_wscale);
3794						snd_wscale = 14;
3795					}
3796					opt_rx->snd_wscale = snd_wscale;
3797				}
3798				break;
3799			case TCPOPT_TIMESTAMP:
3800				if ((opsize == TCPOLEN_TIMESTAMP) &&
3801				    ((estab && opt_rx->tstamp_ok) ||
3802				     (!estab && sysctl_tcp_timestamps))) {
3803					opt_rx->saw_tstamp = 1;
3804					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3805					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3806				}
3807				break;
3808			case TCPOPT_SACK_PERM:
3809				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3810				    !estab && sysctl_tcp_sack) {
3811					opt_rx->sack_ok = 1;
3812					tcp_sack_reset(opt_rx);
3813				}
3814				break;
3815
3816			case TCPOPT_SACK:
3817				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3818				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3819				   opt_rx->sack_ok) {
3820					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3821				}
3822				break;
3823#ifdef CONFIG_TCP_MD5SIG
3824			case TCPOPT_MD5SIG:
3825				/*
3826				 * The MD5 Hash has already been
3827				 * checked (see tcp_v{4,6}_do_rcv()).
3828				 */
3829				break;
3830#endif
3831			case TCPOPT_COOKIE:
3832				/* This option is variable length.
3833				 */
3834				switch (opsize) {
3835				case TCPOLEN_COOKIE_BASE:
3836					/* not yet implemented */
3837					break;
3838				case TCPOLEN_COOKIE_PAIR:
3839					/* not yet implemented */
3840					break;
3841				case TCPOLEN_COOKIE_MIN+0:
3842				case TCPOLEN_COOKIE_MIN+2:
3843				case TCPOLEN_COOKIE_MIN+4:
3844				case TCPOLEN_COOKIE_MIN+6:
3845				case TCPOLEN_COOKIE_MAX:
3846					/* 16-bit multiple */
3847					opt_rx->cookie_plus = opsize;
3848					*hvpp = ptr;
3849					break;
3850				default:
3851					/* ignore option */
3852					break;
3853				}
3854				break;
3855			}
3856
3857			ptr += opsize-2;
3858			length -= opsize;
3859		}
3860	}
3861}
3862EXPORT_SYMBOL(tcp_parse_options);
3863
3864static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3865{
3866	__be32 *ptr = (__be32 *)(th + 1);
3867
3868	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3869			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3870		tp->rx_opt.saw_tstamp = 1;
3871		++ptr;
3872		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3873		++ptr;
3874		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3875		return 1;
3876	}
3877	return 0;
3878}
3879
3880/* Fast parse options. This hopes to only see timestamps.
3881 * If it is wrong it falls back on tcp_parse_options().
3882 */
3883static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3884				  struct tcp_sock *tp, u8 **hvpp)
3885{
3886	/* In the spirit of fast parsing, compare doff directly to constant
3887	 * values.  Because equality is used, short doff can be ignored here.
3888	 */
3889	if (th->doff == (sizeof(*th) / 4)) {
3890		tp->rx_opt.saw_tstamp = 0;
3891		return 0;
3892	} else if (tp->rx_opt.tstamp_ok &&
3893		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3894		if (tcp_parse_aligned_timestamp(tp, th))
3895			return 1;
3896	}
3897	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3898	return 1;
3899}
3900
3901#ifdef CONFIG_TCP_MD5SIG
3902/*
3903 * Parse MD5 Signature option
3904 */
3905u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3906{
3907	int length = (th->doff << 2) - sizeof (*th);
3908	u8 *ptr = (u8*)(th + 1);
3909
3910	/* If the TCP option is too short, we can short cut */
3911	if (length < TCPOLEN_MD5SIG)
3912		return NULL;
3913
3914	while (length > 0) {
3915		int opcode = *ptr++;
3916		int opsize;
3917
3918		switch(opcode) {
3919		case TCPOPT_EOL:
3920			return NULL;
3921		case TCPOPT_NOP:
3922			length--;
3923			continue;
3924		default:
3925			opsize = *ptr++;
3926			if (opsize < 2 || opsize > length)
3927				return NULL;
3928			if (opcode == TCPOPT_MD5SIG)
3929				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3930		}
3931		ptr += opsize - 2;
3932		length -= opsize;
3933	}
3934	return NULL;
3935}
3936EXPORT_SYMBOL(tcp_parse_md5sig_option);
3937#endif
3938
3939static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3940{
3941	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3942	tp->rx_opt.ts_recent_stamp = get_seconds();
3943}
3944
3945static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3946{
3947	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3948
3949		if (tcp_paws_check(&tp->rx_opt, 0))
3950			tcp_store_ts_recent(tp);
3951	}
3952}
3953
3954/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3955 *
3956 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3957 * it can pass through stack. So, the following predicate verifies that
3958 * this segment is not used for anything but congestion avoidance or
3959 * fast retransmit. Moreover, we even are able to eliminate most of such
3960 * second order effects, if we apply some small "replay" window (~RTO)
3961 * to timestamp space.
3962 *
3963 * All these measures still do not guarantee that we reject wrapped ACKs
3964 * on networks with high bandwidth, when sequence space is recycled fastly,
3965 * but it guarantees that such events will be very rare and do not affect
3966 * connection seriously. This doesn't look nice, but alas, PAWS is really
3967 * buggy extension.
3968 *
3969 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3970 * states that events when retransmit arrives after original data are rare.
3971 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3972 * the biggest problem on large power networks even with minor reordering.
3973 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3974 * up to bandwidth of 18Gigabit/sec. 8) ]
3975 */
3976
3977static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3978{
3979	struct tcp_sock *tp = tcp_sk(sk);
3980	struct tcphdr *th = tcp_hdr(skb);
3981	u32 seq = TCP_SKB_CB(skb)->seq;
3982	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3983
3984	return (/* 1. Pure ACK with correct sequence number. */
3985		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3986
3987		/* 2. ... and duplicate ACK. */
3988		ack == tp->snd_una &&
3989
3990		/* 3. ... and does not update window. */
3991		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3992
3993		/* 4. ... and sits in replay window. */
3994		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3995}
3996
3997static inline int tcp_paws_discard(const struct sock *sk,
3998				   const struct sk_buff *skb)
3999{
4000	const struct tcp_sock *tp = tcp_sk(sk);
4001
4002	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4003	       !tcp_disordered_ack(sk, skb);
4004}
4005
4006/* Check segment sequence number for validity.
4007 *
4008 * Segment controls are considered valid, if the segment
4009 * fits to the window after truncation to the window. Acceptability
4010 * of data (and SYN, FIN, of course) is checked separately.
4011 * See tcp_data_queue(), for example.
4012 *
4013 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4014 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4015 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4016 * (borrowed from freebsd)
4017 */
4018
4019static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4020{
4021	return	!before(end_seq, tp->rcv_wup) &&
4022		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4023}
4024
4025/* When we get a reset we do this. */
4026static void tcp_reset(struct sock *sk)
4027{
4028	/* We want the right error as BSD sees it (and indeed as we do). */
4029	switch (sk->sk_state) {
4030	case TCP_SYN_SENT:
4031		sk->sk_err = ECONNREFUSED;
4032		break;
4033	case TCP_CLOSE_WAIT:
4034		sk->sk_err = EPIPE;
4035		break;
4036	case TCP_CLOSE:
4037		return;
4038	default:
4039		sk->sk_err = ECONNRESET;
4040	}
4041	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4042	smp_wmb();
4043
4044	if (!sock_flag(sk, SOCK_DEAD))
4045		sk->sk_error_report(sk);
4046
4047	tcp_done(sk);
4048}
4049
4050/*
4051 * 	Process the FIN bit. This now behaves as it is supposed to work
4052 *	and the FIN takes effect when it is validly part of sequence
4053 *	space. Not before when we get holes.
4054 *
4055 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4056 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4057 *	TIME-WAIT)
4058 *
4059 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4060 *	close and we go into CLOSING (and later onto TIME-WAIT)
4061 *
4062 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4063 */
4064static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4065{
4066	struct tcp_sock *tp = tcp_sk(sk);
4067
4068	inet_csk_schedule_ack(sk);
4069
4070	sk->sk_shutdown |= RCV_SHUTDOWN;
4071	sock_set_flag(sk, SOCK_DONE);
4072
4073	switch (sk->sk_state) {
4074	case TCP_SYN_RECV:
4075	case TCP_ESTABLISHED:
4076		/* Move to CLOSE_WAIT */
4077		tcp_set_state(sk, TCP_CLOSE_WAIT);
4078		inet_csk(sk)->icsk_ack.pingpong = 1;
4079		break;
4080
4081	case TCP_CLOSE_WAIT:
4082	case TCP_CLOSING:
4083		/* Received a retransmission of the FIN, do
4084		 * nothing.
4085		 */
4086		break;
4087	case TCP_LAST_ACK:
4088		/* RFC793: Remain in the LAST-ACK state. */
4089		break;
4090
4091	case TCP_FIN_WAIT1:
4092		/* This case occurs when a simultaneous close
4093		 * happens, we must ack the received FIN and
4094		 * enter the CLOSING state.
4095		 */
4096		tcp_send_ack(sk);
4097		tcp_set_state(sk, TCP_CLOSING);
4098		break;
4099	case TCP_FIN_WAIT2:
4100		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4101		tcp_send_ack(sk);
4102		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4103		break;
4104	default:
4105		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4106		 * cases we should never reach this piece of code.
4107		 */
4108		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4109		       __func__, sk->sk_state);
4110		break;
4111	}
4112
4113	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4114	 * Probably, we should reset in this case. For now drop them.
4115	 */
4116	__skb_queue_purge(&tp->out_of_order_queue);
4117	if (tcp_is_sack(tp))
4118		tcp_sack_reset(&tp->rx_opt);
4119	sk_mem_reclaim(sk);
4120
4121	if (!sock_flag(sk, SOCK_DEAD)) {
4122		sk->sk_state_change(sk);
4123
4124		/* Do not send POLL_HUP for half duplex close. */
4125		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4126		    sk->sk_state == TCP_CLOSE)
4127			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4128		else
4129			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4130	}
4131}
4132
4133static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4134				  u32 end_seq)
4135{
4136	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4137		if (before(seq, sp->start_seq))
4138			sp->start_seq = seq;
4139		if (after(end_seq, sp->end_seq))
4140			sp->end_seq = end_seq;
4141		return 1;
4142	}
4143	return 0;
4144}
4145
4146static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4147{
4148	struct tcp_sock *tp = tcp_sk(sk);
4149
4150	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4151		int mib_idx;
4152
4153		if (before(seq, tp->rcv_nxt))
4154			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4155		else
4156			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4157
4158		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4159
4160		tp->rx_opt.dsack = 1;
4161		tp->duplicate_sack[0].start_seq = seq;
4162		tp->duplicate_sack[0].end_seq = end_seq;
4163	}
4164}
4165
4166static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4167{
4168	struct tcp_sock *tp = tcp_sk(sk);
4169
4170	if (!tp->rx_opt.dsack)
4171		tcp_dsack_set(sk, seq, end_seq);
4172	else
4173		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4174}
4175
4176static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4177{
4178	struct tcp_sock *tp = tcp_sk(sk);
4179
4180	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4181	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4182		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4183		tcp_enter_quickack_mode(sk);
4184
4185		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4186			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4187
4188			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4189				end_seq = tp->rcv_nxt;
4190			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4191		}
4192	}
4193
4194	tcp_send_ack(sk);
4195}
4196
4197/* These routines update the SACK block as out-of-order packets arrive or
4198 * in-order packets close up the sequence space.
4199 */
4200static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4201{
4202	int this_sack;
4203	struct tcp_sack_block *sp = &tp->selective_acks[0];
4204	struct tcp_sack_block *swalk = sp + 1;
4205
4206	/* See if the recent change to the first SACK eats into
4207	 * or hits the sequence space of other SACK blocks, if so coalesce.
4208	 */
4209	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4210		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4211			int i;
4212
4213			/* Zap SWALK, by moving every further SACK up by one slot.
4214			 * Decrease num_sacks.
4215			 */
4216			tp->rx_opt.num_sacks--;
4217			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4218				sp[i] = sp[i + 1];
4219			continue;
4220		}
4221		this_sack++, swalk++;
4222	}
4223}
4224
4225static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4226{
4227	struct tcp_sock *tp = tcp_sk(sk);
4228	struct tcp_sack_block *sp = &tp->selective_acks[0];
4229	int cur_sacks = tp->rx_opt.num_sacks;
4230	int this_sack;
4231
4232	if (!cur_sacks)
4233		goto new_sack;
4234
4235	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4236		if (tcp_sack_extend(sp, seq, end_seq)) {
4237			/* Rotate this_sack to the first one. */
4238			for (; this_sack > 0; this_sack--, sp--)
4239				swap(*sp, *(sp - 1));
4240			if (cur_sacks > 1)
4241				tcp_sack_maybe_coalesce(tp);
4242			return;
4243		}
4244	}
4245
4246	/* Could not find an adjacent existing SACK, build a new one,
4247	 * put it at the front, and shift everyone else down.  We
4248	 * always know there is at least one SACK present already here.
4249	 *
4250	 * If the sack array is full, forget about the last one.
4251	 */
4252	if (this_sack >= TCP_NUM_SACKS) {
4253		this_sack--;
4254		tp->rx_opt.num_sacks--;
4255		sp--;
4256	}
4257	for (; this_sack > 0; this_sack--, sp--)
4258		*sp = *(sp - 1);
4259
4260new_sack:
4261	/* Build the new head SACK, and we're done. */
4262	sp->start_seq = seq;
4263	sp->end_seq = end_seq;
4264	tp->rx_opt.num_sacks++;
4265}
4266
4267/* RCV.NXT advances, some SACKs should be eaten. */
4268
4269static void tcp_sack_remove(struct tcp_sock *tp)
4270{
4271	struct tcp_sack_block *sp = &tp->selective_acks[0];
4272	int num_sacks = tp->rx_opt.num_sacks;
4273	int this_sack;
4274
4275	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4276	if (skb_queue_empty(&tp->out_of_order_queue)) {
4277		tp->rx_opt.num_sacks = 0;
4278		return;
4279	}
4280
4281	for (this_sack = 0; this_sack < num_sacks;) {
4282		/* Check if the start of the sack is covered by RCV.NXT. */
4283		if (!before(tp->rcv_nxt, sp->start_seq)) {
4284			int i;
4285
4286			/* RCV.NXT must cover all the block! */
4287			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4288
4289			/* Zap this SACK, by moving forward any other SACKS. */
4290			for (i=this_sack+1; i < num_sacks; i++)
4291				tp->selective_acks[i-1] = tp->selective_acks[i];
4292			num_sacks--;
4293			continue;
4294		}
4295		this_sack++;
4296		sp++;
4297	}
4298	tp->rx_opt.num_sacks = num_sacks;
4299}
4300
4301/* This one checks to see if we can put data from the
4302 * out_of_order queue into the receive_queue.
4303 */
4304static void tcp_ofo_queue(struct sock *sk)
4305{
4306	struct tcp_sock *tp = tcp_sk(sk);
4307	__u32 dsack_high = tp->rcv_nxt;
4308	struct sk_buff *skb;
4309
4310	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4311		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4312			break;
4313
4314		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4315			__u32 dsack = dsack_high;
4316			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4317				dsack_high = TCP_SKB_CB(skb)->end_seq;
4318			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4319		}
4320
4321		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4322			SOCK_DEBUG(sk, "ofo packet was already received\n");
4323			__skb_unlink(skb, &tp->out_of_order_queue);
4324			__kfree_skb(skb);
4325			continue;
4326		}
4327		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4328			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4329			   TCP_SKB_CB(skb)->end_seq);
4330
4331		__skb_unlink(skb, &tp->out_of_order_queue);
4332		__skb_queue_tail(&sk->sk_receive_queue, skb);
4333		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4334		if (tcp_hdr(skb)->fin)
4335			tcp_fin(skb, sk, tcp_hdr(skb));
4336	}
4337}
4338
4339static int tcp_prune_ofo_queue(struct sock *sk);
4340static int tcp_prune_queue(struct sock *sk);
4341
4342static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4343{
4344	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4345	    !sk_rmem_schedule(sk, size)) {
4346
4347		if (tcp_prune_queue(sk) < 0)
4348			return -1;
4349
4350		if (!sk_rmem_schedule(sk, size)) {
4351			if (!tcp_prune_ofo_queue(sk))
4352				return -1;
4353
4354			if (!sk_rmem_schedule(sk, size))
4355				return -1;
4356		}
4357	}
4358	return 0;
4359}
4360
4361static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4362{
4363	struct tcphdr *th = tcp_hdr(skb);
4364	struct tcp_sock *tp = tcp_sk(sk);
4365	int eaten = -1;
4366
4367	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4368		goto drop;
4369
4370	skb_dst_drop(skb);
4371	__skb_pull(skb, th->doff * 4);
4372
4373	TCP_ECN_accept_cwr(tp, skb);
4374
4375	tp->rx_opt.dsack = 0;
4376
4377	/*  Queue data for delivery to the user.
4378	 *  Packets in sequence go to the receive queue.
4379	 *  Out of sequence packets to the out_of_order_queue.
4380	 */
4381	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4382		if (tcp_receive_window(tp) == 0)
4383			goto out_of_window;
4384
4385		/* Ok. In sequence. In window. */
4386		if (tp->ucopy.task == current &&
4387		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4388		    sock_owned_by_user(sk) && !tp->urg_data) {
4389			int chunk = min_t(unsigned int, skb->len,
4390					  tp->ucopy.len);
4391
4392			__set_current_state(TASK_RUNNING);
4393
4394			local_bh_enable();
4395			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4396				tp->ucopy.len -= chunk;
4397				tp->copied_seq += chunk;
4398				eaten = (chunk == skb->len && !th->fin);
4399				tcp_rcv_space_adjust(sk);
4400			}
4401			local_bh_disable();
4402		}
4403
4404		if (eaten <= 0) {
4405queue_and_out:
4406			if (eaten < 0 &&
4407			    tcp_try_rmem_schedule(sk, skb->truesize))
4408				goto drop;
4409
4410			skb_set_owner_r(skb, sk);
4411			__skb_queue_tail(&sk->sk_receive_queue, skb);
4412		}
4413		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4414		if (skb->len)
4415			tcp_event_data_recv(sk, skb);
4416		if (th->fin)
4417			tcp_fin(skb, sk, th);
4418
4419		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4420			tcp_ofo_queue(sk);
4421
4422			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4423			 * gap in queue is filled.
4424			 */
4425			if (skb_queue_empty(&tp->out_of_order_queue))
4426				inet_csk(sk)->icsk_ack.pingpong = 0;
4427		}
4428
4429		if (tp->rx_opt.num_sacks)
4430			tcp_sack_remove(tp);
4431
4432		tcp_fast_path_check(sk);
4433
4434		if (eaten > 0)
4435			__kfree_skb(skb);
4436		else if (!sock_flag(sk, SOCK_DEAD))
4437			sk->sk_data_ready(sk, 0);
4438		return;
4439	}
4440
4441	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4442		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4443		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4444		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4445
4446out_of_window:
4447		tcp_enter_quickack_mode(sk);
4448		inet_csk_schedule_ack(sk);
4449drop:
4450		__kfree_skb(skb);
4451		return;
4452	}
4453
4454	/* Out of window. F.e. zero window probe. */
4455	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4456		goto out_of_window;
4457
4458	tcp_enter_quickack_mode(sk);
4459
4460	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4461		/* Partial packet, seq < rcv_next < end_seq */
4462		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4463			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4464			   TCP_SKB_CB(skb)->end_seq);
4465
4466		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4467
4468		/* If window is closed, drop tail of packet. But after
4469		 * remembering D-SACK for its head made in previous line.
4470		 */
4471		if (!tcp_receive_window(tp))
4472			goto out_of_window;
4473		goto queue_and_out;
4474	}
4475
4476	TCP_ECN_check_ce(tp, skb);
4477
4478	if (tcp_try_rmem_schedule(sk, skb->truesize))
4479		goto drop;
4480
4481	/* Disable header prediction. */
4482	tp->pred_flags = 0;
4483	inet_csk_schedule_ack(sk);
4484
4485	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4486		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4487
4488	skb_set_owner_r(skb, sk);
4489
4490	if (!skb_peek(&tp->out_of_order_queue)) {
4491		/* Initial out of order segment, build 1 SACK. */
4492		if (tcp_is_sack(tp)) {
4493			tp->rx_opt.num_sacks = 1;
4494			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4495			tp->selective_acks[0].end_seq =
4496						TCP_SKB_CB(skb)->end_seq;
4497		}
4498		__skb_queue_head(&tp->out_of_order_queue, skb);
4499	} else {
4500		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4501		u32 seq = TCP_SKB_CB(skb)->seq;
4502		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4503
4504		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4505			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4506
4507			if (!tp->rx_opt.num_sacks ||
4508			    tp->selective_acks[0].end_seq != seq)
4509				goto add_sack;
4510
4511			/* Common case: data arrive in order after hole. */
4512			tp->selective_acks[0].end_seq = end_seq;
4513			return;
4514		}
4515
4516		/* Find place to insert this segment. */
4517		while (1) {
4518			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4519				break;
4520			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4521				skb1 = NULL;
4522				break;
4523			}
4524			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4525		}
4526
4527		/* Do skb overlap to previous one? */
4528		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4529			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4530				/* All the bits are present. Drop. */
4531				__kfree_skb(skb);
4532				tcp_dsack_set(sk, seq, end_seq);
4533				goto add_sack;
4534			}
4535			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4536				/* Partial overlap. */
4537				tcp_dsack_set(sk, seq,
4538					      TCP_SKB_CB(skb1)->end_seq);
4539			} else {
4540				if (skb_queue_is_first(&tp->out_of_order_queue,
4541						       skb1))
4542					skb1 = NULL;
4543				else
4544					skb1 = skb_queue_prev(
4545						&tp->out_of_order_queue,
4546						skb1);
4547			}
4548		}
4549		if (!skb1)
4550			__skb_queue_head(&tp->out_of_order_queue, skb);
4551		else
4552			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4553
4554		/* And clean segments covered by new one as whole. */
4555		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4556			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4557
4558			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4559				break;
4560			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4561				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4562						 end_seq);
4563				break;
4564			}
4565			__skb_unlink(skb1, &tp->out_of_order_queue);
4566			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4567					 TCP_SKB_CB(skb1)->end_seq);
4568			__kfree_skb(skb1);
4569		}
4570
4571add_sack:
4572		if (tcp_is_sack(tp))
4573			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4574	}
4575}
4576
4577static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4578					struct sk_buff_head *list)
4579{
4580	struct sk_buff *next = NULL;
4581
4582	if (!skb_queue_is_last(list, skb))
4583		next = skb_queue_next(list, skb);
4584
4585	__skb_unlink(skb, list);
4586	__kfree_skb(skb);
4587	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4588
4589	return next;
4590}
4591
4592/* Collapse contiguous sequence of skbs head..tail with
4593 * sequence numbers start..end.
4594 *
4595 * If tail is NULL, this means until the end of the list.
4596 *
4597 * Segments with FIN/SYN are not collapsed (only because this
4598 * simplifies code)
4599 */
4600static void
4601tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4602	     struct sk_buff *head, struct sk_buff *tail,
4603	     u32 start, u32 end)
4604{
4605	struct sk_buff *skb, *n;
4606	bool end_of_skbs;
4607
4608	/* First, check that queue is collapsible and find
4609	 * the point where collapsing can be useful. */
4610	skb = head;
4611restart:
4612	end_of_skbs = true;
4613	skb_queue_walk_from_safe(list, skb, n) {
4614		if (skb == tail)
4615			break;
4616		/* No new bits? It is possible on ofo queue. */
4617		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4618			skb = tcp_collapse_one(sk, skb, list);
4619			if (!skb)
4620				break;
4621			goto restart;
4622		}
4623
4624		/* The first skb to collapse is:
4625		 * - not SYN/FIN and
4626		 * - bloated or contains data before "start" or
4627		 *   overlaps to the next one.
4628		 */
4629		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4630		    (tcp_win_from_space(skb->truesize) > skb->len ||
4631		     before(TCP_SKB_CB(skb)->seq, start))) {
4632			end_of_skbs = false;
4633			break;
4634		}
4635
4636		if (!skb_queue_is_last(list, skb)) {
4637			struct sk_buff *next = skb_queue_next(list, skb);
4638			if (next != tail &&
4639			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4640				end_of_skbs = false;
4641				break;
4642			}
4643		}
4644
4645		/* Decided to skip this, advance start seq. */
4646		start = TCP_SKB_CB(skb)->end_seq;
4647	}
4648	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4649		return;
4650
4651	while (before(start, end)) {
4652		struct sk_buff *nskb;
4653		unsigned int header = skb_headroom(skb);
4654		int copy = SKB_MAX_ORDER(header, 0);
4655
4656		/* Too big header? This can happen with IPv6. */
4657		if (copy < 0)
4658			return;
4659		if (end - start < copy)
4660			copy = end - start;
4661		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4662		if (!nskb)
4663			return;
4664
4665		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4666		skb_set_network_header(nskb, (skb_network_header(skb) -
4667					      skb->head));
4668		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4669						skb->head));
4670		skb_reserve(nskb, header);
4671		memcpy(nskb->head, skb->head, header);
4672		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4673		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4674		__skb_queue_before(list, skb, nskb);
4675		skb_set_owner_r(nskb, sk);
4676
4677		/* Copy data, releasing collapsed skbs. */
4678		while (copy > 0) {
4679			int offset = start - TCP_SKB_CB(skb)->seq;
4680			int size = TCP_SKB_CB(skb)->end_seq - start;
4681
4682			BUG_ON(offset < 0);
4683			if (size > 0) {
4684				size = min(copy, size);
4685				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4686					BUG();
4687				TCP_SKB_CB(nskb)->end_seq += size;
4688				copy -= size;
4689				start += size;
4690			}
4691			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4692				skb = tcp_collapse_one(sk, skb, list);
4693				if (!skb ||
4694				    skb == tail ||
4695				    tcp_hdr(skb)->syn ||
4696				    tcp_hdr(skb)->fin)
4697					return;
4698			}
4699		}
4700	}
4701}
4702
4703/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4704 * and tcp_collapse() them until all the queue is collapsed.
4705 */
4706static void tcp_collapse_ofo_queue(struct sock *sk)
4707{
4708	struct tcp_sock *tp = tcp_sk(sk);
4709	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4710	struct sk_buff *head;
4711	u32 start, end;
4712
4713	if (skb == NULL)
4714		return;
4715
4716	start = TCP_SKB_CB(skb)->seq;
4717	end = TCP_SKB_CB(skb)->end_seq;
4718	head = skb;
4719
4720	for (;;) {
4721		struct sk_buff *next = NULL;
4722
4723		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4724			next = skb_queue_next(&tp->out_of_order_queue, skb);
4725		skb = next;
4726
4727		/* Segment is terminated when we see gap or when
4728		 * we are at the end of all the queue. */
4729		if (!skb ||
4730		    after(TCP_SKB_CB(skb)->seq, end) ||
4731		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4732			tcp_collapse(sk, &tp->out_of_order_queue,
4733				     head, skb, start, end);
4734			head = skb;
4735			if (!skb)
4736				break;
4737			/* Start new segment */
4738			start = TCP_SKB_CB(skb)->seq;
4739			end = TCP_SKB_CB(skb)->end_seq;
4740		} else {
4741			if (before(TCP_SKB_CB(skb)->seq, start))
4742				start = TCP_SKB_CB(skb)->seq;
4743			if (after(TCP_SKB_CB(skb)->end_seq, end))
4744				end = TCP_SKB_CB(skb)->end_seq;
4745		}
4746	}
4747}
4748
4749/*
4750 * Purge the out-of-order queue.
4751 * Return true if queue was pruned.
4752 */
4753static int tcp_prune_ofo_queue(struct sock *sk)
4754{
4755	struct tcp_sock *tp = tcp_sk(sk);
4756	int res = 0;
4757
4758	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4759		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4760		__skb_queue_purge(&tp->out_of_order_queue);
4761
4762		/* Reset SACK state.  A conforming SACK implementation will
4763		 * do the same at a timeout based retransmit.  When a connection
4764		 * is in a sad state like this, we care only about integrity
4765		 * of the connection not performance.
4766		 */
4767		if (tp->rx_opt.sack_ok)
4768			tcp_sack_reset(&tp->rx_opt);
4769		sk_mem_reclaim(sk);
4770		res = 1;
4771	}
4772	return res;
4773}
4774
4775/* Reduce allocated memory if we can, trying to get
4776 * the socket within its memory limits again.
4777 *
4778 * Return less than zero if we should start dropping frames
4779 * until the socket owning process reads some of the data
4780 * to stabilize the situation.
4781 */
4782static int tcp_prune_queue(struct sock *sk)
4783{
4784	struct tcp_sock *tp = tcp_sk(sk);
4785
4786	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4787
4788	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4789
4790	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4791		tcp_clamp_window(sk);
4792	else if (tcp_memory_pressure)
4793		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4794
4795	tcp_collapse_ofo_queue(sk);
4796	if (!skb_queue_empty(&sk->sk_receive_queue))
4797		tcp_collapse(sk, &sk->sk_receive_queue,
4798			     skb_peek(&sk->sk_receive_queue),
4799			     NULL,
4800			     tp->copied_seq, tp->rcv_nxt);
4801	sk_mem_reclaim(sk);
4802
4803	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4804		return 0;
4805
4806	/* Collapsing did not help, destructive actions follow.
4807	 * This must not ever occur. */
4808
4809	tcp_prune_ofo_queue(sk);
4810
4811	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4812		return 0;
4813
4814	/* If we are really being abused, tell the caller to silently
4815	 * drop receive data on the floor.  It will get retransmitted
4816	 * and hopefully then we'll have sufficient space.
4817	 */
4818	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4819
4820	/* Massive buffer overcommit. */
4821	tp->pred_flags = 0;
4822	return -1;
4823}
4824
4825/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4826 * As additional protections, we do not touch cwnd in retransmission phases,
4827 * and if application hit its sndbuf limit recently.
4828 */
4829void tcp_cwnd_application_limited(struct sock *sk)
4830{
4831	struct tcp_sock *tp = tcp_sk(sk);
4832
4833	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4834	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4835		/* Limited by application or receiver window. */
4836		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4837		u32 win_used = max(tp->snd_cwnd_used, init_win);
4838		if (win_used < tp->snd_cwnd) {
4839			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4840			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4841		}
4842		tp->snd_cwnd_used = 0;
4843	}
4844	tp->snd_cwnd_stamp = tcp_time_stamp;
4845}
4846
4847static int tcp_should_expand_sndbuf(struct sock *sk)
4848{
4849	struct tcp_sock *tp = tcp_sk(sk);
4850
4851	/* If the user specified a specific send buffer setting, do
4852	 * not modify it.
4853	 */
4854	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4855		return 0;
4856
4857	/* If we are under global TCP memory pressure, do not expand.  */
4858	if (tcp_memory_pressure)
4859		return 0;
4860
4861	/* If we are under soft global TCP memory pressure, do not expand.  */
4862	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4863		return 0;
4864
4865	/* If we filled the congestion window, do not expand.  */
4866	if (tp->packets_out >= tp->snd_cwnd)
4867		return 0;
4868
4869	return 1;
4870}
4871
4872/* When incoming ACK allowed to free some skb from write_queue,
4873 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4874 * on the exit from tcp input handler.
4875 *
4876 * PROBLEM: sndbuf expansion does not work well with largesend.
4877 */
4878static void tcp_new_space(struct sock *sk)
4879{
4880	struct tcp_sock *tp = tcp_sk(sk);
4881
4882	if (tcp_should_expand_sndbuf(sk)) {
4883		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4884			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4885		int demanded = max_t(unsigned int, tp->snd_cwnd,
4886				     tp->reordering + 1);
4887		sndmem *= 2 * demanded;
4888		if (sndmem > sk->sk_sndbuf)
4889			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4890		tp->snd_cwnd_stamp = tcp_time_stamp;
4891	}
4892
4893	sk->sk_write_space(sk);
4894}
4895
4896static void tcp_check_space(struct sock *sk)
4897{
4898	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4899		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4900		if (sk->sk_socket &&
4901		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4902			tcp_new_space(sk);
4903	}
4904}
4905
4906static inline void tcp_data_snd_check(struct sock *sk)
4907{
4908	tcp_push_pending_frames(sk);
4909	tcp_check_space(sk);
4910}
4911
4912/*
4913 * Check if sending an ack is needed.
4914 */
4915static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4916{
4917	struct tcp_sock *tp = tcp_sk(sk);
4918
4919	    /* More than one full frame received... */
4920	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4921	     /* ... and right edge of window advances far enough.
4922	      * (tcp_recvmsg() will send ACK otherwise). Or...
4923	      */
4924	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4925	    /* We ACK each frame or... */
4926	    tcp_in_quickack_mode(sk) ||
4927	    /* We have out of order data. */
4928	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4929		/* Then ack it now */
4930		tcp_send_ack(sk);
4931	} else {
4932		/* Else, send delayed ack. */
4933		tcp_send_delayed_ack(sk);
4934	}
4935}
4936
4937static inline void tcp_ack_snd_check(struct sock *sk)
4938{
4939	if (!inet_csk_ack_scheduled(sk)) {
4940		/* We sent a data segment already. */
4941		return;
4942	}
4943	__tcp_ack_snd_check(sk, 1);
4944}
4945
4946/*
4947 *	This routine is only called when we have urgent data
4948 *	signaled. Its the 'slow' part of tcp_urg. It could be
4949 *	moved inline now as tcp_urg is only called from one
4950 *	place. We handle URGent data wrong. We have to - as
4951 *	BSD still doesn't use the correction from RFC961.
4952 *	For 1003.1g we should support a new option TCP_STDURG to permit
4953 *	either form (or just set the sysctl tcp_stdurg).
4954 */
4955
4956static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4957{
4958	struct tcp_sock *tp = tcp_sk(sk);
4959	u32 ptr = ntohs(th->urg_ptr);
4960
4961	if (ptr && !sysctl_tcp_stdurg)
4962		ptr--;
4963	ptr += ntohl(th->seq);
4964
4965	/* Ignore urgent data that we've already seen and read. */
4966	if (after(tp->copied_seq, ptr))
4967		return;
4968
4969	/* Do not replay urg ptr.
4970	 *
4971	 * NOTE: interesting situation not covered by specs.
4972	 * Misbehaving sender may send urg ptr, pointing to segment,
4973	 * which we already have in ofo queue. We are not able to fetch
4974	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4975	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4976	 * situations. But it is worth to think about possibility of some
4977	 * DoSes using some hypothetical application level deadlock.
4978	 */
4979	if (before(ptr, tp->rcv_nxt))
4980		return;
4981
4982	/* Do we already have a newer (or duplicate) urgent pointer? */
4983	if (tp->urg_data && !after(ptr, tp->urg_seq))
4984		return;
4985
4986	/* Tell the world about our new urgent pointer. */
4987	sk_send_sigurg(sk);
4988
4989	/* We may be adding urgent data when the last byte read was
4990	 * urgent. To do this requires some care. We cannot just ignore
4991	 * tp->copied_seq since we would read the last urgent byte again
4992	 * as data, nor can we alter copied_seq until this data arrives
4993	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4994	 *
4995	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4996	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4997	 * and expect that both A and B disappear from stream. This is _wrong_.
4998	 * Though this happens in BSD with high probability, this is occasional.
4999	 * Any application relying on this is buggy. Note also, that fix "works"
5000	 * only in this artificial test. Insert some normal data between A and B and we will
5001	 * decline of BSD again. Verdict: it is better to remove to trap
5002	 * buggy users.
5003	 */
5004	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5005	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5006		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5007		tp->copied_seq++;
5008		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5009			__skb_unlink(skb, &sk->sk_receive_queue);
5010			__kfree_skb(skb);
5011		}
5012	}
5013
5014	tp->urg_data = TCP_URG_NOTYET;
5015	tp->urg_seq = ptr;
5016
5017	/* Disable header prediction. */
5018	tp->pred_flags = 0;
5019}
5020
5021/* This is the 'fast' part of urgent handling. */
5022static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5023{
5024	struct tcp_sock *tp = tcp_sk(sk);
5025
5026	/* Check if we get a new urgent pointer - normally not. */
5027	if (th->urg)
5028		tcp_check_urg(sk, th);
5029
5030	/* Do we wait for any urgent data? - normally not... */
5031	if (tp->urg_data == TCP_URG_NOTYET) {
5032		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5033			  th->syn;
5034
5035		/* Is the urgent pointer pointing into this packet? */
5036		if (ptr < skb->len) {
5037			u8 tmp;
5038			if (skb_copy_bits(skb, ptr, &tmp, 1))
5039				BUG();
5040			tp->urg_data = TCP_URG_VALID | tmp;
5041			if (!sock_flag(sk, SOCK_DEAD))
5042				sk->sk_data_ready(sk, 0);
5043		}
5044	}
5045}
5046
5047static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5048{
5049	struct tcp_sock *tp = tcp_sk(sk);
5050	int chunk = skb->len - hlen;
5051	int err;
5052
5053	local_bh_enable();
5054	if (skb_csum_unnecessary(skb))
5055		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5056	else
5057		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5058						       tp->ucopy.iov);
5059
5060	if (!err) {
5061		tp->ucopy.len -= chunk;
5062		tp->copied_seq += chunk;
5063		tcp_rcv_space_adjust(sk);
5064	}
5065
5066	local_bh_disable();
5067	return err;
5068}
5069
5070static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5071					    struct sk_buff *skb)
5072{
5073	__sum16 result;
5074
5075	if (sock_owned_by_user(sk)) {
5076		local_bh_enable();
5077		result = __tcp_checksum_complete(skb);
5078		local_bh_disable();
5079	} else {
5080		result = __tcp_checksum_complete(skb);
5081	}
5082	return result;
5083}
5084
5085static inline int tcp_checksum_complete_user(struct sock *sk,
5086					     struct sk_buff *skb)
5087{
5088	return !skb_csum_unnecessary(skb) &&
5089	       __tcp_checksum_complete_user(sk, skb);
5090}
5091
5092#ifdef CONFIG_NET_DMA
5093static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5094				  int hlen)
5095{
5096	struct tcp_sock *tp = tcp_sk(sk);
5097	int chunk = skb->len - hlen;
5098	int dma_cookie;
5099	int copied_early = 0;
5100
5101	if (tp->ucopy.wakeup)
5102		return 0;
5103
5104	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5105		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5106
5107	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5108
5109		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5110							 skb, hlen,
5111							 tp->ucopy.iov, chunk,
5112							 tp->ucopy.pinned_list);
5113
5114		if (dma_cookie < 0)
5115			goto out;
5116
5117		tp->ucopy.dma_cookie = dma_cookie;
5118		copied_early = 1;
5119
5120		tp->ucopy.len -= chunk;
5121		tp->copied_seq += chunk;
5122		tcp_rcv_space_adjust(sk);
5123
5124		if ((tp->ucopy.len == 0) ||
5125		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5126		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5127			tp->ucopy.wakeup = 1;
5128			sk->sk_data_ready(sk, 0);
5129		}
5130	} else if (chunk > 0) {
5131		tp->ucopy.wakeup = 1;
5132		sk->sk_data_ready(sk, 0);
5133	}
5134out:
5135	return copied_early;
5136}
5137#endif /* CONFIG_NET_DMA */
5138
5139/* Does PAWS and seqno based validation of an incoming segment, flags will
5140 * play significant role here.
5141 */
5142static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5143			      struct tcphdr *th, int syn_inerr)
5144{
5145	u8 *hash_location;
5146	struct tcp_sock *tp = tcp_sk(sk);
5147
5148	/* RFC1323: H1. Apply PAWS check first. */
5149	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5150	    tp->rx_opt.saw_tstamp &&
5151	    tcp_paws_discard(sk, skb)) {
5152		if (!th->rst) {
5153			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5154			tcp_send_dupack(sk, skb);
5155			goto discard;
5156		}
5157		/* Reset is accepted even if it did not pass PAWS. */
5158	}
5159
5160	/* Step 1: check sequence number */
5161	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5162		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5163		 * (RST) segments are validated by checking their SEQ-fields."
5164		 * And page 69: "If an incoming segment is not acceptable,
5165		 * an acknowledgment should be sent in reply (unless the RST
5166		 * bit is set, if so drop the segment and return)".
5167		 */
5168		if (!th->rst)
5169			tcp_send_dupack(sk, skb);
5170		goto discard;
5171	}
5172
5173	/* Step 2: check RST bit */
5174	if (th->rst) {
5175		tcp_reset(sk);
5176		goto discard;
5177	}
5178
5179	/* ts_recent update must be made after we are sure that the packet
5180	 * is in window.
5181	 */
5182	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5183
5184	/* step 3: check security and precedence [ignored] */
5185
5186	/* step 4: Check for a SYN in window. */
5187	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5188		if (syn_inerr)
5189			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5190		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5191		tcp_reset(sk);
5192		return -1;
5193	}
5194
5195	return 1;
5196
5197discard:
5198	__kfree_skb(skb);
5199	return 0;
5200}
5201
5202/*
5203 *	TCP receive function for the ESTABLISHED state.
5204 *
5205 *	It is split into a fast path and a slow path. The fast path is
5206 * 	disabled when:
5207 *	- A zero window was announced from us - zero window probing
5208 *        is only handled properly in the slow path.
5209 *	- Out of order segments arrived.
5210 *	- Urgent data is expected.
5211 *	- There is no buffer space left
5212 *	- Unexpected TCP flags/window values/header lengths are received
5213 *	  (detected by checking the TCP header against pred_flags)
5214 *	- Data is sent in both directions. Fast path only supports pure senders
5215 *	  or pure receivers (this means either the sequence number or the ack
5216 *	  value must stay constant)
5217 *	- Unexpected TCP option.
5218 *
5219 *	When these conditions are not satisfied it drops into a standard
5220 *	receive procedure patterned after RFC793 to handle all cases.
5221 *	The first three cases are guaranteed by proper pred_flags setting,
5222 *	the rest is checked inline. Fast processing is turned on in
5223 *	tcp_data_queue when everything is OK.
5224 */
5225int BCMFASTPATH_HOST tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5226			struct tcphdr *th, unsigned len)
5227{
5228	struct tcp_sock *tp = tcp_sk(sk);
5229	int res;
5230
5231	/*
5232	 *	Header prediction.
5233	 *	The code loosely follows the one in the famous
5234	 *	"30 instruction TCP receive" Van Jacobson mail.
5235	 *
5236	 *	Van's trick is to deposit buffers into socket queue
5237	 *	on a device interrupt, to call tcp_recv function
5238	 *	on the receive process context and checksum and copy
5239	 *	the buffer to user space. smart...
5240	 *
5241	 *	Our current scheme is not silly either but we take the
5242	 *	extra cost of the net_bh soft interrupt processing...
5243	 *	We do checksum and copy also but from device to kernel.
5244	 */
5245
5246	tp->rx_opt.saw_tstamp = 0;
5247
5248	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5249	 *	if header_prediction is to be made
5250	 *	'S' will always be tp->tcp_header_len >> 2
5251	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5252	 *  turn it off	(when there are holes in the receive
5253	 *	 space for instance)
5254	 *	PSH flag is ignored.
5255	 */
5256
5257	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5258	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5259	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5260		int tcp_header_len = tp->tcp_header_len;
5261
5262		/* Timestamp header prediction: tcp_header_len
5263		 * is automatically equal to th->doff*4 due to pred_flags
5264		 * match.
5265		 */
5266
5267		/* Check timestamp */
5268		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5269			/* No? Slow path! */
5270			if (!tcp_parse_aligned_timestamp(tp, th))
5271				goto slow_path;
5272
5273			/* If PAWS failed, check it more carefully in slow path */
5274			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5275				goto slow_path;
5276
5277			/* DO NOT update ts_recent here, if checksum fails
5278			 * and timestamp was corrupted part, it will result
5279			 * in a hung connection since we will drop all
5280			 * future packets due to the PAWS test.
5281			 */
5282		}
5283
5284		if (len <= tcp_header_len) {
5285			/* Bulk data transfer: sender */
5286			if (len == tcp_header_len) {
5287				/* Predicted packet is in window by definition.
5288				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5289				 * Hence, check seq<=rcv_wup reduces to:
5290				 */
5291				if (tcp_header_len ==
5292				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5293				    tp->rcv_nxt == tp->rcv_wup)
5294					tcp_store_ts_recent(tp);
5295
5296				/* We know that such packets are checksummed
5297				 * on entry.
5298				 */
5299				tcp_ack(sk, skb, 0);
5300				__kfree_skb(skb);
5301				tcp_data_snd_check(sk);
5302				return 0;
5303			} else { /* Header too small */
5304				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5305				goto discard;
5306			}
5307		} else {
5308			int eaten = 0;
5309			int copied_early = 0;
5310
5311			if (tp->copied_seq == tp->rcv_nxt &&
5312			    len - tcp_header_len <= tp->ucopy.len) {
5313#ifdef CONFIG_NET_DMA
5314				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5315					copied_early = 1;
5316					eaten = 1;
5317				}
5318#endif
5319				if (tp->ucopy.task == current &&
5320				    sock_owned_by_user(sk) && !copied_early) {
5321					__set_current_state(TASK_RUNNING);
5322
5323					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5324						eaten = 1;
5325				}
5326				if (eaten) {
5327					/* Predicted packet is in window by definition.
5328					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5329					 * Hence, check seq<=rcv_wup reduces to:
5330					 */
5331					if (tcp_header_len ==
5332					    (sizeof(struct tcphdr) +
5333					     TCPOLEN_TSTAMP_ALIGNED) &&
5334					    tp->rcv_nxt == tp->rcv_wup)
5335						tcp_store_ts_recent(tp);
5336
5337					tcp_rcv_rtt_measure_ts(sk, skb);
5338
5339					__skb_pull(skb, tcp_header_len);
5340					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5341					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5342				}
5343				if (copied_early)
5344					tcp_cleanup_rbuf(sk, skb->len);
5345			}
5346			if (!eaten) {
5347				if (tcp_checksum_complete_user(sk, skb))
5348					goto csum_error;
5349
5350				/* Predicted packet is in window by definition.
5351				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5352				 * Hence, check seq<=rcv_wup reduces to:
5353				 */
5354				if (tcp_header_len ==
5355				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5356				    tp->rcv_nxt == tp->rcv_wup)
5357					tcp_store_ts_recent(tp);
5358
5359				tcp_rcv_rtt_measure_ts(sk, skb);
5360
5361				if ((int)skb->truesize > sk->sk_forward_alloc)
5362					goto step5;
5363
5364				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5365
5366				/* Bulk data transfer: receiver */
5367				__skb_pull(skb, tcp_header_len);
5368				__skb_queue_tail(&sk->sk_receive_queue, skb);
5369				skb_set_owner_r(skb, sk);
5370				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5371			}
5372
5373			tcp_event_data_recv(sk, skb);
5374
5375			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5376				/* Well, only one small jumplet in fast path... */
5377				tcp_ack(sk, skb, FLAG_DATA);
5378				tcp_data_snd_check(sk);
5379				if (!inet_csk_ack_scheduled(sk))
5380					goto no_ack;
5381			}
5382
5383			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5384				__tcp_ack_snd_check(sk, 0);
5385no_ack:
5386#ifdef CONFIG_NET_DMA
5387			if (copied_early)
5388				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5389			else
5390#endif
5391			if (eaten)
5392				__kfree_skb(skb);
5393			else
5394				sk->sk_data_ready(sk, 0);
5395			return 0;
5396		}
5397	}
5398
5399slow_path:
5400	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5401		goto csum_error;
5402
5403	/*
5404	 *	Standard slow path.
5405	 */
5406
5407	res = tcp_validate_incoming(sk, skb, th, 1);
5408	if (res <= 0)
5409		return -res;
5410
5411step5:
5412	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5413		goto discard;
5414
5415	tcp_rcv_rtt_measure_ts(sk, skb);
5416
5417	/* Process urgent data. */
5418	tcp_urg(sk, skb, th);
5419
5420	/* step 7: process the segment text */
5421	tcp_data_queue(sk, skb);
5422
5423	tcp_data_snd_check(sk);
5424	tcp_ack_snd_check(sk);
5425	return 0;
5426
5427csum_error:
5428	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5429
5430discard:
5431	__kfree_skb(skb);
5432	return 0;
5433}
5434EXPORT_SYMBOL(tcp_rcv_established);
5435
5436static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5437					 struct tcphdr *th, unsigned len)
5438{
5439	u8 *hash_location;
5440	struct inet_connection_sock *icsk = inet_csk(sk);
5441	struct tcp_sock *tp = tcp_sk(sk);
5442	struct tcp_cookie_values *cvp = tp->cookie_values;
5443	int saved_clamp = tp->rx_opt.mss_clamp;
5444
5445	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5446
5447	if (th->ack) {
5448		/* rfc793:
5449		 * "If the state is SYN-SENT then
5450		 *    first check the ACK bit
5451		 *      If the ACK bit is set
5452		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5453		 *        a reset (unless the RST bit is set, if so drop
5454		 *        the segment and return)"
5455		 *
5456		 *  We do not send data with SYN, so that RFC-correct
5457		 *  test reduces to:
5458		 */
5459		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5460			goto reset_and_undo;
5461
5462		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5463		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5464			     tcp_time_stamp)) {
5465			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5466			goto reset_and_undo;
5467		}
5468
5469		/* Now ACK is acceptable.
5470		 *
5471		 * "If the RST bit is set
5472		 *    If the ACK was acceptable then signal the user "error:
5473		 *    connection reset", drop the segment, enter CLOSED state,
5474		 *    delete TCB, and return."
5475		 */
5476
5477		if (th->rst) {
5478			tcp_reset(sk);
5479			goto discard;
5480		}
5481
5482		/* rfc793:
5483		 *   "fifth, if neither of the SYN or RST bits is set then
5484		 *    drop the segment and return."
5485		 *
5486		 *    See note below!
5487		 *                                        --ANK(990513)
5488		 */
5489		if (!th->syn)
5490			goto discard_and_undo;
5491
5492		/* rfc793:
5493		 *   "If the SYN bit is on ...
5494		 *    are acceptable then ...
5495		 *    (our SYN has been ACKed), change the connection
5496		 *    state to ESTABLISHED..."
5497		 */
5498
5499		TCP_ECN_rcv_synack(tp, th);
5500
5501		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5502		tcp_ack(sk, skb, FLAG_SLOWPATH);
5503
5504		/* Ok.. it's good. Set up sequence numbers and
5505		 * move to established.
5506		 */
5507		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5508		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5509
5510		/* RFC1323: The window in SYN & SYN/ACK segments is
5511		 * never scaled.
5512		 */
5513		tp->snd_wnd = ntohs(th->window);
5514		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5515
5516		if (!tp->rx_opt.wscale_ok) {
5517			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5518			tp->window_clamp = min(tp->window_clamp, 65535U);
5519		}
5520
5521		if (tp->rx_opt.saw_tstamp) {
5522			tp->rx_opt.tstamp_ok	   = 1;
5523			tp->tcp_header_len =
5524				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5525			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5526			tcp_store_ts_recent(tp);
5527		} else {
5528			tp->tcp_header_len = sizeof(struct tcphdr);
5529		}
5530
5531		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5532			tcp_enable_fack(tp);
5533
5534		tcp_mtup_init(sk);
5535		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5536		tcp_initialize_rcv_mss(sk);
5537
5538		/* Remember, tcp_poll() does not lock socket!
5539		 * Change state from SYN-SENT only after copied_seq
5540		 * is initialized. */
5541		tp->copied_seq = tp->rcv_nxt;
5542
5543		if (cvp != NULL &&
5544		    cvp->cookie_pair_size > 0 &&
5545		    tp->rx_opt.cookie_plus > 0) {
5546			int cookie_size = tp->rx_opt.cookie_plus
5547					- TCPOLEN_COOKIE_BASE;
5548			int cookie_pair_size = cookie_size
5549					     + cvp->cookie_desired;
5550
5551			/* A cookie extension option was sent and returned.
5552			 * Note that each incoming SYNACK replaces the
5553			 * Responder cookie.  The initial exchange is most
5554			 * fragile, as protection against spoofing relies
5555			 * entirely upon the sequence and timestamp (above).
5556			 * This replacement strategy allows the correct pair to
5557			 * pass through, while any others will be filtered via
5558			 * Responder verification later.
5559			 */
5560			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5561				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5562				       hash_location, cookie_size);
5563				cvp->cookie_pair_size = cookie_pair_size;
5564			}
5565		}
5566
5567		smp_mb();
5568		tcp_set_state(sk, TCP_ESTABLISHED);
5569
5570		security_inet_conn_established(sk, skb);
5571
5572		/* Make sure socket is routed, for correct metrics.  */
5573		icsk->icsk_af_ops->rebuild_header(sk);
5574
5575		tcp_init_metrics(sk);
5576
5577		tcp_init_congestion_control(sk);
5578
5579		/* Prevent spurious tcp_cwnd_restart() on first data
5580		 * packet.
5581		 */
5582		tp->lsndtime = tcp_time_stamp;
5583
5584		tcp_init_buffer_space(sk);
5585
5586		if (sock_flag(sk, SOCK_KEEPOPEN))
5587			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5588
5589		if (!tp->rx_opt.snd_wscale)
5590			__tcp_fast_path_on(tp, tp->snd_wnd);
5591		else
5592			tp->pred_flags = 0;
5593
5594		if (!sock_flag(sk, SOCK_DEAD)) {
5595			sk->sk_state_change(sk);
5596			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5597		}
5598
5599		if (sk->sk_write_pending ||
5600		    icsk->icsk_accept_queue.rskq_defer_accept ||
5601		    icsk->icsk_ack.pingpong) {
5602			/* Save one ACK. Data will be ready after
5603			 * several ticks, if write_pending is set.
5604			 *
5605			 * It may be deleted, but with this feature tcpdumps
5606			 * look so _wonderfully_ clever, that I was not able
5607			 * to stand against the temptation 8)     --ANK
5608			 */
5609			inet_csk_schedule_ack(sk);
5610			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5611			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5612			tcp_incr_quickack(sk);
5613			tcp_enter_quickack_mode(sk);
5614			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5615						  TCP_DELACK_MAX, TCP_RTO_MAX);
5616
5617discard:
5618			__kfree_skb(skb);
5619			return 0;
5620		} else {
5621			tcp_send_ack(sk);
5622		}
5623		return -1;
5624	}
5625
5626	/* No ACK in the segment */
5627
5628	if (th->rst) {
5629		/* rfc793:
5630		 * "If the RST bit is set
5631		 *
5632		 *      Otherwise (no ACK) drop the segment and return."
5633		 */
5634
5635		goto discard_and_undo;
5636	}
5637
5638	/* PAWS check. */
5639	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5640	    tcp_paws_reject(&tp->rx_opt, 0))
5641		goto discard_and_undo;
5642
5643	if (th->syn) {
5644		/* We see SYN without ACK. It is attempt of
5645		 * simultaneous connect with crossed SYNs.
5646		 * Particularly, it can be connect to self.
5647		 */
5648		tcp_set_state(sk, TCP_SYN_RECV);
5649
5650		if (tp->rx_opt.saw_tstamp) {
5651			tp->rx_opt.tstamp_ok = 1;
5652			tcp_store_ts_recent(tp);
5653			tp->tcp_header_len =
5654				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655		} else {
5656			tp->tcp_header_len = sizeof(struct tcphdr);
5657		}
5658
5659		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5660		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5661
5662		/* RFC1323: The window in SYN & SYN/ACK segments is
5663		 * never scaled.
5664		 */
5665		tp->snd_wnd    = ntohs(th->window);
5666		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5667		tp->max_window = tp->snd_wnd;
5668
5669		TCP_ECN_rcv_syn(tp, th);
5670
5671		tcp_mtup_init(sk);
5672		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5673		tcp_initialize_rcv_mss(sk);
5674
5675		tcp_send_synack(sk);
5676		goto discard;
5677	}
5678	/* "fifth, if neither of the SYN or RST bits is set then
5679	 * drop the segment and return."
5680	 */
5681
5682discard_and_undo:
5683	tcp_clear_options(&tp->rx_opt);
5684	tp->rx_opt.mss_clamp = saved_clamp;
5685	goto discard;
5686
5687reset_and_undo:
5688	tcp_clear_options(&tp->rx_opt);
5689	tp->rx_opt.mss_clamp = saved_clamp;
5690	return 1;
5691}
5692
5693/*
5694 *	This function implements the receiving procedure of RFC 793 for
5695 *	all states except ESTABLISHED and TIME_WAIT.
5696 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5697 *	address independent.
5698 */
5699
5700int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5701			  struct tcphdr *th, unsigned len)
5702{
5703	struct tcp_sock *tp = tcp_sk(sk);
5704	struct inet_connection_sock *icsk = inet_csk(sk);
5705	int queued = 0;
5706	int res;
5707
5708	tp->rx_opt.saw_tstamp = 0;
5709
5710	switch (sk->sk_state) {
5711	case TCP_CLOSE:
5712		goto discard;
5713
5714	case TCP_LISTEN:
5715		if (th->ack)
5716			return 1;
5717
5718		if (th->rst)
5719			goto discard;
5720
5721		if (th->syn) {
5722			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5723				return 1;
5724
5725			/* Now we have several options: In theory there is
5726			 * nothing else in the frame. KA9Q has an option to
5727			 * send data with the syn, BSD accepts data with the
5728			 * syn up to the [to be] advertised window and
5729			 * Solaris 2.1 gives you a protocol error. For now
5730			 * we just ignore it, that fits the spec precisely
5731			 * and avoids incompatibilities. It would be nice in
5732			 * future to drop through and process the data.
5733			 *
5734			 * Now that TTCP is starting to be used we ought to
5735			 * queue this data.
5736			 * But, this leaves one open to an easy denial of
5737			 * service attack, and SYN cookies can't defend
5738			 * against this problem. So, we drop the data
5739			 * in the interest of security over speed unless
5740			 * it's still in use.
5741			 */
5742			kfree_skb(skb);
5743			return 0;
5744		}
5745		goto discard;
5746
5747	case TCP_SYN_SENT:
5748		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5749		if (queued >= 0)
5750			return queued;
5751
5752		/* Do step6 onward by hand. */
5753		tcp_urg(sk, skb, th);
5754		__kfree_skb(skb);
5755		tcp_data_snd_check(sk);
5756		return 0;
5757	}
5758
5759	res = tcp_validate_incoming(sk, skb, th, 0);
5760	if (res <= 0)
5761		return -res;
5762
5763	/* step 5: check the ACK field */
5764	if (th->ack) {
5765		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5766
5767		switch (sk->sk_state) {
5768		case TCP_SYN_RECV:
5769			if (acceptable) {
5770				tp->copied_seq = tp->rcv_nxt;
5771				smp_mb();
5772				tcp_set_state(sk, TCP_ESTABLISHED);
5773				sk->sk_state_change(sk);
5774
5775				/* Note, that this wakeup is only for marginal
5776				 * crossed SYN case. Passively open sockets
5777				 * are not waked up, because sk->sk_sleep ==
5778				 * NULL and sk->sk_socket == NULL.
5779				 */
5780				if (sk->sk_socket)
5781					sk_wake_async(sk,
5782						      SOCK_WAKE_IO, POLL_OUT);
5783
5784				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5785				tp->snd_wnd = ntohs(th->window) <<
5786					      tp->rx_opt.snd_wscale;
5787				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5788
5789				/* tcp_ack considers this ACK as duplicate
5790				 * and does not calculate rtt.
5791				 * Force it here.
5792				 */
5793				tcp_ack_update_rtt(sk, 0, 0);
5794
5795				if (tp->rx_opt.tstamp_ok)
5796					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5797
5798				/* Make sure socket is routed, for
5799				 * correct metrics.
5800				 */
5801				icsk->icsk_af_ops->rebuild_header(sk);
5802
5803				tcp_init_metrics(sk);
5804
5805				tcp_init_congestion_control(sk);
5806
5807				/* Prevent spurious tcp_cwnd_restart() on
5808				 * first data packet.
5809				 */
5810				tp->lsndtime = tcp_time_stamp;
5811
5812				tcp_mtup_init(sk);
5813				tcp_initialize_rcv_mss(sk);
5814				tcp_init_buffer_space(sk);
5815				tcp_fast_path_on(tp);
5816			} else {
5817				return 1;
5818			}
5819			break;
5820
5821		case TCP_FIN_WAIT1:
5822			if (tp->snd_una == tp->write_seq) {
5823				tcp_set_state(sk, TCP_FIN_WAIT2);
5824				sk->sk_shutdown |= SEND_SHUTDOWN;
5825				dst_confirm(__sk_dst_get(sk));
5826
5827				if (!sock_flag(sk, SOCK_DEAD))
5828					/* Wake up lingering close() */
5829					sk->sk_state_change(sk);
5830				else {
5831					int tmo;
5832
5833					if (tp->linger2 < 0 ||
5834					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5835					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5836						tcp_done(sk);
5837						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5838						return 1;
5839					}
5840
5841					tmo = tcp_fin_time(sk);
5842					if (tmo > TCP_TIMEWAIT_LEN) {
5843						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5844					} else if (th->fin || sock_owned_by_user(sk)) {
5845						/* Bad case. We could lose such FIN otherwise.
5846						 * It is not a big problem, but it looks confusing
5847						 * and not so rare event. We still can lose it now,
5848						 * if it spins in bh_lock_sock(), but it is really
5849						 * marginal case.
5850						 */
5851						inet_csk_reset_keepalive_timer(sk, tmo);
5852					} else {
5853						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5854						goto discard;
5855					}
5856				}
5857			}
5858			break;
5859
5860		case TCP_CLOSING:
5861			if (tp->snd_una == tp->write_seq) {
5862				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5863				goto discard;
5864			}
5865			break;
5866
5867		case TCP_LAST_ACK:
5868			if (tp->snd_una == tp->write_seq) {
5869				tcp_update_metrics(sk);
5870				tcp_done(sk);
5871				goto discard;
5872			}
5873			break;
5874		}
5875	} else
5876		goto discard;
5877
5878	/* step 6: check the URG bit */
5879	tcp_urg(sk, skb, th);
5880
5881	/* step 7: process the segment text */
5882	switch (sk->sk_state) {
5883	case TCP_CLOSE_WAIT:
5884	case TCP_CLOSING:
5885	case TCP_LAST_ACK:
5886		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5887			break;
5888	case TCP_FIN_WAIT1:
5889	case TCP_FIN_WAIT2:
5890		/* RFC 793 says to queue data in these states,
5891		 * RFC 1122 says we MUST send a reset.
5892		 * BSD 4.4 also does reset.
5893		 */
5894		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5895			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5896			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5897				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5898				tcp_reset(sk);
5899				return 1;
5900			}
5901		}
5902		/* Fall through */
5903	case TCP_ESTABLISHED:
5904		tcp_data_queue(sk, skb);
5905		queued = 1;
5906		break;
5907	}
5908
5909	/* tcp_data could move socket to TIME-WAIT */
5910	if (sk->sk_state != TCP_CLOSE) {
5911		tcp_data_snd_check(sk);
5912		tcp_ack_snd_check(sk);
5913	}
5914
5915	if (!queued) {
5916discard:
5917		__kfree_skb(skb);
5918	}
5919	return 0;
5920}
5921EXPORT_SYMBOL(tcp_rcv_state_process);
5922