• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/net/ipv4/
1/* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian  La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 *		Alan Cox	:	Removed the Ethernet assumptions in
17 *					Florian's code
18 *		Alan Cox	:	Fixed some small errors in the ARP
19 *					logic
20 *		Alan Cox	:	Allow >4K in /proc
21 *		Alan Cox	:	Make ARP add its own protocol entry
22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
24 *		Alan Cox	:	Drop data when a device is downed.
25 *		Alan Cox	:	Use init_timer().
26 *		Alan Cox	:	Double lock fixes.
27 *		Martin Seine	:	Move the arphdr structure
28 *					to if_arp.h for compatibility.
29 *					with BSD based programs.
30 *		Andrew Tridgell :       Added ARP netmask code and
31 *					re-arranged proxy handling.
32 *		Alan Cox	:	Changed to use notifiers.
33 *		Niibe Yutaka	:	Reply for this device or proxies only.
34 *		Alan Cox	:	Don't proxy across hardware types!
35 *		Jonathan Naylor :	Added support for NET/ROM.
36 *		Mike Shaver     :       RFC1122 checks.
37 *		Jonathan Naylor :	Only lookup the hardware address for
38 *					the correct hardware type.
39 *		Germano Caronni	:	Assorted subtle races.
40 *		Craig Schlenter :	Don't modify permanent entry
41 *					during arp_rcv.
42 *		Russ Nelson	:	Tidied up a few bits.
43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44 *					eg intelligent arp probing and
45 *					generation
46 *					of host down events.
47 *		Alan Cox	:	Missing unlock in device events.
48 *		Eckes		:	ARP ioctl control errors.
49 *		Alexey Kuznetsov:	Arp free fix.
50 *		Manuel Rodriguez:	Gratuitous ARP.
51 *              Jonathan Layes  :       Added arpd support through kerneld
52 *                                      message queue (960314)
53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54 *		Mike McLagan    :	Routing by source
55 *		Stuart Cheshire	:	Metricom and grat arp fixes
56 *					*** FOR 2.1 clean this up ***
57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
59 *					folded into the mainstream FDDI code.
60 *					Ack spit, Linus how did you allow that
61 *					one in...
62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63 *					clean up the APFDDI & gen. FDDI bits.
64 *		Alexey Kuznetsov:	new arp state machine;
65 *					now it is in net/core/neighbour.c.
66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68 *		Shmulik Hen:		Split arp_send to arp_create and
69 *					arp_xmit so intermediate drivers like
70 *					bonding can change the skb before
71 *					sending (e.g. insert 8021q tag).
72 *		Harald Welte	:	convert to make use of jenkins hash
73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74 */
75
76#include <linux/module.h>
77#include <linux/types.h>
78#include <linux/string.h>
79#include <linux/kernel.h>
80#include <linux/capability.h>
81#include <linux/socket.h>
82#include <linux/sockios.h>
83#include <linux/errno.h>
84#include <linux/in.h>
85#include <linux/mm.h>
86#include <linux/inet.h>
87#include <linux/inetdevice.h>
88#include <linux/netdevice.h>
89#include <linux/etherdevice.h>
90#include <linux/fddidevice.h>
91#include <linux/if_arp.h>
92#include <linux/trdevice.h>
93#include <linux/skbuff.h>
94#include <linux/proc_fs.h>
95#include <linux/seq_file.h>
96#include <linux/stat.h>
97#include <linux/init.h>
98#include <linux/net.h>
99#include <linux/rcupdate.h>
100#include <linux/jhash.h>
101#include <linux/slab.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117#include <net/atmclip.h>
118struct neigh_table *clip_tbl_hook;
119EXPORT_SYMBOL(clip_tbl_hook);
120#endif
121
122#include <asm/system.h>
123#include <asm/uaccess.h>
124
125#include <linux/netfilter_arp.h>
126
127/*
128 *	Interface to generic neighbour cache.
129 */
130static u32 arp_hash(const void *pkey, const struct net_device *dev);
131static int arp_constructor(struct neighbour *neigh);
132static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
133static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
134static void parp_redo(struct sk_buff *skb);
135
136static const struct neigh_ops arp_generic_ops = {
137	.family =		AF_INET,
138	.solicit =		arp_solicit,
139	.error_report =		arp_error_report,
140	.output =		neigh_resolve_output,
141	.connected_output =	neigh_connected_output,
142	.hh_output =		dev_queue_xmit,
143	.queue_xmit =		dev_queue_xmit,
144};
145
146static const struct neigh_ops arp_hh_ops = {
147	.family =		AF_INET,
148	.solicit =		arp_solicit,
149	.error_report =		arp_error_report,
150	.output =		neigh_resolve_output,
151	.connected_output =	neigh_resolve_output,
152	.hh_output =		dev_queue_xmit,
153	.queue_xmit =		dev_queue_xmit,
154};
155
156static const struct neigh_ops arp_direct_ops = {
157	.family =		AF_INET,
158	.output =		dev_queue_xmit,
159	.connected_output =	dev_queue_xmit,
160	.hh_output =		dev_queue_xmit,
161	.queue_xmit =		dev_queue_xmit,
162};
163
164const struct neigh_ops arp_broken_ops = {
165	.family =		AF_INET,
166	.solicit =		arp_solicit,
167	.error_report =		arp_error_report,
168	.output =		neigh_compat_output,
169	.connected_output =	neigh_compat_output,
170	.hh_output =		dev_queue_xmit,
171	.queue_xmit =		dev_queue_xmit,
172};
173EXPORT_SYMBOL(arp_broken_ops);
174
175struct neigh_table arp_tbl = {
176	.family =	AF_INET,
177	.entry_size =	sizeof(struct neighbour) + 4,
178	.key_len =	4,
179	.hash =		arp_hash,
180	.constructor =	arp_constructor,
181	.proxy_redo =	parp_redo,
182	.id =		"arp_cache",
183	.parms = {
184		.tbl =			&arp_tbl,
185		.base_reachable_time =	30 * HZ,
186		.retrans_time =	1 * HZ,
187		.gc_staletime =	60 * HZ,
188		.reachable_time =		30 * HZ,
189		.delay_probe_time =	5 * HZ,
190		.queue_len =		3,
191		.ucast_probes =	3,
192		.mcast_probes =	3,
193		.anycast_delay =	1 * HZ,
194		.proxy_delay =		(8 * HZ) / 10,
195		.proxy_qlen =		64,
196		.locktime =		1 * HZ,
197	},
198	.gc_interval =	30 * HZ,
199	.gc_thresh1 =	128,
200	.gc_thresh2 =	512,
201	.gc_thresh3 =	1024,
202};
203EXPORT_SYMBOL(arp_tbl);
204
205int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
206{
207	switch (dev->type) {
208	case ARPHRD_ETHER:
209	case ARPHRD_FDDI:
210	case ARPHRD_IEEE802:
211		ip_eth_mc_map(addr, haddr);
212		return 0;
213	case ARPHRD_IEEE802_TR:
214		ip_tr_mc_map(addr, haddr);
215		return 0;
216	case ARPHRD_INFINIBAND:
217		ip_ib_mc_map(addr, dev->broadcast, haddr);
218		return 0;
219	default:
220		if (dir) {
221			memcpy(haddr, dev->broadcast, dev->addr_len);
222			return 0;
223		}
224	}
225	return -EINVAL;
226}
227
228
229static u32 arp_hash(const void *pkey, const struct net_device *dev)
230{
231	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
232}
233
234static int arp_constructor(struct neighbour *neigh)
235{
236	__be32 addr = *(__be32*)neigh->primary_key;
237	struct net_device *dev = neigh->dev;
238	struct in_device *in_dev;
239	struct neigh_parms *parms;
240
241	rcu_read_lock();
242	in_dev = __in_dev_get_rcu(dev);
243	if (in_dev == NULL) {
244		rcu_read_unlock();
245		return -EINVAL;
246	}
247
248	neigh->type = inet_addr_type(dev_net(dev), addr);
249
250	parms = in_dev->arp_parms;
251	__neigh_parms_put(neigh->parms);
252	neigh->parms = neigh_parms_clone(parms);
253	rcu_read_unlock();
254
255	if (!dev->header_ops) {
256		neigh->nud_state = NUD_NOARP;
257		neigh->ops = &arp_direct_ops;
258		neigh->output = neigh->ops->queue_xmit;
259	} else {
260		/* Good devices (checked by reading texts, but only Ethernet is
261		   tested)
262
263		   ARPHRD_ETHER: (ethernet, apfddi)
264		   ARPHRD_FDDI: (fddi)
265		   ARPHRD_IEEE802: (tr)
266		   ARPHRD_METRICOM: (strip)
267		   ARPHRD_ARCNET:
268		   etc. etc. etc.
269
270		   ARPHRD_IPDDP will also work, if author repairs it.
271		   I did not it, because this driver does not work even
272		   in old paradigm.
273		 */
274
275		/* So... these "amateur" devices are hopeless.
276		   The only thing, that I can say now:
277		   It is very sad that we need to keep ugly obsolete
278		   code to make them happy.
279
280		   They should be moved to more reasonable state, now
281		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
282		   Besides that, they are sort of out of date
283		   (a lot of redundant clones/copies, useless in 2.1),
284		   I wonder why people believe that they work.
285		 */
286		switch (dev->type) {
287		default:
288			break;
289		case ARPHRD_ROSE:
290#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
291		case ARPHRD_AX25:
292#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
293		case ARPHRD_NETROM:
294#endif
295			neigh->ops = &arp_broken_ops;
296			neigh->output = neigh->ops->output;
297			return 0;
298#endif
299		;}
300		if (neigh->type == RTN_MULTICAST) {
301			neigh->nud_state = NUD_NOARP;
302			arp_mc_map(addr, neigh->ha, dev, 1);
303		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
304			neigh->nud_state = NUD_NOARP;
305			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
306		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
307			neigh->nud_state = NUD_NOARP;
308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
309		}
310
311		if (dev->header_ops->cache)
312			neigh->ops = &arp_hh_ops;
313		else
314			neigh->ops = &arp_generic_ops;
315
316		if (neigh->nud_state&NUD_VALID)
317			neigh->output = neigh->ops->connected_output;
318		else
319			neigh->output = neigh->ops->output;
320	}
321	return 0;
322}
323
324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325{
326	dst_link_failure(skb);
327	kfree_skb(skb);
328}
329
330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331{
332	__be32 saddr = 0;
333	u8  *dst_ha = NULL;
334	struct net_device *dev = neigh->dev;
335	__be32 target = *(__be32*)neigh->primary_key;
336	int probes = atomic_read(&neigh->probes);
337	struct in_device *in_dev;
338
339	rcu_read_lock();
340	in_dev = __in_dev_get_rcu(dev);
341	if (!in_dev) {
342		rcu_read_unlock();
343		return;
344	}
345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346	default:
347	case 0:		/* By default announce any local IP */
348		if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
349			saddr = ip_hdr(skb)->saddr;
350		break;
351	case 1:		/* Restrict announcements of saddr in same subnet */
352		if (!skb)
353			break;
354		saddr = ip_hdr(skb)->saddr;
355		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
356			/* saddr should be known to target */
357			if (inet_addr_onlink(in_dev, target, saddr))
358				break;
359		}
360		saddr = 0;
361		break;
362	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
363		break;
364	}
365	rcu_read_unlock();
366
367	if (!saddr)
368		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
369
370	if ((probes -= neigh->parms->ucast_probes) < 0) {
371		if (!(neigh->nud_state&NUD_VALID))
372			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
373		dst_ha = neigh->ha;
374		read_lock_bh(&neigh->lock);
375	} else if ((probes -= neigh->parms->app_probes) < 0) {
376#ifdef CONFIG_ARPD
377		neigh_app_ns(neigh);
378#endif
379		return;
380	}
381
382	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
383		 dst_ha, dev->dev_addr, NULL);
384	if (dst_ha)
385		read_unlock_bh(&neigh->lock);
386}
387
388static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
389{
390	int scope;
391
392	switch (IN_DEV_ARP_IGNORE(in_dev)) {
393	case 0:	/* Reply, the tip is already validated */
394		return 0;
395	case 1:	/* Reply only if tip is configured on the incoming interface */
396		sip = 0;
397		scope = RT_SCOPE_HOST;
398		break;
399	case 2:	/*
400		 * Reply only if tip is configured on the incoming interface
401		 * and is in same subnet as sip
402		 */
403		scope = RT_SCOPE_HOST;
404		break;
405	case 3:	/* Do not reply for scope host addresses */
406		sip = 0;
407		scope = RT_SCOPE_LINK;
408		break;
409	case 4:	/* Reserved */
410	case 5:
411	case 6:
412	case 7:
413		return 0;
414	case 8:	/* Do not reply */
415		return 1;
416	default:
417		return 0;
418	}
419	return !inet_confirm_addr(in_dev, sip, tip, scope);
420}
421
422static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
423{
424	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
425						 .saddr = tip } } };
426	struct rtable *rt;
427	int flag = 0;
428	/*unsigned long now; */
429	struct net *net = dev_net(dev);
430
431	if (ip_route_output_key(net, &rt, &fl) < 0)
432		return 1;
433	if (rt->dst.dev != dev) {
434		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
435		flag = 1;
436	}
437	ip_rt_put(rt);
438	return flag;
439}
440
441/* OBSOLETE FUNCTIONS */
442
443/*
444 *	Find an arp mapping in the cache. If not found, post a request.
445 *
446 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
447 *	even if it exists. It is supposed that skb->dev was mangled
448 *	by a virtual device (eql, shaper). Nobody but broken devices
449 *	is allowed to use this function, it is scheduled to be removed. --ANK
450 */
451
452static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
453{
454	switch (addr_hint) {
455	case RTN_LOCAL:
456		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
457		memcpy(haddr, dev->dev_addr, dev->addr_len);
458		return 1;
459	case RTN_MULTICAST:
460		arp_mc_map(paddr, haddr, dev, 1);
461		return 1;
462	case RTN_BROADCAST:
463		memcpy(haddr, dev->broadcast, dev->addr_len);
464		return 1;
465	}
466	return 0;
467}
468
469
470int arp_find(unsigned char *haddr, struct sk_buff *skb)
471{
472	struct net_device *dev = skb->dev;
473	__be32 paddr;
474	struct neighbour *n;
475
476	if (!skb_dst(skb)) {
477		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
478		kfree_skb(skb);
479		return 1;
480	}
481
482	paddr = skb_rtable(skb)->rt_gateway;
483
484	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
485		return 0;
486
487	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
488
489	if (n) {
490		n->used = jiffies;
491		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
492			read_lock_bh(&n->lock);
493			memcpy(haddr, n->ha, dev->addr_len);
494			read_unlock_bh(&n->lock);
495			neigh_release(n);
496			return 0;
497		}
498		neigh_release(n);
499	} else
500		kfree_skb(skb);
501	return 1;
502}
503EXPORT_SYMBOL(arp_find);
504
505/* END OF OBSOLETE FUNCTIONS */
506
507int arp_bind_neighbour(struct dst_entry *dst)
508{
509	struct net_device *dev = dst->dev;
510	struct neighbour *n = dst->neighbour;
511
512	if (dev == NULL)
513		return -EINVAL;
514	if (n == NULL) {
515		__be32 nexthop = ((struct rtable *)dst)->rt_gateway;
516		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
517			nexthop = 0;
518		n = __neigh_lookup_errno(
519#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
520		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
521#endif
522		    &arp_tbl, &nexthop, dev);
523		if (IS_ERR(n))
524			return PTR_ERR(n);
525		dst->neighbour = n;
526	}
527	return 0;
528}
529
530/*
531 * Check if we can use proxy ARP for this path
532 */
533static inline int arp_fwd_proxy(struct in_device *in_dev,
534				struct net_device *dev,	struct rtable *rt)
535{
536	struct in_device *out_dev;
537	int imi, omi = -1;
538
539	if (rt->dst.dev == dev)
540		return 0;
541
542	if (!IN_DEV_PROXY_ARP(in_dev))
543		return 0;
544
545	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
546		return 1;
547	if (imi == -1)
548		return 0;
549
550	/* place to check for proxy_arp for routes */
551
552	out_dev = __in_dev_get_rcu(rt->dst.dev);
553	if (out_dev)
554		omi = IN_DEV_MEDIUM_ID(out_dev);
555
556	return (omi != imi && omi != -1);
557}
558
559/*
560 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
561 *
562 * RFC3069 supports proxy arp replies back to the same interface.  This
563 * is done to support (ethernet) switch features, like RFC 3069, where
564 * the individual ports are not allowed to communicate with each
565 * other, BUT they are allowed to talk to the upstream router.  As
566 * described in RFC 3069, it is possible to allow these hosts to
567 * communicate through the upstream router, by proxy_arp'ing.
568 *
569 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
570 *
571 *  This technology is known by different names:
572 *    In RFC 3069 it is called VLAN Aggregation.
573 *    Cisco and Allied Telesyn call it Private VLAN.
574 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
575 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
576 *
577 */
578static inline int arp_fwd_pvlan(struct in_device *in_dev,
579				struct net_device *dev,	struct rtable *rt,
580				__be32 sip, __be32 tip)
581{
582	/* Private VLAN is only concerned about the same ethernet segment */
583	if (rt->dst.dev != dev)
584		return 0;
585
586	/* Don't reply on self probes (often done by windowz boxes)*/
587	if (sip == tip)
588		return 0;
589
590	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
591		return 1;
592	else
593		return 0;
594}
595
596/*
597 *	Interface to link layer: send routine and receive handler.
598 */
599
600/*
601 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
602 *	message.
603 */
604struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
605			   struct net_device *dev, __be32 src_ip,
606			   const unsigned char *dest_hw,
607			   const unsigned char *src_hw,
608			   const unsigned char *target_hw)
609{
610	struct sk_buff *skb;
611	struct arphdr *arp;
612	unsigned char *arp_ptr;
613
614	/*
615	 *	Allocate a buffer
616	 */
617
618	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
619	if (skb == NULL)
620		return NULL;
621
622	skb_reserve(skb, LL_RESERVED_SPACE(dev));
623	skb_reset_network_header(skb);
624	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
625	skb->dev = dev;
626	skb->protocol = htons(ETH_P_ARP);
627	if (src_hw == NULL)
628		src_hw = dev->dev_addr;
629	if (dest_hw == NULL)
630		dest_hw = dev->broadcast;
631
632	/*
633	 *	Fill the device header for the ARP frame
634	 */
635	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
636		goto out;
637
638	/*
639	 * Fill out the arp protocol part.
640	 *
641	 * The arp hardware type should match the device type, except for FDDI,
642	 * which (according to RFC 1390) should always equal 1 (Ethernet).
643	 */
644	/*
645	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
646	 *	DIX code for the protocol. Make these device structure fields.
647	 */
648	switch (dev->type) {
649	default:
650		arp->ar_hrd = htons(dev->type);
651		arp->ar_pro = htons(ETH_P_IP);
652		break;
653
654#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
655	case ARPHRD_AX25:
656		arp->ar_hrd = htons(ARPHRD_AX25);
657		arp->ar_pro = htons(AX25_P_IP);
658		break;
659
660#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
661	case ARPHRD_NETROM:
662		arp->ar_hrd = htons(ARPHRD_NETROM);
663		arp->ar_pro = htons(AX25_P_IP);
664		break;
665#endif
666#endif
667
668#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
669	case ARPHRD_FDDI:
670		arp->ar_hrd = htons(ARPHRD_ETHER);
671		arp->ar_pro = htons(ETH_P_IP);
672		break;
673#endif
674#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
675	case ARPHRD_IEEE802_TR:
676		arp->ar_hrd = htons(ARPHRD_IEEE802);
677		arp->ar_pro = htons(ETH_P_IP);
678		break;
679#endif
680	}
681
682	arp->ar_hln = dev->addr_len;
683	arp->ar_pln = 4;
684	arp->ar_op = htons(type);
685
686	arp_ptr=(unsigned char *)(arp+1);
687
688	memcpy(arp_ptr, src_hw, dev->addr_len);
689	arp_ptr += dev->addr_len;
690	memcpy(arp_ptr, &src_ip, 4);
691	arp_ptr += 4;
692	if (target_hw != NULL)
693		memcpy(arp_ptr, target_hw, dev->addr_len);
694	else
695		memset(arp_ptr, 0, dev->addr_len);
696	arp_ptr += dev->addr_len;
697	memcpy(arp_ptr, &dest_ip, 4);
698
699	return skb;
700
701out:
702	kfree_skb(skb);
703	return NULL;
704}
705EXPORT_SYMBOL(arp_create);
706
707/*
708 *	Send an arp packet.
709 */
710void arp_xmit(struct sk_buff *skb)
711{
712	/* Send it off, maybe filter it using firewalling first.  */
713	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
714}
715EXPORT_SYMBOL(arp_xmit);
716
717/*
718 *	Create and send an arp packet.
719 */
720void arp_send(int type, int ptype, __be32 dest_ip,
721	      struct net_device *dev, __be32 src_ip,
722	      const unsigned char *dest_hw, const unsigned char *src_hw,
723	      const unsigned char *target_hw)
724{
725	struct sk_buff *skb;
726
727	/*
728	 *	No arp on this interface.
729	 */
730
731	if (dev->flags&IFF_NOARP)
732		return;
733
734	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
735			 dest_hw, src_hw, target_hw);
736	if (skb == NULL) {
737		return;
738	}
739
740	arp_xmit(skb);
741}
742EXPORT_SYMBOL(arp_send);
743
744/*
745 *	Process an arp request.
746 */
747
748static int arp_process(struct sk_buff *skb)
749{
750	struct net_device *dev = skb->dev;
751	struct in_device *in_dev = __in_dev_get_rcu(dev);
752	struct arphdr *arp;
753	unsigned char *arp_ptr;
754	struct rtable *rt;
755	unsigned char *sha;
756	__be32 sip, tip;
757	u16 dev_type = dev->type;
758	int addr_type;
759	struct neighbour *n;
760	struct net *net = dev_net(dev);
761
762	/* arp_rcv below verifies the ARP header and verifies the device
763	 * is ARP'able.
764	 */
765
766	if (in_dev == NULL)
767		goto out;
768
769	arp = arp_hdr(skb);
770
771	switch (dev_type) {
772	default:
773		if (arp->ar_pro != htons(ETH_P_IP) ||
774		    htons(dev_type) != arp->ar_hrd)
775			goto out;
776		break;
777	case ARPHRD_ETHER:
778	case ARPHRD_IEEE802_TR:
779	case ARPHRD_FDDI:
780	case ARPHRD_IEEE802:
781		/*
782		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
783		 * devices, according to RFC 2625) devices will accept ARP
784		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
785		 * This is the case also of FDDI, where the RFC 1390 says that
786		 * FDDI devices should accept ARP hardware of (1) Ethernet,
787		 * however, to be more robust, we'll accept both 1 (Ethernet)
788		 * or 6 (IEEE 802.2)
789		 */
790		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
791		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
792		    arp->ar_pro != htons(ETH_P_IP))
793			goto out;
794		break;
795	case ARPHRD_AX25:
796		if (arp->ar_pro != htons(AX25_P_IP) ||
797		    arp->ar_hrd != htons(ARPHRD_AX25))
798			goto out;
799		break;
800	case ARPHRD_NETROM:
801		if (arp->ar_pro != htons(AX25_P_IP) ||
802		    arp->ar_hrd != htons(ARPHRD_NETROM))
803			goto out;
804		break;
805	}
806
807	/* Understand only these message types */
808
809	if (arp->ar_op != htons(ARPOP_REPLY) &&
810	    arp->ar_op != htons(ARPOP_REQUEST))
811		goto out;
812
813/*
814 *	Extract fields
815 */
816	arp_ptr= (unsigned char *)(arp+1);
817	sha	= arp_ptr;
818	arp_ptr += dev->addr_len;
819	memcpy(&sip, arp_ptr, 4);
820	arp_ptr += 4;
821	arp_ptr += dev->addr_len;
822	memcpy(&tip, arp_ptr, 4);
823/*
824 *	Check for bad requests for 127.x.x.x and requests for multicast
825 *	addresses.  If this is one such, delete it.
826 */
827	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
828		goto out;
829
830/*
831 *     Special case: We must set Frame Relay source Q.922 address
832 */
833	if (dev_type == ARPHRD_DLCI)
834		sha = dev->broadcast;
835
836/*
837 *  Process entry.  The idea here is we want to send a reply if it is a
838 *  request for us or if it is a request for someone else that we hold
839 *  a proxy for.  We want to add an entry to our cache if it is a reply
840 *  to us or if it is a request for our address.
841 *  (The assumption for this last is that if someone is requesting our
842 *  address, they are probably intending to talk to us, so it saves time
843 *  if we cache their address.  Their address is also probably not in
844 *  our cache, since ours is not in their cache.)
845 *
846 *  Putting this another way, we only care about replies if they are to
847 *  us, in which case we add them to the cache.  For requests, we care
848 *  about those for us and those for our proxies.  We reply to both,
849 *  and in the case of requests for us we add the requester to the arp
850 *  cache.
851 */
852
853	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
854	if (sip == 0) {
855		if (arp->ar_op == htons(ARPOP_REQUEST) &&
856		    inet_addr_type(net, tip) == RTN_LOCAL &&
857		    !arp_ignore(in_dev, sip, tip))
858			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
859				 dev->dev_addr, sha);
860		goto out;
861	}
862
863	if (arp->ar_op == htons(ARPOP_REQUEST) &&
864	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
865
866		rt = skb_rtable(skb);
867		addr_type = rt->rt_type;
868
869		if (addr_type == RTN_LOCAL) {
870			int dont_send = 0;
871
872			if (!dont_send)
873				dont_send |= arp_ignore(in_dev,sip,tip);
874			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
875				dont_send |= arp_filter(sip,tip,dev);
876			if (!dont_send) {
877				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
878				if (n) {
879					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
880					neigh_release(n);
881				}
882			}
883			goto out;
884		} else if (IN_DEV_FORWARD(in_dev)) {
885			if (addr_type == RTN_UNICAST  &&
886			    (arp_fwd_proxy(in_dev, dev, rt) ||
887			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
888			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))
889			{
890				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
891				if (n)
892					neigh_release(n);
893
894				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
895				    skb->pkt_type == PACKET_HOST ||
896				    in_dev->arp_parms->proxy_delay == 0) {
897					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
898				} else {
899					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
900					return 0;
901				}
902				goto out;
903			}
904		}
905	}
906
907	/* Update our ARP tables */
908
909	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
910
911	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
912		/* Unsolicited ARP is not accepted by default.
913		   It is possible, that this option should be enabled for some
914		   devices (strip is candidate)
915		 */
916		if (n == NULL &&
917		    (arp->ar_op == htons(ARPOP_REPLY) ||
918		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
919		    inet_addr_type(net, sip) == RTN_UNICAST)
920			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
921	}
922
923	if (n) {
924		int state = NUD_REACHABLE;
925		int override;
926
927		/* If several different ARP replies follows back-to-back,
928		   use the FIRST one. It is possible, if several proxy
929		   agents are active. Taking the first reply prevents
930		   arp trashing and chooses the fastest router.
931		 */
932		override = time_after(jiffies, n->updated + n->parms->locktime);
933
934		/* Broadcast replies and request packets
935		   do not assert neighbour reachability.
936		 */
937		if (arp->ar_op != htons(ARPOP_REPLY) ||
938		    skb->pkt_type != PACKET_HOST)
939			state = NUD_STALE;
940		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
941		neigh_release(n);
942	}
943
944out:
945	consume_skb(skb);
946	return 0;
947}
948
949static void parp_redo(struct sk_buff *skb)
950{
951	arp_process(skb);
952}
953
954
955/*
956 *	Receive an arp request from the device layer.
957 */
958
959static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
960		   struct packet_type *pt, struct net_device *orig_dev)
961{
962	struct arphdr *arp;
963
964	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
965	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
966		goto freeskb;
967
968	arp = arp_hdr(skb);
969	if (arp->ar_hln != dev->addr_len ||
970	    dev->flags & IFF_NOARP ||
971	    skb->pkt_type == PACKET_OTHERHOST ||
972	    skb->pkt_type == PACKET_LOOPBACK ||
973	    arp->ar_pln != 4)
974		goto freeskb;
975
976	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
977		goto out_of_mem;
978
979	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
980
981	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
982
983freeskb:
984	kfree_skb(skb);
985out_of_mem:
986	return 0;
987}
988
989/*
990 *	User level interface (ioctl)
991 */
992
993/*
994 *	Set (create) an ARP cache entry.
995 */
996
997static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
998{
999	if (dev == NULL) {
1000		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1001		return 0;
1002	}
1003	if (__in_dev_get_rtnl(dev)) {
1004		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1005		return 0;
1006	}
1007	return -ENXIO;
1008}
1009
1010static int arp_req_set_public(struct net *net, struct arpreq *r,
1011		struct net_device *dev)
1012{
1013	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1014	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1015
1016	if (mask && mask != htonl(0xFFFFFFFF))
1017		return -EINVAL;
1018	if (!dev && (r->arp_flags & ATF_COM)) {
1019		dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1020				r->arp_ha.sa_data);
1021		if (!dev)
1022			return -ENODEV;
1023	}
1024	if (mask) {
1025		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1026			return -ENOBUFS;
1027		return 0;
1028	}
1029
1030	return arp_req_set_proxy(net, dev, 1);
1031}
1032
1033static int arp_req_set(struct net *net, struct arpreq *r,
1034		struct net_device * dev)
1035{
1036	__be32 ip;
1037	struct neighbour *neigh;
1038	int err;
1039
1040	if (r->arp_flags & ATF_PUBL)
1041		return arp_req_set_public(net, r, dev);
1042
1043	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1044	if (r->arp_flags & ATF_PERM)
1045		r->arp_flags |= ATF_COM;
1046	if (dev == NULL) {
1047		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1048							 .tos = RTO_ONLINK } } };
1049		struct rtable * rt;
1050		if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1051			return err;
1052		dev = rt->dst.dev;
1053		ip_rt_put(rt);
1054		if (!dev)
1055			return -EINVAL;
1056	}
1057	switch (dev->type) {
1058#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1059	case ARPHRD_FDDI:
1060		/*
1061		 * According to RFC 1390, FDDI devices should accept ARP
1062		 * hardware types of 1 (Ethernet).  However, to be more
1063		 * robust, we'll accept hardware types of either 1 (Ethernet)
1064		 * or 6 (IEEE 802.2).
1065		 */
1066		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1067		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1068		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1069			return -EINVAL;
1070		break;
1071#endif
1072	default:
1073		if (r->arp_ha.sa_family != dev->type)
1074			return -EINVAL;
1075		break;
1076	}
1077
1078	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1079	err = PTR_ERR(neigh);
1080	if (!IS_ERR(neigh)) {
1081		unsigned state = NUD_STALE;
1082		if (r->arp_flags & ATF_PERM)
1083			state = NUD_PERMANENT;
1084		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1085				   r->arp_ha.sa_data : NULL, state,
1086				   NEIGH_UPDATE_F_OVERRIDE|
1087				   NEIGH_UPDATE_F_ADMIN);
1088		neigh_release(neigh);
1089	}
1090	return err;
1091}
1092
1093static unsigned arp_state_to_flags(struct neighbour *neigh)
1094{
1095	unsigned flags = 0;
1096	if (neigh->nud_state&NUD_PERMANENT)
1097		flags = ATF_PERM|ATF_COM;
1098	else if (neigh->nud_state&NUD_VALID)
1099		flags = ATF_COM;
1100	return flags;
1101}
1102
1103/*
1104 *	Get an ARP cache entry.
1105 */
1106
1107static int arp_req_get(struct arpreq *r, struct net_device *dev)
1108{
1109	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1110	struct neighbour *neigh;
1111	int err = -ENXIO;
1112
1113	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1114	if (neigh) {
1115		read_lock_bh(&neigh->lock);
1116		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1117		r->arp_flags = arp_state_to_flags(neigh);
1118		read_unlock_bh(&neigh->lock);
1119		r->arp_ha.sa_family = dev->type;
1120		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1121		neigh_release(neigh);
1122		err = 0;
1123	}
1124	return err;
1125}
1126
1127static int arp_req_delete_public(struct net *net, struct arpreq *r,
1128		struct net_device *dev)
1129{
1130	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1131	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1132
1133	if (mask == htonl(0xFFFFFFFF))
1134		return pneigh_delete(&arp_tbl, net, &ip, dev);
1135
1136	if (mask)
1137		return -EINVAL;
1138
1139	return arp_req_set_proxy(net, dev, 0);
1140}
1141
1142static int arp_req_delete(struct net *net, struct arpreq *r,
1143		struct net_device * dev)
1144{
1145	int err;
1146	__be32 ip;
1147	struct neighbour *neigh;
1148
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1155							 .tos = RTO_ONLINK } } };
1156		struct rtable * rt;
1157		if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1158			return err;
1159		dev = rt->dst.dev;
1160		ip_rt_put(rt);
1161		if (!dev)
1162			return -EINVAL;
1163	}
1164	err = -ENXIO;
1165	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1166	if (neigh) {
1167		if (neigh->nud_state&~NUD_NOARP)
1168			err = neigh_update(neigh, NULL, NUD_FAILED,
1169					   NEIGH_UPDATE_F_OVERRIDE|
1170					   NEIGH_UPDATE_F_ADMIN);
1171		neigh_release(neigh);
1172	}
1173	return err;
1174}
1175
1176/*
1177 *	Handle an ARP layer I/O control request.
1178 */
1179
1180int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1181{
1182	int err;
1183	struct arpreq r;
1184	struct net_device *dev = NULL;
1185
1186	switch (cmd) {
1187		case SIOCDARP:
1188		case SIOCSARP:
1189			if (!capable(CAP_NET_ADMIN))
1190				return -EPERM;
1191		case SIOCGARP:
1192			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193			if (err)
1194				return -EFAULT;
1195			break;
1196		default:
1197			return -EINVAL;
1198	}
1199
1200	if (r.arp_pa.sa_family != AF_INET)
1201		return -EPFNOSUPPORT;
1202
1203	if (!(r.arp_flags & ATF_PUBL) &&
1204	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1205		return -EINVAL;
1206	if (!(r.arp_flags & ATF_NETMASK))
1207		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208							   htonl(0xFFFFFFFFUL);
1209	rtnl_lock();
1210	if (r.arp_dev[0]) {
1211		err = -ENODEV;
1212		if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1213			goto out;
1214
1215		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1216		if (!r.arp_ha.sa_family)
1217			r.arp_ha.sa_family = dev->type;
1218		err = -EINVAL;
1219		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1220			goto out;
1221	} else if (cmd == SIOCGARP) {
1222		err = -ENODEV;
1223		goto out;
1224	}
1225
1226	switch (cmd) {
1227	case SIOCDARP:
1228		err = arp_req_delete(net, &r, dev);
1229		break;
1230	case SIOCSARP:
1231		err = arp_req_set(net, &r, dev);
1232		break;
1233	case SIOCGARP:
1234		err = arp_req_get(&r, dev);
1235		if (!err && copy_to_user(arg, &r, sizeof(r)))
1236			err = -EFAULT;
1237		break;
1238	}
1239out:
1240	rtnl_unlock();
1241	return err;
1242}
1243
1244static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1245{
1246	struct net_device *dev = ptr;
1247
1248	switch (event) {
1249	case NETDEV_CHANGEADDR:
1250		neigh_changeaddr(&arp_tbl, dev);
1251		rt_cache_flush(dev_net(dev), 0);
1252		break;
1253	default:
1254		break;
1255	}
1256
1257	return NOTIFY_DONE;
1258}
1259
1260static struct notifier_block arp_netdev_notifier = {
1261	.notifier_call = arp_netdev_event,
1262};
1263
1264/* Note, that it is not on notifier chain.
1265   It is necessary, that this routine was called after route cache will be
1266   flushed.
1267 */
1268void arp_ifdown(struct net_device *dev)
1269{
1270	neigh_ifdown(&arp_tbl, dev);
1271}
1272
1273
1274/*
1275 *	Called once on startup.
1276 */
1277
1278static struct packet_type arp_packet_type __read_mostly = {
1279	.type =	cpu_to_be16(ETH_P_ARP),
1280	.func =	arp_rcv,
1281};
1282
1283static int arp_proc_init(void);
1284
1285void __init arp_init(void)
1286{
1287	neigh_table_init(&arp_tbl);
1288
1289	dev_add_pack(&arp_packet_type);
1290	arp_proc_init();
1291#ifdef CONFIG_SYSCTL
1292	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1293#endif
1294	register_netdevice_notifier(&arp_netdev_notifier);
1295}
1296
1297#ifdef CONFIG_PROC_FS
1298#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1299
1300/* ------------------------------------------------------------------------ */
1301/*
1302 *	ax25 -> ASCII conversion
1303 */
1304static char *ax2asc2(ax25_address *a, char *buf)
1305{
1306	char c, *s;
1307	int n;
1308
1309	for (n = 0, s = buf; n < 6; n++) {
1310		c = (a->ax25_call[n] >> 1) & 0x7F;
1311
1312		if (c != ' ') *s++ = c;
1313	}
1314
1315	*s++ = '-';
1316
1317	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1318		*s++ = '1';
1319		n -= 10;
1320	}
1321
1322	*s++ = n + '0';
1323	*s++ = '\0';
1324
1325	if (*buf == '\0' || *buf == '-')
1326	   return "*";
1327
1328	return buf;
1329
1330}
1331#endif /* CONFIG_AX25 */
1332
1333#define HBUFFERLEN 30
1334
1335static void arp_format_neigh_entry(struct seq_file *seq,
1336				   struct neighbour *n)
1337{
1338	char hbuffer[HBUFFERLEN];
1339	int k, j;
1340	char tbuf[16];
1341	struct net_device *dev = n->dev;
1342	int hatype = dev->type;
1343
1344	read_lock(&n->lock);
1345	/* Convert hardware address to XX:XX:XX:XX ... form. */
1346#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1347	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1348		ax2asc2((ax25_address *)n->ha, hbuffer);
1349	else {
1350#endif
1351	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1352		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1353		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1354		hbuffer[k++] = ':';
1355	}
1356	if (k != 0)
1357		--k;
1358	hbuffer[k] = 0;
1359#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1360	}
1361#endif
1362	sprintf(tbuf, "%pI4", n->primary_key);
1363	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1364		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1365	read_unlock(&n->lock);
1366}
1367
1368static void arp_format_pneigh_entry(struct seq_file *seq,
1369				    struct pneigh_entry *n)
1370{
1371	struct net_device *dev = n->dev;
1372	int hatype = dev ? dev->type : 0;
1373	char tbuf[16];
1374
1375	sprintf(tbuf, "%pI4", n->key);
1376	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1377		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1378		   dev ? dev->name : "*");
1379}
1380
1381static int arp_seq_show(struct seq_file *seq, void *v)
1382{
1383	if (v == SEQ_START_TOKEN) {
1384		seq_puts(seq, "IP address       HW type     Flags       "
1385			      "HW address            Mask     Device\n");
1386	} else {
1387		struct neigh_seq_state *state = seq->private;
1388
1389		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1390			arp_format_pneigh_entry(seq, v);
1391		else
1392			arp_format_neigh_entry(seq, v);
1393	}
1394
1395	return 0;
1396}
1397
1398static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1399{
1400	/* Don't want to confuse "arp -a" w/ magic entries,
1401	 * so we tell the generic iterator to skip NUD_NOARP.
1402	 */
1403	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1404}
1405
1406/* ------------------------------------------------------------------------ */
1407
1408static const struct seq_operations arp_seq_ops = {
1409	.start  = arp_seq_start,
1410	.next   = neigh_seq_next,
1411	.stop   = neigh_seq_stop,
1412	.show   = arp_seq_show,
1413};
1414
1415static int arp_seq_open(struct inode *inode, struct file *file)
1416{
1417	return seq_open_net(inode, file, &arp_seq_ops,
1418			    sizeof(struct neigh_seq_state));
1419}
1420
1421static const struct file_operations arp_seq_fops = {
1422	.owner		= THIS_MODULE,
1423	.open           = arp_seq_open,
1424	.read           = seq_read,
1425	.llseek         = seq_lseek,
1426	.release	= seq_release_net,
1427};
1428
1429
1430static int __net_init arp_net_init(struct net *net)
1431{
1432	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1433		return -ENOMEM;
1434	return 0;
1435}
1436
1437static void __net_exit arp_net_exit(struct net *net)
1438{
1439	proc_net_remove(net, "arp");
1440}
1441
1442static struct pernet_operations arp_net_ops = {
1443	.init = arp_net_init,
1444	.exit = arp_net_exit,
1445};
1446
1447static int __init arp_proc_init(void)
1448{
1449	return register_pernet_subsys(&arp_net_ops);
1450}
1451
1452#else /* CONFIG_PROC_FS */
1453
1454static int __init arp_proc_init(void)
1455{
1456	return 0;
1457}
1458
1459#endif /* CONFIG_PROC_FS */
1460