1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states.	The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27/*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33#define DEBUG 1		/* remove me in 2.6.34 */
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/page-flags.h>
37#include <linux/kernel-page-flags.h>
38#include <linux/sched.h>
39#include <linux/ksm.h>
40#include <linux/rmap.h>
41#include <linux/pagemap.h>
42#include <linux/swap.h>
43#include <linux/backing-dev.h>
44#include <linux/migrate.h>
45#include <linux/page-isolation.h>
46#include <linux/suspend.h>
47#include <linux/slab.h>
48#include <linux/swapops.h>
49#include <linux/hugetlb.h>
50#include "internal.h"
51
52int sysctl_memory_failure_early_kill __read_mostly = 0;
53
54int sysctl_memory_failure_recovery __read_mostly = 1;
55
56atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
57
58#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
59
60u32 hwpoison_filter_enable = 0;
61u32 hwpoison_filter_dev_major = ~0U;
62u32 hwpoison_filter_dev_minor = ~0U;
63u64 hwpoison_filter_flags_mask;
64u64 hwpoison_filter_flags_value;
65EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
66EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
67EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
68EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
69EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
70
71static int hwpoison_filter_dev(struct page *p)
72{
73	struct address_space *mapping;
74	dev_t dev;
75
76	if (hwpoison_filter_dev_major == ~0U &&
77	    hwpoison_filter_dev_minor == ~0U)
78		return 0;
79
80	/*
81	 * page_mapping() does not accept slab page
82	 */
83	if (PageSlab(p))
84		return -EINVAL;
85
86	mapping = page_mapping(p);
87	if (mapping == NULL || mapping->host == NULL)
88		return -EINVAL;
89
90	dev = mapping->host->i_sb->s_dev;
91	if (hwpoison_filter_dev_major != ~0U &&
92	    hwpoison_filter_dev_major != MAJOR(dev))
93		return -EINVAL;
94	if (hwpoison_filter_dev_minor != ~0U &&
95	    hwpoison_filter_dev_minor != MINOR(dev))
96		return -EINVAL;
97
98	return 0;
99}
100
101static int hwpoison_filter_flags(struct page *p)
102{
103	if (!hwpoison_filter_flags_mask)
104		return 0;
105
106	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
107				    hwpoison_filter_flags_value)
108		return 0;
109	else
110		return -EINVAL;
111}
112
113/*
114 * This allows stress tests to limit test scope to a collection of tasks
115 * by putting them under some memcg. This prevents killing unrelated/important
116 * processes such as /sbin/init. Note that the target task may share clean
117 * pages with init (eg. libc text), which is harmless. If the target task
118 * share _dirty_ pages with another task B, the test scheme must make sure B
119 * is also included in the memcg. At last, due to race conditions this filter
120 * can only guarantee that the page either belongs to the memcg tasks, or is
121 * a freed page.
122 */
123#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
124u64 hwpoison_filter_memcg;
125EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
126static int hwpoison_filter_task(struct page *p)
127{
128	struct mem_cgroup *mem;
129	struct cgroup_subsys_state *css;
130	unsigned long ino;
131
132	if (!hwpoison_filter_memcg)
133		return 0;
134
135	mem = try_get_mem_cgroup_from_page(p);
136	if (!mem)
137		return -EINVAL;
138
139	css = mem_cgroup_css(mem);
140	/* root_mem_cgroup has NULL dentries */
141	if (!css->cgroup->dentry)
142		return -EINVAL;
143
144	ino = css->cgroup->dentry->d_inode->i_ino;
145	css_put(css);
146
147	if (ino != hwpoison_filter_memcg)
148		return -EINVAL;
149
150	return 0;
151}
152#else
153static int hwpoison_filter_task(struct page *p) { return 0; }
154#endif
155
156int hwpoison_filter(struct page *p)
157{
158	if (!hwpoison_filter_enable)
159		return 0;
160
161	if (hwpoison_filter_dev(p))
162		return -EINVAL;
163
164	if (hwpoison_filter_flags(p))
165		return -EINVAL;
166
167	if (hwpoison_filter_task(p))
168		return -EINVAL;
169
170	return 0;
171}
172#else
173int hwpoison_filter(struct page *p)
174{
175	return 0;
176}
177#endif
178
179EXPORT_SYMBOL_GPL(hwpoison_filter);
180
181/*
182 * Send all the processes who have the page mapped an ``action optional''
183 * signal.
184 */
185static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
186			unsigned long pfn, struct page *page)
187{
188	struct siginfo si;
189	int ret;
190
191	printk(KERN_ERR
192		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
193		pfn, t->comm, t->pid);
194	si.si_signo = SIGBUS;
195	si.si_errno = 0;
196	si.si_code = BUS_MCEERR_AO;
197	si.si_addr = (void *)addr;
198#ifdef __ARCH_SI_TRAPNO
199	si.si_trapno = trapno;
200#endif
201	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
202	/*
203	 * Don't use force here, it's convenient if the signal
204	 * can be temporarily blocked.
205	 * This could cause a loop when the user sets SIGBUS
206	 * to SIG_IGN, but hopefully noone will do that?
207	 */
208	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209	if (ret < 0)
210		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
211		       t->comm, t->pid, ret);
212	return ret;
213}
214
215/*
216 * When a unknown page type is encountered drain as many buffers as possible
217 * in the hope to turn the page into a LRU or free page, which we can handle.
218 */
219void shake_page(struct page *p, int access)
220{
221	if (!PageSlab(p)) {
222		lru_add_drain_all();
223		if (PageLRU(p))
224			return;
225		drain_all_pages();
226		if (PageLRU(p) || is_free_buddy_page(p))
227			return;
228	}
229
230	/*
231	 * Only all shrink_slab here (which would also
232	 * shrink other caches) if access is not potentially fatal.
233	 */
234	if (access) {
235		int nr;
236		do {
237			nr = shrink_slab(1000, GFP_KERNEL, 1000);
238			if (page_count(p) == 1)
239				break;
240		} while (nr > 10);
241	}
242}
243EXPORT_SYMBOL_GPL(shake_page);
244
245/*
246 * Kill all processes that have a poisoned page mapped and then isolate
247 * the page.
248 *
249 * General strategy:
250 * Find all processes having the page mapped and kill them.
251 * But we keep a page reference around so that the page is not
252 * actually freed yet.
253 * Then stash the page away
254 *
255 * There's no convenient way to get back to mapped processes
256 * from the VMAs. So do a brute-force search over all
257 * running processes.
258 *
259 * Remember that machine checks are not common (or rather
260 * if they are common you have other problems), so this shouldn't
261 * be a performance issue.
262 *
263 * Also there are some races possible while we get from the
264 * error detection to actually handle it.
265 */
266
267struct to_kill {
268	struct list_head nd;
269	struct task_struct *tsk;
270	unsigned long addr;
271	unsigned addr_valid:1;
272};
273
274/*
275 * Failure handling: if we can't find or can't kill a process there's
276 * not much we can do.	We just print a message and ignore otherwise.
277 */
278
279/*
280 * Schedule a process for later kill.
281 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
282 * TBD would GFP_NOIO be enough?
283 */
284static void add_to_kill(struct task_struct *tsk, struct page *p,
285		       struct vm_area_struct *vma,
286		       struct list_head *to_kill,
287		       struct to_kill **tkc)
288{
289	struct to_kill *tk;
290
291	if (*tkc) {
292		tk = *tkc;
293		*tkc = NULL;
294	} else {
295		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
296		if (!tk) {
297			printk(KERN_ERR
298		"MCE: Out of memory while machine check handling\n");
299			return;
300		}
301	}
302	tk->addr = page_address_in_vma(p, vma);
303	tk->addr_valid = 1;
304
305	/*
306	 * In theory we don't have to kill when the page was
307	 * munmaped. But it could be also a mremap. Since that's
308	 * likely very rare kill anyways just out of paranoia, but use
309	 * a SIGKILL because the error is not contained anymore.
310	 */
311	if (tk->addr == -EFAULT) {
312		pr_debug("MCE: Unable to find user space address %lx in %s\n",
313			page_to_pfn(p), tsk->comm);
314		tk->addr_valid = 0;
315	}
316	get_task_struct(tsk);
317	tk->tsk = tsk;
318	list_add_tail(&tk->nd, to_kill);
319}
320
321/*
322 * Kill the processes that have been collected earlier.
323 *
324 * Only do anything when DOIT is set, otherwise just free the list
325 * (this is used for clean pages which do not need killing)
326 * Also when FAIL is set do a force kill because something went
327 * wrong earlier.
328 */
329static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
330			  int fail, struct page *page, unsigned long pfn)
331{
332	struct to_kill *tk, *next;
333
334	list_for_each_entry_safe (tk, next, to_kill, nd) {
335		if (doit) {
336			/*
337			 * In case something went wrong with munmapping
338			 * make sure the process doesn't catch the
339			 * signal and then access the memory. Just kill it.
340			 */
341			if (fail || tk->addr_valid == 0) {
342				printk(KERN_ERR
343		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
344					pfn, tk->tsk->comm, tk->tsk->pid);
345				force_sig(SIGKILL, tk->tsk);
346			}
347
348			/*
349			 * In theory the process could have mapped
350			 * something else on the address in-between. We could
351			 * check for that, but we need to tell the
352			 * process anyways.
353			 */
354			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
355					      pfn, page) < 0)
356				printk(KERN_ERR
357		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
358					pfn, tk->tsk->comm, tk->tsk->pid);
359		}
360		put_task_struct(tk->tsk);
361		kfree(tk);
362	}
363}
364
365static int task_early_kill(struct task_struct *tsk)
366{
367	if (!tsk->mm)
368		return 0;
369	if (tsk->flags & PF_MCE_PROCESS)
370		return !!(tsk->flags & PF_MCE_EARLY);
371	return sysctl_memory_failure_early_kill;
372}
373
374/*
375 * Collect processes when the error hit an anonymous page.
376 */
377static void collect_procs_anon(struct page *page, struct list_head *to_kill,
378			      struct to_kill **tkc)
379{
380	struct vm_area_struct *vma;
381	struct task_struct *tsk;
382	struct anon_vma *av;
383
384	read_lock(&tasklist_lock);
385	av = page_lock_anon_vma(page);
386	if (av == NULL)	/* Not actually mapped anymore */
387		goto out;
388	for_each_process (tsk) {
389		struct anon_vma_chain *vmac;
390
391		if (!task_early_kill(tsk))
392			continue;
393		list_for_each_entry(vmac, &av->head, same_anon_vma) {
394			vma = vmac->vma;
395			if (!page_mapped_in_vma(page, vma))
396				continue;
397			if (vma->vm_mm == tsk->mm)
398				add_to_kill(tsk, page, vma, to_kill, tkc);
399		}
400	}
401	page_unlock_anon_vma(av);
402out:
403	read_unlock(&tasklist_lock);
404}
405
406/*
407 * Collect processes when the error hit a file mapped page.
408 */
409static void collect_procs_file(struct page *page, struct list_head *to_kill,
410			      struct to_kill **tkc)
411{
412	struct vm_area_struct *vma;
413	struct task_struct *tsk;
414	struct prio_tree_iter iter;
415	struct address_space *mapping = page->mapping;
416
417	/*
418	 * A note on the locking order between the two locks.
419	 * We don't rely on this particular order.
420	 * If you have some other code that needs a different order
421	 * feel free to switch them around. Or add a reverse link
422	 * from mm_struct to task_struct, then this could be all
423	 * done without taking tasklist_lock and looping over all tasks.
424	 */
425
426	read_lock(&tasklist_lock);
427	spin_lock(&mapping->i_mmap_lock);
428	for_each_process(tsk) {
429		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
430
431		if (!task_early_kill(tsk))
432			continue;
433
434		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
435				      pgoff) {
436			/*
437			 * Send early kill signal to tasks where a vma covers
438			 * the page but the corrupted page is not necessarily
439			 * mapped it in its pte.
440			 * Assume applications who requested early kill want
441			 * to be informed of all such data corruptions.
442			 */
443			if (vma->vm_mm == tsk->mm)
444				add_to_kill(tsk, page, vma, to_kill, tkc);
445		}
446	}
447	spin_unlock(&mapping->i_mmap_lock);
448	read_unlock(&tasklist_lock);
449}
450
451/*
452 * Collect the processes who have the corrupted page mapped to kill.
453 * This is done in two steps for locking reasons.
454 * First preallocate one tokill structure outside the spin locks,
455 * so that we can kill at least one process reasonably reliable.
456 */
457static void collect_procs(struct page *page, struct list_head *tokill)
458{
459	struct to_kill *tk;
460
461	if (!page->mapping)
462		return;
463
464	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
465	if (!tk)
466		return;
467	if (PageAnon(page))
468		collect_procs_anon(page, tokill, &tk);
469	else
470		collect_procs_file(page, tokill, &tk);
471	kfree(tk);
472}
473
474/*
475 * Error handlers for various types of pages.
476 */
477
478enum outcome {
479	IGNORED,	/* Error: cannot be handled */
480	FAILED,		/* Error: handling failed */
481	DELAYED,	/* Will be handled later */
482	RECOVERED,	/* Successfully recovered */
483};
484
485static const char *action_name[] = {
486	[IGNORED] = "Ignored",
487	[FAILED] = "Failed",
488	[DELAYED] = "Delayed",
489	[RECOVERED] = "Recovered",
490};
491
492static int delete_from_lru_cache(struct page *p)
493{
494	if (!isolate_lru_page(p)) {
495		/*
496		 * Clear sensible page flags, so that the buddy system won't
497		 * complain when the page is unpoison-and-freed.
498		 */
499		ClearPageActive(p);
500		ClearPageUnevictable(p);
501		/*
502		 * drop the page count elevated by isolate_lru_page()
503		 */
504		page_cache_release(p);
505		return 0;
506	}
507	return -EIO;
508}
509
510/*
511 * Error hit kernel page.
512 * Do nothing, try to be lucky and not touch this instead. For a few cases we
513 * could be more sophisticated.
514 */
515static int me_kernel(struct page *p, unsigned long pfn)
516{
517	return IGNORED;
518}
519
520/*
521 * Page in unknown state. Do nothing.
522 */
523static int me_unknown(struct page *p, unsigned long pfn)
524{
525	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
526	return FAILED;
527}
528
529/*
530 * Clean (or cleaned) page cache page.
531 */
532static int me_pagecache_clean(struct page *p, unsigned long pfn)
533{
534	int err;
535	int ret = FAILED;
536	struct address_space *mapping;
537
538	delete_from_lru_cache(p);
539
540	/*
541	 * For anonymous pages we're done the only reference left
542	 * should be the one m_f() holds.
543	 */
544	if (PageAnon(p))
545		return RECOVERED;
546
547	/*
548	 * Now truncate the page in the page cache. This is really
549	 * more like a "temporary hole punch"
550	 * Don't do this for block devices when someone else
551	 * has a reference, because it could be file system metadata
552	 * and that's not safe to truncate.
553	 */
554	mapping = page_mapping(p);
555	if (!mapping) {
556		/*
557		 * Page has been teared down in the meanwhile
558		 */
559		return FAILED;
560	}
561
562	/*
563	 * Truncation is a bit tricky. Enable it per file system for now.
564	 *
565	 * Open: to take i_mutex or not for this? Right now we don't.
566	 */
567	if (mapping->a_ops->error_remove_page) {
568		err = mapping->a_ops->error_remove_page(mapping, p);
569		if (err != 0) {
570			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
571					pfn, err);
572		} else if (page_has_private(p) &&
573				!try_to_release_page(p, GFP_NOIO)) {
574			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
575		} else {
576			ret = RECOVERED;
577		}
578	} else {
579		/*
580		 * If the file system doesn't support it just invalidate
581		 * This fails on dirty or anything with private pages
582		 */
583		if (invalidate_inode_page(p))
584			ret = RECOVERED;
585		else
586			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
587				pfn);
588	}
589	return ret;
590}
591
592/*
593 * Dirty cache page page
594 * Issues: when the error hit a hole page the error is not properly
595 * propagated.
596 */
597static int me_pagecache_dirty(struct page *p, unsigned long pfn)
598{
599	struct address_space *mapping = page_mapping(p);
600
601	SetPageError(p);
602	/* TBD: print more information about the file. */
603	if (mapping) {
604		/*
605		 * IO error will be reported by write(), fsync(), etc.
606		 * who check the mapping.
607		 * This way the application knows that something went
608		 * wrong with its dirty file data.
609		 *
610		 * There's one open issue:
611		 *
612		 * The EIO will be only reported on the next IO
613		 * operation and then cleared through the IO map.
614		 * Normally Linux has two mechanisms to pass IO error
615		 * first through the AS_EIO flag in the address space
616		 * and then through the PageError flag in the page.
617		 * Since we drop pages on memory failure handling the
618		 * only mechanism open to use is through AS_AIO.
619		 *
620		 * This has the disadvantage that it gets cleared on
621		 * the first operation that returns an error, while
622		 * the PageError bit is more sticky and only cleared
623		 * when the page is reread or dropped.  If an
624		 * application assumes it will always get error on
625		 * fsync, but does other operations on the fd before
626		 * and the page is dropped inbetween then the error
627		 * will not be properly reported.
628		 *
629		 * This can already happen even without hwpoisoned
630		 * pages: first on metadata IO errors (which only
631		 * report through AS_EIO) or when the page is dropped
632		 * at the wrong time.
633		 *
634		 * So right now we assume that the application DTRT on
635		 * the first EIO, but we're not worse than other parts
636		 * of the kernel.
637		 */
638		mapping_set_error(mapping, EIO);
639	}
640
641	return me_pagecache_clean(p, pfn);
642}
643
644/*
645 * Clean and dirty swap cache.
646 *
647 * Dirty swap cache page is tricky to handle. The page could live both in page
648 * cache and swap cache(ie. page is freshly swapped in). So it could be
649 * referenced concurrently by 2 types of PTEs:
650 * normal PTEs and swap PTEs. We try to handle them consistently by calling
651 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
652 * and then
653 *      - clear dirty bit to prevent IO
654 *      - remove from LRU
655 *      - but keep in the swap cache, so that when we return to it on
656 *        a later page fault, we know the application is accessing
657 *        corrupted data and shall be killed (we installed simple
658 *        interception code in do_swap_page to catch it).
659 *
660 * Clean swap cache pages can be directly isolated. A later page fault will
661 * bring in the known good data from disk.
662 */
663static int me_swapcache_dirty(struct page *p, unsigned long pfn)
664{
665	ClearPageDirty(p);
666	/* Trigger EIO in shmem: */
667	ClearPageUptodate(p);
668
669	if (!delete_from_lru_cache(p))
670		return DELAYED;
671	else
672		return FAILED;
673}
674
675static int me_swapcache_clean(struct page *p, unsigned long pfn)
676{
677	delete_from_swap_cache(p);
678
679	if (!delete_from_lru_cache(p))
680		return RECOVERED;
681	else
682		return FAILED;
683}
684
685/*
686 * Huge pages. Needs work.
687 * Issues:
688 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
689 *   To narrow down kill region to one page, we need to break up pmd.
690 * - To support soft-offlining for hugepage, we need to support hugepage
691 *   migration.
692 */
693static int me_huge_page(struct page *p, unsigned long pfn)
694{
695	struct page *hpage = compound_head(p);
696	/*
697	 * We can safely recover from error on free or reserved (i.e.
698	 * not in-use) hugepage by dequeuing it from freelist.
699	 * To check whether a hugepage is in-use or not, we can't use
700	 * page->lru because it can be used in other hugepage operations,
701	 * such as __unmap_hugepage_range() and gather_surplus_pages().
702	 * So instead we use page_mapping() and PageAnon().
703	 * We assume that this function is called with page lock held,
704	 * so there is no race between isolation and mapping/unmapping.
705	 */
706	if (!(page_mapping(hpage) || PageAnon(hpage))) {
707		__isolate_hwpoisoned_huge_page(hpage);
708		return RECOVERED;
709	}
710	return DELAYED;
711}
712
713/*
714 * Various page states we can handle.
715 *
716 * A page state is defined by its current page->flags bits.
717 * The table matches them in order and calls the right handler.
718 *
719 * This is quite tricky because we can access page at any time
720 * in its live cycle, so all accesses have to be extremly careful.
721 *
722 * This is not complete. More states could be added.
723 * For any missing state don't attempt recovery.
724 */
725
726#define dirty		(1UL << PG_dirty)
727#define sc		(1UL << PG_swapcache)
728#define unevict		(1UL << PG_unevictable)
729#define mlock		(1UL << PG_mlocked)
730#define writeback	(1UL << PG_writeback)
731#define lru		(1UL << PG_lru)
732#define swapbacked	(1UL << PG_swapbacked)
733#define head		(1UL << PG_head)
734#define tail		(1UL << PG_tail)
735#define compound	(1UL << PG_compound)
736#define slab		(1UL << PG_slab)
737#define reserved	(1UL << PG_reserved)
738
739static struct page_state {
740	unsigned long mask;
741	unsigned long res;
742	char *msg;
743	int (*action)(struct page *p, unsigned long pfn);
744} error_states[] = {
745	{ reserved,	reserved,	"reserved kernel",	me_kernel },
746	/*
747	 * free pages are specially detected outside this table:
748	 * PG_buddy pages only make a small fraction of all free pages.
749	 */
750
751	/*
752	 * Could in theory check if slab page is free or if we can drop
753	 * currently unused objects without touching them. But just
754	 * treat it as standard kernel for now.
755	 */
756	{ slab,		slab,		"kernel slab",	me_kernel },
757
758#ifdef CONFIG_PAGEFLAGS_EXTENDED
759	{ head,		head,		"huge",		me_huge_page },
760	{ tail,		tail,		"huge",		me_huge_page },
761#else
762	{ compound,	compound,	"huge",		me_huge_page },
763#endif
764
765	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
766	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
767
768	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
769	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
770
771	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
772	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
773
774	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
775	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
776
777	/*
778	 * Catchall entry: must be at end.
779	 */
780	{ 0,		0,		"unknown page state",	me_unknown },
781};
782
783#undef dirty
784#undef sc
785#undef unevict
786#undef mlock
787#undef writeback
788#undef lru
789#undef swapbacked
790#undef head
791#undef tail
792#undef compound
793#undef slab
794#undef reserved
795
796static void action_result(unsigned long pfn, char *msg, int result)
797{
798	struct page *page = pfn_to_page(pfn);
799
800	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
801		pfn,
802		PageDirty(page) ? "dirty " : "",
803		msg, action_name[result]);
804}
805
806static int page_action(struct page_state *ps, struct page *p,
807			unsigned long pfn)
808{
809	int result;
810	int count;
811
812	result = ps->action(p, pfn);
813	action_result(pfn, ps->msg, result);
814
815	count = page_count(p) - 1;
816	if (ps->action == me_swapcache_dirty && result == DELAYED)
817		count--;
818	if (count != 0) {
819		printk(KERN_ERR
820		       "MCE %#lx: %s page still referenced by %d users\n",
821		       pfn, ps->msg, count);
822		result = FAILED;
823	}
824
825	/* Could do more checks here if page looks ok */
826	/*
827	 * Could adjust zone counters here to correct for the missing page.
828	 */
829
830	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
831}
832
833#define N_UNMAP_TRIES 5
834
835/*
836 * Do all that is necessary to remove user space mappings. Unmap
837 * the pages and send SIGBUS to the processes if the data was dirty.
838 */
839static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
840				  int trapno)
841{
842	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
843	struct address_space *mapping;
844	LIST_HEAD(tokill);
845	int ret;
846	int i;
847	int kill = 1;
848	struct page *hpage = compound_head(p);
849
850	if (PageReserved(p) || PageSlab(p))
851		return SWAP_SUCCESS;
852
853	/*
854	 * This check implies we don't kill processes if their pages
855	 * are in the swap cache early. Those are always late kills.
856	 */
857	if (!page_mapped(hpage))
858		return SWAP_SUCCESS;
859
860	if (PageKsm(p))
861		return SWAP_FAIL;
862
863	if (PageSwapCache(p)) {
864		printk(KERN_ERR
865		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
866		ttu |= TTU_IGNORE_HWPOISON;
867	}
868
869	mapping = page_mapping(hpage);
870	if (!PageDirty(hpage) && mapping &&
871	    mapping_cap_writeback_dirty(mapping)) {
872		if (page_mkclean(hpage)) {
873			SetPageDirty(hpage);
874		} else {
875			kill = 0;
876			ttu |= TTU_IGNORE_HWPOISON;
877			printk(KERN_INFO
878	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
879				pfn);
880		}
881	}
882
883	/*
884	 * First collect all the processes that have the page
885	 * mapped in dirty form.  This has to be done before try_to_unmap,
886	 * because ttu takes the rmap data structures down.
887	 *
888	 * Error handling: We ignore errors here because
889	 * there's nothing that can be done.
890	 */
891	if (kill)
892		collect_procs(hpage, &tokill);
893
894	/*
895	 * try_to_unmap can fail temporarily due to races.
896	 * Try a few times (RED-PEN better strategy?)
897	 */
898	for (i = 0; i < N_UNMAP_TRIES; i++) {
899		ret = try_to_unmap(hpage, ttu);
900		if (ret == SWAP_SUCCESS)
901			break;
902		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
903	}
904
905	if (ret != SWAP_SUCCESS)
906		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
907				pfn, page_mapcount(hpage));
908
909	/*
910	 * Now that the dirty bit has been propagated to the
911	 * struct page and all unmaps done we can decide if
912	 * killing is needed or not.  Only kill when the page
913	 * was dirty, otherwise the tokill list is merely
914	 * freed.  When there was a problem unmapping earlier
915	 * use a more force-full uncatchable kill to prevent
916	 * any accesses to the poisoned memory.
917	 */
918	kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
919		      ret != SWAP_SUCCESS, p, pfn);
920
921	return ret;
922}
923
924static void set_page_hwpoison_huge_page(struct page *hpage)
925{
926	int i;
927	int nr_pages = 1 << compound_order(hpage);
928	for (i = 0; i < nr_pages; i++)
929		SetPageHWPoison(hpage + i);
930}
931
932static void clear_page_hwpoison_huge_page(struct page *hpage)
933{
934	int i;
935	int nr_pages = 1 << compound_order(hpage);
936	for (i = 0; i < nr_pages; i++)
937		ClearPageHWPoison(hpage + i);
938}
939
940int __memory_failure(unsigned long pfn, int trapno, int flags)
941{
942	struct page_state *ps;
943	struct page *p;
944	struct page *hpage;
945	int res;
946	unsigned int nr_pages;
947
948	if (!sysctl_memory_failure_recovery)
949		panic("Memory failure from trap %d on page %lx", trapno, pfn);
950
951	if (!pfn_valid(pfn)) {
952		printk(KERN_ERR
953		       "MCE %#lx: memory outside kernel control\n",
954		       pfn);
955		return -ENXIO;
956	}
957
958	p = pfn_to_page(pfn);
959	hpage = compound_head(p);
960	if (TestSetPageHWPoison(p)) {
961		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
962		return 0;
963	}
964
965	nr_pages = 1 << compound_order(hpage);
966	atomic_long_add(nr_pages, &mce_bad_pages);
967
968	/*
969	 * We need/can do nothing about count=0 pages.
970	 * 1) it's a free page, and therefore in safe hand:
971	 *    prep_new_page() will be the gate keeper.
972	 * 2) it's part of a non-compound high order page.
973	 *    Implies some kernel user: cannot stop them from
974	 *    R/W the page; let's pray that the page has been
975	 *    used and will be freed some time later.
976	 * In fact it's dangerous to directly bump up page count from 0,
977	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
978	 */
979	if (!(flags & MF_COUNT_INCREASED) &&
980		!get_page_unless_zero(hpage)) {
981		if (is_free_buddy_page(p)) {
982			action_result(pfn, "free buddy", DELAYED);
983			return 0;
984		} else {
985			action_result(pfn, "high order kernel", IGNORED);
986			return -EBUSY;
987		}
988	}
989
990	/*
991	 * We ignore non-LRU pages for good reasons.
992	 * - PG_locked is only well defined for LRU pages and a few others
993	 * - to avoid races with __set_page_locked()
994	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
995	 * The check (unnecessarily) ignores LRU pages being isolated and
996	 * walked by the page reclaim code, however that's not a big loss.
997	 */
998	if (!PageLRU(p) && !PageHuge(p))
999		shake_page(p, 0);
1000	if (!PageLRU(p) && !PageHuge(p)) {
1001		/*
1002		 * shake_page could have turned it free.
1003		 */
1004		if (is_free_buddy_page(p)) {
1005			action_result(pfn, "free buddy, 2nd try", DELAYED);
1006			return 0;
1007		}
1008		action_result(pfn, "non LRU", IGNORED);
1009		put_page(p);
1010		return -EBUSY;
1011	}
1012
1013	/*
1014	 * Lock the page and wait for writeback to finish.
1015	 * It's very difficult to mess with pages currently under IO
1016	 * and in many cases impossible, so we just avoid it here.
1017	 */
1018	lock_page_nosync(hpage);
1019
1020	/*
1021	 * unpoison always clear PG_hwpoison inside page lock
1022	 */
1023	if (!PageHWPoison(p)) {
1024		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1025		res = 0;
1026		goto out;
1027	}
1028	if (hwpoison_filter(p)) {
1029		if (TestClearPageHWPoison(p))
1030			atomic_long_sub(nr_pages, &mce_bad_pages);
1031		unlock_page(hpage);
1032		put_page(hpage);
1033		return 0;
1034	}
1035
1036	/*
1037	 * For error on the tail page, we should set PG_hwpoison
1038	 * on the head page to show that the hugepage is hwpoisoned
1039	 */
1040	if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1041		action_result(pfn, "hugepage already hardware poisoned",
1042				IGNORED);
1043		unlock_page(hpage);
1044		put_page(hpage);
1045		return 0;
1046	}
1047	/*
1048	 * Set PG_hwpoison on all pages in an error hugepage,
1049	 * because containment is done in hugepage unit for now.
1050	 * Since we have done TestSetPageHWPoison() for the head page with
1051	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1052	 */
1053	if (PageHuge(p))
1054		set_page_hwpoison_huge_page(hpage);
1055
1056	wait_on_page_writeback(p);
1057
1058	/*
1059	 * Now take care of user space mappings.
1060	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1061	 */
1062	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1063		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1064		res = -EBUSY;
1065		goto out;
1066	}
1067
1068	/*
1069	 * Torn down by someone else?
1070	 */
1071	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1072		action_result(pfn, "already truncated LRU", IGNORED);
1073		res = -EBUSY;
1074		goto out;
1075	}
1076
1077	res = -EBUSY;
1078	for (ps = error_states;; ps++) {
1079		if ((p->flags & ps->mask) == ps->res) {
1080			res = page_action(ps, p, pfn);
1081			break;
1082		}
1083	}
1084out:
1085	unlock_page(hpage);
1086	return res;
1087}
1088EXPORT_SYMBOL_GPL(__memory_failure);
1089
1090/**
1091 * memory_failure - Handle memory failure of a page.
1092 * @pfn: Page Number of the corrupted page
1093 * @trapno: Trap number reported in the signal to user space.
1094 *
1095 * This function is called by the low level machine check code
1096 * of an architecture when it detects hardware memory corruption
1097 * of a page. It tries its best to recover, which includes
1098 * dropping pages, killing processes etc.
1099 *
1100 * The function is primarily of use for corruptions that
1101 * happen outside the current execution context (e.g. when
1102 * detected by a background scrubber)
1103 *
1104 * Must run in process context (e.g. a work queue) with interrupts
1105 * enabled and no spinlocks hold.
1106 */
1107void memory_failure(unsigned long pfn, int trapno)
1108{
1109	__memory_failure(pfn, trapno, 0);
1110}
1111
1112/**
1113 * unpoison_memory - Unpoison a previously poisoned page
1114 * @pfn: Page number of the to be unpoisoned page
1115 *
1116 * Software-unpoison a page that has been poisoned by
1117 * memory_failure() earlier.
1118 *
1119 * This is only done on the software-level, so it only works
1120 * for linux injected failures, not real hardware failures
1121 *
1122 * Returns 0 for success, otherwise -errno.
1123 */
1124int unpoison_memory(unsigned long pfn)
1125{
1126	struct page *page;
1127	struct page *p;
1128	int freeit = 0;
1129	unsigned int nr_pages;
1130
1131	if (!pfn_valid(pfn))
1132		return -ENXIO;
1133
1134	p = pfn_to_page(pfn);
1135	page = compound_head(p);
1136
1137	if (!PageHWPoison(p)) {
1138		pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1139		return 0;
1140	}
1141
1142	nr_pages = 1 << compound_order(page);
1143
1144	if (!get_page_unless_zero(page)) {
1145		if (TestClearPageHWPoison(p))
1146			atomic_long_sub(nr_pages, &mce_bad_pages);
1147		pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1148		return 0;
1149	}
1150
1151	lock_page_nosync(page);
1152	/*
1153	 * This test is racy because PG_hwpoison is set outside of page lock.
1154	 * That's acceptable because that won't trigger kernel panic. Instead,
1155	 * the PG_hwpoison page will be caught and isolated on the entrance to
1156	 * the free buddy page pool.
1157	 */
1158	if (TestClearPageHWPoison(page)) {
1159		pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1160		atomic_long_sub(nr_pages, &mce_bad_pages);
1161		freeit = 1;
1162	}
1163	if (PageHuge(p))
1164		clear_page_hwpoison_huge_page(page);
1165	unlock_page(page);
1166
1167	put_page(page);
1168	if (freeit)
1169		put_page(page);
1170
1171	return 0;
1172}
1173EXPORT_SYMBOL(unpoison_memory);
1174
1175static struct page *new_page(struct page *p, unsigned long private, int **x)
1176{
1177	int nid = page_to_nid(p);
1178	return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1179}
1180
1181/*
1182 * Safely get reference count of an arbitrary page.
1183 * Returns 0 for a free page, -EIO for a zero refcount page
1184 * that is not free, and 1 for any other page type.
1185 * For 1 the page is returned with increased page count, otherwise not.
1186 */
1187static int get_any_page(struct page *p, unsigned long pfn, int flags)
1188{
1189	int ret;
1190
1191	if (flags & MF_COUNT_INCREASED)
1192		return 1;
1193
1194	/*
1195	 * The lock_system_sleep prevents a race with memory hotplug,
1196	 * because the isolation assumes there's only a single user.
1197	 * This is a big hammer, a better would be nicer.
1198	 */
1199	lock_system_sleep();
1200
1201	/*
1202	 * Isolate the page, so that it doesn't get reallocated if it
1203	 * was free.
1204	 */
1205	set_migratetype_isolate(p);
1206	if (!get_page_unless_zero(compound_head(p))) {
1207		if (is_free_buddy_page(p)) {
1208			pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1209			/* Set hwpoison bit while page is still isolated */
1210			SetPageHWPoison(p);
1211			ret = 0;
1212		} else {
1213			pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1214				pfn, p->flags);
1215			ret = -EIO;
1216		}
1217	} else {
1218		/* Not a free page */
1219		ret = 1;
1220	}
1221	unset_migratetype_isolate(p);
1222	unlock_system_sleep();
1223	return ret;
1224}
1225
1226/**
1227 * soft_offline_page - Soft offline a page.
1228 * @page: page to offline
1229 * @flags: flags. Same as memory_failure().
1230 *
1231 * Returns 0 on success, otherwise negated errno.
1232 *
1233 * Soft offline a page, by migration or invalidation,
1234 * without killing anything. This is for the case when
1235 * a page is not corrupted yet (so it's still valid to access),
1236 * but has had a number of corrected errors and is better taken
1237 * out.
1238 *
1239 * The actual policy on when to do that is maintained by
1240 * user space.
1241 *
1242 * This should never impact any application or cause data loss,
1243 * however it might take some time.
1244 *
1245 * This is not a 100% solution for all memory, but tries to be
1246 * ``good enough'' for the majority of memory.
1247 */
1248int soft_offline_page(struct page *page, int flags)
1249{
1250	int ret;
1251	unsigned long pfn = page_to_pfn(page);
1252
1253	ret = get_any_page(page, pfn, flags);
1254	if (ret < 0)
1255		return ret;
1256	if (ret == 0)
1257		goto done;
1258
1259	/*
1260	 * Page cache page we can handle?
1261	 */
1262	if (!PageLRU(page)) {
1263		/*
1264		 * Try to free it.
1265		 */
1266		put_page(page);
1267		shake_page(page, 1);
1268
1269		/*
1270		 * Did it turn free?
1271		 */
1272		ret = get_any_page(page, pfn, 0);
1273		if (ret < 0)
1274			return ret;
1275		if (ret == 0)
1276			goto done;
1277	}
1278	if (!PageLRU(page)) {
1279		pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1280				pfn, page->flags);
1281		return -EIO;
1282	}
1283
1284	lock_page(page);
1285	wait_on_page_writeback(page);
1286
1287	/*
1288	 * Synchronized using the page lock with memory_failure()
1289	 */
1290	if (PageHWPoison(page)) {
1291		unlock_page(page);
1292		put_page(page);
1293		pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1294		return -EBUSY;
1295	}
1296
1297	/*
1298	 * Try to invalidate first. This should work for
1299	 * non dirty unmapped page cache pages.
1300	 */
1301	ret = invalidate_inode_page(page);
1302	unlock_page(page);
1303
1304	/*
1305	 * Drop count because page migration doesn't like raised
1306	 * counts. The page could get re-allocated, but if it becomes
1307	 * LRU the isolation will just fail.
1308	 * RED-PEN would be better to keep it isolated here, but we
1309	 * would need to fix isolation locking first.
1310	 */
1311	put_page(page);
1312	if (ret == 1) {
1313		ret = 0;
1314		pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1315		goto done;
1316	}
1317
1318	/*
1319	 * Simple invalidation didn't work.
1320	 * Try to migrate to a new page instead. migrate.c
1321	 * handles a large number of cases for us.
1322	 */
1323	ret = isolate_lru_page(page);
1324	if (!ret) {
1325		LIST_HEAD(pagelist);
1326
1327		list_add(&page->lru, &pagelist);
1328		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1329		if (ret) {
1330			pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1331				pfn, ret, page->flags);
1332			if (ret > 0)
1333				ret = -EIO;
1334		}
1335	} else {
1336		pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1337				pfn, ret, page_count(page), page->flags);
1338	}
1339	if (ret)
1340		return ret;
1341
1342done:
1343	atomic_long_add(1, &mce_bad_pages);
1344	SetPageHWPoison(page);
1345	/* keep elevated page count for bad page */
1346	return ret;
1347}
1348
1349/*
1350 * The caller must hold current->mm->mmap_sem in read mode.
1351 */
1352int is_hwpoison_address(unsigned long addr)
1353{
1354	pgd_t *pgdp;
1355	pud_t pud, *pudp;
1356	pmd_t pmd, *pmdp;
1357	pte_t pte, *ptep;
1358	swp_entry_t entry;
1359
1360	pgdp = pgd_offset(current->mm, addr);
1361	if (!pgd_present(*pgdp))
1362		return 0;
1363	pudp = pud_offset(pgdp, addr);
1364	pud = *pudp;
1365	if (!pud_present(pud) || pud_large(pud))
1366		return 0;
1367	pmdp = pmd_offset(pudp, addr);
1368	pmd = *pmdp;
1369	if (!pmd_present(pmd) || pmd_large(pmd))
1370		return 0;
1371	ptep = pte_offset_map(pmdp, addr);
1372	pte = *ptep;
1373	pte_unmap(ptep);
1374	if (!is_swap_pte(pte))
1375		return 0;
1376	entry = pte_to_swp_entry(pte);
1377	return is_hwpoison_entry(entry);
1378}
1379EXPORT_SYMBOL_GPL(is_hwpoison_address);
1380