1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 *   accesses to the object_tree_root. The object_list is the main list
31 *   holding the metadata (struct kmemleak_object) for the allocated memory
32 *   blocks. The object_tree_root is a priority search tree used to look-up
33 *   metadata based on a pointer to the corresponding memory block.  The
34 *   kmemleak_object structures are added to the object_list and
35 *   object_tree_root in the create_object() function called from the
36 *   kmemleak_alloc() callback and removed in delete_object() called from the
37 *   kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 *   the metadata (e.g. count) are protected by this lock. Note that some
40 *   members of this structure may be protected by other means (atomic or
41 *   kmemleak_lock). This lock is also held when scanning the corresponding
42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
43 *   callback. This is less heavyweight than holding a global lock like
44 *   kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 *   unreferenced objects at a time. The gray_list contains the objects which
47 *   are already referenced or marked as false positives and need to be
48 *   scanned. This list is only modified during a scanning episode when the
49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 *   Note that the kmemleak_object.use_count is incremented when an object is
51 *   added to the gray_list and therefore cannot be freed. This mutex also
52 *   prevents multiple users of the "kmemleak" debugfs file together with
53 *   modifications to the memory scanning parameters including the scan_thread
54 *   pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <asm/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE		16	/* stack trace length */
108#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109#define SECS_FIRST_SCAN		60	/* delay before the first scan */
110#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
112
113#define BYTES_PER_POINTER	sizeof(void *)
114
115/* GFP bitmask for kmemleak internal allocations */
116#define GFP_KMEMLEAK_MASK	(GFP_KERNEL | GFP_ATOMIC)
117
118/* scanning area inside a memory block */
119struct kmemleak_scan_area {
120	struct hlist_node node;
121	unsigned long start;
122	size_t size;
123};
124
125#define KMEMLEAK_GREY	0
126#define KMEMLEAK_BLACK	-1
127
128/*
129 * Structure holding the metadata for each allocated memory block.
130 * Modifications to such objects should be made while holding the
131 * object->lock. Insertions or deletions from object_list, gray_list or
132 * tree_node are already protected by the corresponding locks or mutex (see
133 * the notes on locking above). These objects are reference-counted
134 * (use_count) and freed using the RCU mechanism.
135 */
136struct kmemleak_object {
137	spinlock_t lock;
138	unsigned long flags;		/* object status flags */
139	struct list_head object_list;
140	struct list_head gray_list;
141	struct prio_tree_node tree_node;
142	struct rcu_head rcu;		/* object_list lockless traversal */
143	/* object usage count; object freed when use_count == 0 */
144	atomic_t use_count;
145	unsigned long pointer;
146	size_t size;
147	/* minimum number of a pointers found before it is considered leak */
148	int min_count;
149	/* the total number of pointers found pointing to this object */
150	int count;
151	/* checksum for detecting modified objects */
152	u32 checksum;
153	/* memory ranges to be scanned inside an object (empty for all) */
154	struct hlist_head area_list;
155	unsigned long trace[MAX_TRACE];
156	unsigned int trace_len;
157	unsigned long jiffies;		/* creation timestamp */
158	pid_t pid;			/* pid of the current task */
159	char comm[TASK_COMM_LEN];	/* executable name */
160};
161
162/* flag representing the memory block allocation status */
163#define OBJECT_ALLOCATED	(1 << 0)
164/* flag set after the first reporting of an unreference object */
165#define OBJECT_REPORTED		(1 << 1)
166/* flag set to not scan the object */
167#define OBJECT_NO_SCAN		(1 << 2)
168
169/* number of bytes to print per line; must be 16 or 32 */
170#define HEX_ROW_SIZE		16
171/* number of bytes to print at a time (1, 2, 4, 8) */
172#define HEX_GROUP_SIZE		1
173/* include ASCII after the hex output */
174#define HEX_ASCII		1
175/* max number of lines to be printed */
176#define HEX_MAX_LINES		2
177
178/* the list of all allocated objects */
179static LIST_HEAD(object_list);
180/* the list of gray-colored objects (see color_gray comment below) */
181static LIST_HEAD(gray_list);
182/* prio search tree for object boundaries */
183static struct prio_tree_root object_tree_root;
184/* rw_lock protecting the access to object_list and prio_tree_root */
185static DEFINE_RWLOCK(kmemleak_lock);
186
187/* allocation caches for kmemleak internal data */
188static struct kmem_cache *object_cache;
189static struct kmem_cache *scan_area_cache;
190
191/* set if tracing memory operations is enabled */
192static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
193/* set in the late_initcall if there were no errors */
194static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
195/* enables or disables early logging of the memory operations */
196static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
197/* set if a fata kmemleak error has occurred */
198static atomic_t kmemleak_error = ATOMIC_INIT(0);
199
200/* minimum and maximum address that may be valid pointers */
201static unsigned long min_addr = ULONG_MAX;
202static unsigned long max_addr;
203
204static struct task_struct *scan_thread;
205/* used to avoid reporting of recently allocated objects */
206static unsigned long jiffies_min_age;
207static unsigned long jiffies_last_scan;
208/* delay between automatic memory scannings */
209static signed long jiffies_scan_wait;
210/* enables or disables the task stacks scanning */
211static int kmemleak_stack_scan = 1;
212/* protects the memory scanning, parameters and debug/kmemleak file access */
213static DEFINE_MUTEX(scan_mutex);
214/* setting kmemleak=on, will set this var, skipping the disable */
215static int kmemleak_skip_disable;
216
217
218/*
219 * Early object allocation/freeing logging. Kmemleak is initialized after the
220 * kernel allocator. However, both the kernel allocator and kmemleak may
221 * allocate memory blocks which need to be tracked. Kmemleak defines an
222 * arbitrary buffer to hold the allocation/freeing information before it is
223 * fully initialized.
224 */
225
226/* kmemleak operation type for early logging */
227enum {
228	KMEMLEAK_ALLOC,
229	KMEMLEAK_FREE,
230	KMEMLEAK_FREE_PART,
231	KMEMLEAK_NOT_LEAK,
232	KMEMLEAK_IGNORE,
233	KMEMLEAK_SCAN_AREA,
234	KMEMLEAK_NO_SCAN
235};
236
237/*
238 * Structure holding the information passed to kmemleak callbacks during the
239 * early logging.
240 */
241struct early_log {
242	int op_type;			/* kmemleak operation type */
243	const void *ptr;		/* allocated/freed memory block */
244	size_t size;			/* memory block size */
245	int min_count;			/* minimum reference count */
246	unsigned long trace[MAX_TRACE];	/* stack trace */
247	unsigned int trace_len;		/* stack trace length */
248};
249
250/* early logging buffer and current position */
251static struct early_log
252	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
253static int crt_early_log __initdata;
254
255static void kmemleak_disable(void);
256
257/*
258 * Print a warning and dump the stack trace.
259 */
260#define kmemleak_warn(x...)	do {	\
261	pr_warning(x);			\
262	dump_stack();			\
263} while (0)
264
265/*
266 * Macro invoked when a serious kmemleak condition occured and cannot be
267 * recovered from. Kmemleak will be disabled and further allocation/freeing
268 * tracing no longer available.
269 */
270#define kmemleak_stop(x...)	do {	\
271	kmemleak_warn(x);		\
272	kmemleak_disable();		\
273} while (0)
274
275/*
276 * Printing of the objects hex dump to the seq file. The number of lines to be
277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
279 * with the object->lock held.
280 */
281static void hex_dump_object(struct seq_file *seq,
282			    struct kmemleak_object *object)
283{
284	const u8 *ptr = (const u8 *)object->pointer;
285	int i, len, remaining;
286	unsigned char linebuf[HEX_ROW_SIZE * 5];
287
288	/* limit the number of lines to HEX_MAX_LINES */
289	remaining = len =
290		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
291
292	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
293	for (i = 0; i < len; i += HEX_ROW_SIZE) {
294		int linelen = min(remaining, HEX_ROW_SIZE);
295
296		remaining -= HEX_ROW_SIZE;
297		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
298				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
299				   HEX_ASCII);
300		seq_printf(seq, "    %s\n", linebuf);
301	}
302}
303
304/*
305 * Object colors, encoded with count and min_count:
306 * - white - orphan object, not enough references to it (count < min_count)
307 * - gray  - not orphan, not marked as false positive (min_count == 0) or
308 *		sufficient references to it (count >= min_count)
309 * - black - ignore, it doesn't contain references (e.g. text section)
310 *		(min_count == -1). No function defined for this color.
311 * Newly created objects don't have any color assigned (object->count == -1)
312 * before the next memory scan when they become white.
313 */
314static bool color_white(const struct kmemleak_object *object)
315{
316	return object->count != KMEMLEAK_BLACK &&
317		object->count < object->min_count;
318}
319
320static bool color_gray(const struct kmemleak_object *object)
321{
322	return object->min_count != KMEMLEAK_BLACK &&
323		object->count >= object->min_count;
324}
325
326/*
327 * Objects are considered unreferenced only if their color is white, they have
328 * not be deleted and have a minimum age to avoid false positives caused by
329 * pointers temporarily stored in CPU registers.
330 */
331static bool unreferenced_object(struct kmemleak_object *object)
332{
333	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
334		time_before_eq(object->jiffies + jiffies_min_age,
335			       jiffies_last_scan);
336}
337
338/*
339 * Printing of the unreferenced objects information to the seq file. The
340 * print_unreferenced function must be called with the object->lock held.
341 */
342static void print_unreferenced(struct seq_file *seq,
343			       struct kmemleak_object *object)
344{
345	int i;
346	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
347
348	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
349		   object->pointer, object->size);
350	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
351		   object->comm, object->pid, object->jiffies,
352		   msecs_age / 1000, msecs_age % 1000);
353	hex_dump_object(seq, object);
354	seq_printf(seq, "  backtrace:\n");
355
356	for (i = 0; i < object->trace_len; i++) {
357		void *ptr = (void *)object->trace[i];
358		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
359	}
360}
361
362/*
363 * Print the kmemleak_object information. This function is used mainly for
364 * debugging special cases when kmemleak operations. It must be called with
365 * the object->lock held.
366 */
367static void dump_object_info(struct kmemleak_object *object)
368{
369	struct stack_trace trace;
370
371	trace.nr_entries = object->trace_len;
372	trace.entries = object->trace;
373
374	pr_notice("Object 0x%08lx (size %zu):\n",
375		  object->tree_node.start, object->size);
376	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
377		  object->comm, object->pid, object->jiffies);
378	pr_notice("  min_count = %d\n", object->min_count);
379	pr_notice("  count = %d\n", object->count);
380	pr_notice("  flags = 0x%lx\n", object->flags);
381	pr_notice("  checksum = %d\n", object->checksum);
382	pr_notice("  backtrace:\n");
383	print_stack_trace(&trace, 4);
384}
385
386/*
387 * Look-up a memory block metadata (kmemleak_object) in the priority search
388 * tree based on a pointer value. If alias is 0, only values pointing to the
389 * beginning of the memory block are allowed. The kmemleak_lock must be held
390 * when calling this function.
391 */
392static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
393{
394	struct prio_tree_node *node;
395	struct prio_tree_iter iter;
396	struct kmemleak_object *object;
397
398	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
399	node = prio_tree_next(&iter);
400	if (node) {
401		object = prio_tree_entry(node, struct kmemleak_object,
402					 tree_node);
403		if (!alias && object->pointer != ptr) {
404			pr_warning("Found object by alias at 0x%08lx\n", ptr);
405			dump_stack();
406			dump_object_info(object);
407			object = NULL;
408		}
409	} else
410		object = NULL;
411
412	return object;
413}
414
415/*
416 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
417 * that once an object's use_count reached 0, the RCU freeing was already
418 * registered and the object should no longer be used. This function must be
419 * called under the protection of rcu_read_lock().
420 */
421static int get_object(struct kmemleak_object *object)
422{
423	return atomic_inc_not_zero(&object->use_count);
424}
425
426/*
427 * RCU callback to free a kmemleak_object.
428 */
429static void free_object_rcu(struct rcu_head *rcu)
430{
431	struct hlist_node *elem, *tmp;
432	struct kmemleak_scan_area *area;
433	struct kmemleak_object *object =
434		container_of(rcu, struct kmemleak_object, rcu);
435
436	/*
437	 * Once use_count is 0 (guaranteed by put_object), there is no other
438	 * code accessing this object, hence no need for locking.
439	 */
440	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
441		hlist_del(elem);
442		kmem_cache_free(scan_area_cache, area);
443	}
444	kmem_cache_free(object_cache, object);
445}
446
447/*
448 * Decrement the object use_count. Once the count is 0, free the object using
449 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
450 * delete_object() path, the delayed RCU freeing ensures that there is no
451 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
452 * is also possible.
453 */
454static void put_object(struct kmemleak_object *object)
455{
456	if (!atomic_dec_and_test(&object->use_count))
457		return;
458
459	/* should only get here after delete_object was called */
460	WARN_ON(object->flags & OBJECT_ALLOCATED);
461
462	call_rcu(&object->rcu, free_object_rcu);
463}
464
465/*
466 * Look up an object in the prio search tree and increase its use_count.
467 */
468static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
469{
470	unsigned long flags;
471	struct kmemleak_object *object = NULL;
472
473	rcu_read_lock();
474	read_lock_irqsave(&kmemleak_lock, flags);
475	if (ptr >= min_addr && ptr < max_addr)
476		object = lookup_object(ptr, alias);
477	read_unlock_irqrestore(&kmemleak_lock, flags);
478
479	/* check whether the object is still available */
480	if (object && !get_object(object))
481		object = NULL;
482	rcu_read_unlock();
483
484	return object;
485}
486
487/*
488 * Save stack trace to the given array of MAX_TRACE size.
489 */
490static int __save_stack_trace(unsigned long *trace)
491{
492	struct stack_trace stack_trace;
493
494	stack_trace.max_entries = MAX_TRACE;
495	stack_trace.nr_entries = 0;
496	stack_trace.entries = trace;
497	stack_trace.skip = 2;
498	save_stack_trace(&stack_trace);
499
500	return stack_trace.nr_entries;
501}
502
503/*
504 * Create the metadata (struct kmemleak_object) corresponding to an allocated
505 * memory block and add it to the object_list and object_tree_root.
506 */
507static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
508					     int min_count, gfp_t gfp)
509{
510	unsigned long flags;
511	struct kmemleak_object *object;
512	struct prio_tree_node *node;
513
514	object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
515	if (!object) {
516		kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
517		return NULL;
518	}
519
520	INIT_LIST_HEAD(&object->object_list);
521	INIT_LIST_HEAD(&object->gray_list);
522	INIT_HLIST_HEAD(&object->area_list);
523	spin_lock_init(&object->lock);
524	atomic_set(&object->use_count, 1);
525	object->flags = OBJECT_ALLOCATED;
526	object->pointer = ptr;
527	object->size = size;
528	object->min_count = min_count;
529	object->count = 0;			/* white color initially */
530	object->jiffies = jiffies;
531	object->checksum = 0;
532
533	/* task information */
534	if (in_irq()) {
535		object->pid = 0;
536		strncpy(object->comm, "hardirq", sizeof(object->comm));
537	} else if (in_softirq()) {
538		object->pid = 0;
539		strncpy(object->comm, "softirq", sizeof(object->comm));
540	} else {
541		object->pid = current->pid;
542		/*
543		 * There is a small chance of a race with set_task_comm(),
544		 * however using get_task_comm() here may cause locking
545		 * dependency issues with current->alloc_lock. In the worst
546		 * case, the command line is not correct.
547		 */
548		strncpy(object->comm, current->comm, sizeof(object->comm));
549	}
550
551	/* kernel backtrace */
552	object->trace_len = __save_stack_trace(object->trace);
553
554	INIT_PRIO_TREE_NODE(&object->tree_node);
555	object->tree_node.start = ptr;
556	object->tree_node.last = ptr + size - 1;
557
558	write_lock_irqsave(&kmemleak_lock, flags);
559
560	min_addr = min(min_addr, ptr);
561	max_addr = max(max_addr, ptr + size);
562	node = prio_tree_insert(&object_tree_root, &object->tree_node);
563	/*
564	 * The code calling the kernel does not yet have the pointer to the
565	 * memory block to be able to free it.  However, we still hold the
566	 * kmemleak_lock here in case parts of the kernel started freeing
567	 * random memory blocks.
568	 */
569	if (node != &object->tree_node) {
570		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
571			      "(already existing)\n", ptr);
572		object = lookup_object(ptr, 1);
573		spin_lock(&object->lock);
574		dump_object_info(object);
575		spin_unlock(&object->lock);
576
577		goto out;
578	}
579	list_add_tail_rcu(&object->object_list, &object_list);
580out:
581	write_unlock_irqrestore(&kmemleak_lock, flags);
582	return object;
583}
584
585/*
586 * Remove the metadata (struct kmemleak_object) for a memory block from the
587 * object_list and object_tree_root and decrement its use_count.
588 */
589static void __delete_object(struct kmemleak_object *object)
590{
591	unsigned long flags;
592
593	write_lock_irqsave(&kmemleak_lock, flags);
594	prio_tree_remove(&object_tree_root, &object->tree_node);
595	list_del_rcu(&object->object_list);
596	write_unlock_irqrestore(&kmemleak_lock, flags);
597
598	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
599	WARN_ON(atomic_read(&object->use_count) < 2);
600
601	/*
602	 * Locking here also ensures that the corresponding memory block
603	 * cannot be freed when it is being scanned.
604	 */
605	spin_lock_irqsave(&object->lock, flags);
606	object->flags &= ~OBJECT_ALLOCATED;
607	spin_unlock_irqrestore(&object->lock, flags);
608	put_object(object);
609}
610
611/*
612 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
613 * delete it.
614 */
615static void delete_object_full(unsigned long ptr)
616{
617	struct kmemleak_object *object;
618
619	object = find_and_get_object(ptr, 0);
620	if (!object) {
621#ifdef DEBUG
622		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
623			      ptr);
624#endif
625		return;
626	}
627	__delete_object(object);
628	put_object(object);
629}
630
631/*
632 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
633 * delete it. If the memory block is partially freed, the function may create
634 * additional metadata for the remaining parts of the block.
635 */
636static void delete_object_part(unsigned long ptr, size_t size)
637{
638	struct kmemleak_object *object;
639	unsigned long start, end;
640
641	object = find_and_get_object(ptr, 1);
642	if (!object) {
643#ifdef DEBUG
644		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
645			      "(size %zu)\n", ptr, size);
646#endif
647		return;
648	}
649	__delete_object(object);
650
651	/*
652	 * Create one or two objects that may result from the memory block
653	 * split. Note that partial freeing is only done by free_bootmem() and
654	 * this happens before kmemleak_init() is called. The path below is
655	 * only executed during early log recording in kmemleak_init(), so
656	 * GFP_KERNEL is enough.
657	 */
658	start = object->pointer;
659	end = object->pointer + object->size;
660	if (ptr > start)
661		create_object(start, ptr - start, object->min_count,
662			      GFP_KERNEL);
663	if (ptr + size < end)
664		create_object(ptr + size, end - ptr - size, object->min_count,
665			      GFP_KERNEL);
666
667	put_object(object);
668}
669
670static void __paint_it(struct kmemleak_object *object, int color)
671{
672	object->min_count = color;
673	if (color == KMEMLEAK_BLACK)
674		object->flags |= OBJECT_NO_SCAN;
675}
676
677static void paint_it(struct kmemleak_object *object, int color)
678{
679	unsigned long flags;
680
681	spin_lock_irqsave(&object->lock, flags);
682	__paint_it(object, color);
683	spin_unlock_irqrestore(&object->lock, flags);
684}
685
686static void paint_ptr(unsigned long ptr, int color)
687{
688	struct kmemleak_object *object;
689
690	object = find_and_get_object(ptr, 0);
691	if (!object) {
692		kmemleak_warn("Trying to color unknown object "
693			      "at 0x%08lx as %s\n", ptr,
694			      (color == KMEMLEAK_GREY) ? "Grey" :
695			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
696		return;
697	}
698	paint_it(object, color);
699	put_object(object);
700}
701
702/*
703 * Mark an object permanently as gray-colored so that it can no longer be
704 * reported as a leak. This is used in general to mark a false positive.
705 */
706static void make_gray_object(unsigned long ptr)
707{
708	paint_ptr(ptr, KMEMLEAK_GREY);
709}
710
711/*
712 * Mark the object as black-colored so that it is ignored from scans and
713 * reporting.
714 */
715static void make_black_object(unsigned long ptr)
716{
717	paint_ptr(ptr, KMEMLEAK_BLACK);
718}
719
720/*
721 * Add a scanning area to the object. If at least one such area is added,
722 * kmemleak will only scan these ranges rather than the whole memory block.
723 */
724static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
725{
726	unsigned long flags;
727	struct kmemleak_object *object;
728	struct kmemleak_scan_area *area;
729
730	object = find_and_get_object(ptr, 1);
731	if (!object) {
732		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
733			      ptr);
734		return;
735	}
736
737	area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
738	if (!area) {
739		kmemleak_warn("Cannot allocate a scan area\n");
740		goto out;
741	}
742
743	spin_lock_irqsave(&object->lock, flags);
744	if (ptr + size > object->pointer + object->size) {
745		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
746		dump_object_info(object);
747		kmem_cache_free(scan_area_cache, area);
748		goto out_unlock;
749	}
750
751	INIT_HLIST_NODE(&area->node);
752	area->start = ptr;
753	area->size = size;
754
755	hlist_add_head(&area->node, &object->area_list);
756out_unlock:
757	spin_unlock_irqrestore(&object->lock, flags);
758out:
759	put_object(object);
760}
761
762/*
763 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
764 * pointer. Such object will not be scanned by kmemleak but references to it
765 * are searched.
766 */
767static void object_no_scan(unsigned long ptr)
768{
769	unsigned long flags;
770	struct kmemleak_object *object;
771
772	object = find_and_get_object(ptr, 0);
773	if (!object) {
774		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
775		return;
776	}
777
778	spin_lock_irqsave(&object->lock, flags);
779	object->flags |= OBJECT_NO_SCAN;
780	spin_unlock_irqrestore(&object->lock, flags);
781	put_object(object);
782}
783
784/*
785 * Log an early kmemleak_* call to the early_log buffer. These calls will be
786 * processed later once kmemleak is fully initialized.
787 */
788static void __init log_early(int op_type, const void *ptr, size_t size,
789			     int min_count)
790{
791	unsigned long flags;
792	struct early_log *log;
793
794	if (crt_early_log >= ARRAY_SIZE(early_log)) {
795		pr_warning("Early log buffer exceeded, "
796			   "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
797		kmemleak_disable();
798		return;
799	}
800
801	/*
802	 * There is no need for locking since the kernel is still in UP mode
803	 * at this stage. Disabling the IRQs is enough.
804	 */
805	local_irq_save(flags);
806	log = &early_log[crt_early_log];
807	log->op_type = op_type;
808	log->ptr = ptr;
809	log->size = size;
810	log->min_count = min_count;
811	if (op_type == KMEMLEAK_ALLOC)
812		log->trace_len = __save_stack_trace(log->trace);
813	crt_early_log++;
814	local_irq_restore(flags);
815}
816
817/*
818 * Log an early allocated block and populate the stack trace.
819 */
820static void early_alloc(struct early_log *log)
821{
822	struct kmemleak_object *object;
823	unsigned long flags;
824	int i;
825
826	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
827		return;
828
829	/*
830	 * RCU locking needed to ensure object is not freed via put_object().
831	 */
832	rcu_read_lock();
833	object = create_object((unsigned long)log->ptr, log->size,
834			       log->min_count, GFP_ATOMIC);
835	if (!object)
836		goto out;
837	spin_lock_irqsave(&object->lock, flags);
838	for (i = 0; i < log->trace_len; i++)
839		object->trace[i] = log->trace[i];
840	object->trace_len = log->trace_len;
841	spin_unlock_irqrestore(&object->lock, flags);
842out:
843	rcu_read_unlock();
844}
845
846/**
847 * kmemleak_alloc - register a newly allocated object
848 * @ptr:	pointer to beginning of the object
849 * @size:	size of the object
850 * @min_count:	minimum number of references to this object. If during memory
851 *		scanning a number of references less than @min_count is found,
852 *		the object is reported as a memory leak. If @min_count is 0,
853 *		the object is never reported as a leak. If @min_count is -1,
854 *		the object is ignored (not scanned and not reported as a leak)
855 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
856 *
857 * This function is called from the kernel allocators when a new object
858 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
859 */
860void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
861			  gfp_t gfp)
862{
863	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
864
865	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
866		create_object((unsigned long)ptr, size, min_count, gfp);
867	else if (atomic_read(&kmemleak_early_log))
868		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
869}
870EXPORT_SYMBOL_GPL(kmemleak_alloc);
871
872/**
873 * kmemleak_free - unregister a previously registered object
874 * @ptr:	pointer to beginning of the object
875 *
876 * This function is called from the kernel allocators when an object (memory
877 * block) is freed (kmem_cache_free, kfree, vfree etc.).
878 */
879void __ref kmemleak_free(const void *ptr)
880{
881	pr_debug("%s(0x%p)\n", __func__, ptr);
882
883	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
884		delete_object_full((unsigned long)ptr);
885	else if (atomic_read(&kmemleak_early_log))
886		log_early(KMEMLEAK_FREE, ptr, 0, 0);
887}
888EXPORT_SYMBOL_GPL(kmemleak_free);
889
890/**
891 * kmemleak_free_part - partially unregister a previously registered object
892 * @ptr:	pointer to the beginning or inside the object. This also
893 *		represents the start of the range to be freed
894 * @size:	size to be unregistered
895 *
896 * This function is called when only a part of a memory block is freed
897 * (usually from the bootmem allocator).
898 */
899void __ref kmemleak_free_part(const void *ptr, size_t size)
900{
901	pr_debug("%s(0x%p)\n", __func__, ptr);
902
903	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
904		delete_object_part((unsigned long)ptr, size);
905	else if (atomic_read(&kmemleak_early_log))
906		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
907}
908EXPORT_SYMBOL_GPL(kmemleak_free_part);
909
910/**
911 * kmemleak_not_leak - mark an allocated object as false positive
912 * @ptr:	pointer to beginning of the object
913 *
914 * Calling this function on an object will cause the memory block to no longer
915 * be reported as leak and always be scanned.
916 */
917void __ref kmemleak_not_leak(const void *ptr)
918{
919	pr_debug("%s(0x%p)\n", __func__, ptr);
920
921	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
922		make_gray_object((unsigned long)ptr);
923	else if (atomic_read(&kmemleak_early_log))
924		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
925}
926EXPORT_SYMBOL(kmemleak_not_leak);
927
928/**
929 * kmemleak_ignore - ignore an allocated object
930 * @ptr:	pointer to beginning of the object
931 *
932 * Calling this function on an object will cause the memory block to be
933 * ignored (not scanned and not reported as a leak). This is usually done when
934 * it is known that the corresponding block is not a leak and does not contain
935 * any references to other allocated memory blocks.
936 */
937void __ref kmemleak_ignore(const void *ptr)
938{
939	pr_debug("%s(0x%p)\n", __func__, ptr);
940
941	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
942		make_black_object((unsigned long)ptr);
943	else if (atomic_read(&kmemleak_early_log))
944		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
945}
946EXPORT_SYMBOL(kmemleak_ignore);
947
948/**
949 * kmemleak_scan_area - limit the range to be scanned in an allocated object
950 * @ptr:	pointer to beginning or inside the object. This also
951 *		represents the start of the scan area
952 * @size:	size of the scan area
953 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
954 *
955 * This function is used when it is known that only certain parts of an object
956 * contain references to other objects. Kmemleak will only scan these areas
957 * reducing the number false negatives.
958 */
959void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
960{
961	pr_debug("%s(0x%p)\n", __func__, ptr);
962
963	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
964		add_scan_area((unsigned long)ptr, size, gfp);
965	else if (atomic_read(&kmemleak_early_log))
966		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
967}
968EXPORT_SYMBOL(kmemleak_scan_area);
969
970/**
971 * kmemleak_no_scan - do not scan an allocated object
972 * @ptr:	pointer to beginning of the object
973 *
974 * This function notifies kmemleak not to scan the given memory block. Useful
975 * in situations where it is known that the given object does not contain any
976 * references to other objects. Kmemleak will not scan such objects reducing
977 * the number of false negatives.
978 */
979void __ref kmemleak_no_scan(const void *ptr)
980{
981	pr_debug("%s(0x%p)\n", __func__, ptr);
982
983	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
984		object_no_scan((unsigned long)ptr);
985	else if (atomic_read(&kmemleak_early_log))
986		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
987}
988EXPORT_SYMBOL(kmemleak_no_scan);
989
990/*
991 * Update an object's checksum and return true if it was modified.
992 */
993static bool update_checksum(struct kmemleak_object *object)
994{
995	u32 old_csum = object->checksum;
996
997	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
998		return false;
999
1000	object->checksum = crc32(0, (void *)object->pointer, object->size);
1001	return object->checksum != old_csum;
1002}
1003
1004/*
1005 * Memory scanning is a long process and it needs to be interruptable. This
1006 * function checks whether such interrupt condition occured.
1007 */
1008static int scan_should_stop(void)
1009{
1010	if (!atomic_read(&kmemleak_enabled))
1011		return 1;
1012
1013	/*
1014	 * This function may be called from either process or kthread context,
1015	 * hence the need to check for both stop conditions.
1016	 */
1017	if (current->mm)
1018		return signal_pending(current);
1019	else
1020		return kthread_should_stop();
1021
1022	return 0;
1023}
1024
1025/*
1026 * Scan a memory block (exclusive range) for valid pointers and add those
1027 * found to the gray list.
1028 */
1029static void scan_block(void *_start, void *_end,
1030		       struct kmemleak_object *scanned, int allow_resched)
1031{
1032	unsigned long *ptr;
1033	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1034	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1035
1036	for (ptr = start; ptr < end; ptr++) {
1037		struct kmemleak_object *object;
1038		unsigned long flags;
1039		unsigned long pointer;
1040
1041		if (allow_resched)
1042			cond_resched();
1043		if (scan_should_stop())
1044			break;
1045
1046		/* don't scan uninitialized memory */
1047		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1048						  BYTES_PER_POINTER))
1049			continue;
1050
1051		pointer = *ptr;
1052
1053		object = find_and_get_object(pointer, 1);
1054		if (!object)
1055			continue;
1056		if (object == scanned) {
1057			/* self referenced, ignore */
1058			put_object(object);
1059			continue;
1060		}
1061
1062		/*
1063		 * Avoid the lockdep recursive warning on object->lock being
1064		 * previously acquired in scan_object(). These locks are
1065		 * enclosed by scan_mutex.
1066		 */
1067		spin_lock_irqsave_nested(&object->lock, flags,
1068					 SINGLE_DEPTH_NESTING);
1069		if (!color_white(object)) {
1070			/* non-orphan, ignored or new */
1071			spin_unlock_irqrestore(&object->lock, flags);
1072			put_object(object);
1073			continue;
1074		}
1075
1076		/*
1077		 * Increase the object's reference count (number of pointers
1078		 * to the memory block). If this count reaches the required
1079		 * minimum, the object's color will become gray and it will be
1080		 * added to the gray_list.
1081		 */
1082		object->count++;
1083		if (color_gray(object)) {
1084			list_add_tail(&object->gray_list, &gray_list);
1085			spin_unlock_irqrestore(&object->lock, flags);
1086			continue;
1087		}
1088
1089		spin_unlock_irqrestore(&object->lock, flags);
1090		put_object(object);
1091	}
1092}
1093
1094/*
1095 * Scan a memory block corresponding to a kmemleak_object. A condition is
1096 * that object->use_count >= 1.
1097 */
1098static void scan_object(struct kmemleak_object *object)
1099{
1100	struct kmemleak_scan_area *area;
1101	struct hlist_node *elem;
1102	unsigned long flags;
1103
1104	/*
1105	 * Once the object->lock is acquired, the corresponding memory block
1106	 * cannot be freed (the same lock is acquired in delete_object).
1107	 */
1108	spin_lock_irqsave(&object->lock, flags);
1109	if (object->flags & OBJECT_NO_SCAN)
1110		goto out;
1111	if (!(object->flags & OBJECT_ALLOCATED))
1112		/* already freed object */
1113		goto out;
1114	if (hlist_empty(&object->area_list)) {
1115		void *start = (void *)object->pointer;
1116		void *end = (void *)(object->pointer + object->size);
1117
1118		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1119		       !(object->flags & OBJECT_NO_SCAN)) {
1120			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1121				   object, 0);
1122			start += MAX_SCAN_SIZE;
1123
1124			spin_unlock_irqrestore(&object->lock, flags);
1125			cond_resched();
1126			spin_lock_irqsave(&object->lock, flags);
1127		}
1128	} else
1129		hlist_for_each_entry(area, elem, &object->area_list, node)
1130			scan_block((void *)area->start,
1131				   (void *)(area->start + area->size),
1132				   object, 0);
1133out:
1134	spin_unlock_irqrestore(&object->lock, flags);
1135}
1136
1137/*
1138 * Scan the objects already referenced (gray objects). More objects will be
1139 * referenced and, if there are no memory leaks, all the objects are scanned.
1140 */
1141static void scan_gray_list(void)
1142{
1143	struct kmemleak_object *object, *tmp;
1144
1145	/*
1146	 * The list traversal is safe for both tail additions and removals
1147	 * from inside the loop. The kmemleak objects cannot be freed from
1148	 * outside the loop because their use_count was incremented.
1149	 */
1150	object = list_entry(gray_list.next, typeof(*object), gray_list);
1151	while (&object->gray_list != &gray_list) {
1152		cond_resched();
1153
1154		/* may add new objects to the list */
1155		if (!scan_should_stop())
1156			scan_object(object);
1157
1158		tmp = list_entry(object->gray_list.next, typeof(*object),
1159				 gray_list);
1160
1161		/* remove the object from the list and release it */
1162		list_del(&object->gray_list);
1163		put_object(object);
1164
1165		object = tmp;
1166	}
1167	WARN_ON(!list_empty(&gray_list));
1168}
1169
1170/*
1171 * Scan data sections and all the referenced memory blocks allocated via the
1172 * kernel's standard allocators. This function must be called with the
1173 * scan_mutex held.
1174 */
1175static void kmemleak_scan(void)
1176{
1177	unsigned long flags;
1178	struct kmemleak_object *object;
1179	int i;
1180	int new_leaks = 0;
1181
1182	jiffies_last_scan = jiffies;
1183
1184	/* prepare the kmemleak_object's */
1185	rcu_read_lock();
1186	list_for_each_entry_rcu(object, &object_list, object_list) {
1187		spin_lock_irqsave(&object->lock, flags);
1188#ifdef DEBUG
1189		/*
1190		 * With a few exceptions there should be a maximum of
1191		 * 1 reference to any object at this point.
1192		 */
1193		if (atomic_read(&object->use_count) > 1) {
1194			pr_debug("object->use_count = %d\n",
1195				 atomic_read(&object->use_count));
1196			dump_object_info(object);
1197		}
1198#endif
1199		/* reset the reference count (whiten the object) */
1200		object->count = 0;
1201		if (color_gray(object) && get_object(object))
1202			list_add_tail(&object->gray_list, &gray_list);
1203
1204		spin_unlock_irqrestore(&object->lock, flags);
1205	}
1206	rcu_read_unlock();
1207
1208	/* data/bss scanning */
1209	scan_block(_sdata, _edata, NULL, 1);
1210	scan_block(__bss_start, __bss_stop, NULL, 1);
1211
1212#ifdef CONFIG_SMP
1213	/* per-cpu sections scanning */
1214	for_each_possible_cpu(i)
1215		scan_block(__per_cpu_start + per_cpu_offset(i),
1216			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1217#endif
1218
1219	/*
1220	 * Struct page scanning for each node. The code below is not yet safe
1221	 * with MEMORY_HOTPLUG.
1222	 */
1223	for_each_online_node(i) {
1224		pg_data_t *pgdat = NODE_DATA(i);
1225		unsigned long start_pfn = pgdat->node_start_pfn;
1226		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1227		unsigned long pfn;
1228
1229		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1230			struct page *page;
1231
1232			if (!pfn_valid(pfn))
1233				continue;
1234			page = pfn_to_page(pfn);
1235			/* only scan if page is in use */
1236			if (page_count(page) == 0)
1237				continue;
1238			scan_block(page, page + 1, NULL, 1);
1239		}
1240	}
1241
1242	/*
1243	 * Scanning the task stacks (may introduce false negatives).
1244	 */
1245	if (kmemleak_stack_scan) {
1246		struct task_struct *p, *g;
1247
1248		read_lock(&tasklist_lock);
1249		do_each_thread(g, p) {
1250			scan_block(task_stack_page(p), task_stack_page(p) +
1251				   THREAD_SIZE, NULL, 0);
1252		} while_each_thread(g, p);
1253		read_unlock(&tasklist_lock);
1254	}
1255
1256	/*
1257	 * Scan the objects already referenced from the sections scanned
1258	 * above.
1259	 */
1260	scan_gray_list();
1261
1262	/*
1263	 * Check for new or unreferenced objects modified since the previous
1264	 * scan and color them gray until the next scan.
1265	 */
1266	rcu_read_lock();
1267	list_for_each_entry_rcu(object, &object_list, object_list) {
1268		spin_lock_irqsave(&object->lock, flags);
1269		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1270		    && update_checksum(object) && get_object(object)) {
1271			/* color it gray temporarily */
1272			object->count = object->min_count;
1273			list_add_tail(&object->gray_list, &gray_list);
1274		}
1275		spin_unlock_irqrestore(&object->lock, flags);
1276	}
1277	rcu_read_unlock();
1278
1279	/*
1280	 * Re-scan the gray list for modified unreferenced objects.
1281	 */
1282	scan_gray_list();
1283
1284	/*
1285	 * If scanning was stopped do not report any new unreferenced objects.
1286	 */
1287	if (scan_should_stop())
1288		return;
1289
1290	/*
1291	 * Scanning result reporting.
1292	 */
1293	rcu_read_lock();
1294	list_for_each_entry_rcu(object, &object_list, object_list) {
1295		spin_lock_irqsave(&object->lock, flags);
1296		if (unreferenced_object(object) &&
1297		    !(object->flags & OBJECT_REPORTED)) {
1298			object->flags |= OBJECT_REPORTED;
1299			new_leaks++;
1300		}
1301		spin_unlock_irqrestore(&object->lock, flags);
1302	}
1303	rcu_read_unlock();
1304
1305	if (new_leaks)
1306		pr_info("%d new suspected memory leaks (see "
1307			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1308
1309}
1310
1311/*
1312 * Thread function performing automatic memory scanning. Unreferenced objects
1313 * at the end of a memory scan are reported but only the first time.
1314 */
1315static int kmemleak_scan_thread(void *arg)
1316{
1317	static int first_run = 1;
1318
1319	pr_info("Automatic memory scanning thread started\n");
1320	set_user_nice(current, 10);
1321
1322	/*
1323	 * Wait before the first scan to allow the system to fully initialize.
1324	 */
1325	if (first_run) {
1326		first_run = 0;
1327		ssleep(SECS_FIRST_SCAN);
1328	}
1329
1330	while (!kthread_should_stop()) {
1331		signed long timeout = jiffies_scan_wait;
1332
1333		mutex_lock(&scan_mutex);
1334		kmemleak_scan();
1335		mutex_unlock(&scan_mutex);
1336
1337		/* wait before the next scan */
1338		while (timeout && !kthread_should_stop())
1339			timeout = schedule_timeout_interruptible(timeout);
1340	}
1341
1342	pr_info("Automatic memory scanning thread ended\n");
1343
1344	return 0;
1345}
1346
1347/*
1348 * Start the automatic memory scanning thread. This function must be called
1349 * with the scan_mutex held.
1350 */
1351static void start_scan_thread(void)
1352{
1353	if (scan_thread)
1354		return;
1355	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1356	if (IS_ERR(scan_thread)) {
1357		pr_warning("Failed to create the scan thread\n");
1358		scan_thread = NULL;
1359	}
1360}
1361
1362/*
1363 * Stop the automatic memory scanning thread. This function must be called
1364 * with the scan_mutex held.
1365 */
1366static void stop_scan_thread(void)
1367{
1368	if (scan_thread) {
1369		kthread_stop(scan_thread);
1370		scan_thread = NULL;
1371	}
1372}
1373
1374/*
1375 * Iterate over the object_list and return the first valid object at or after
1376 * the required position with its use_count incremented. The function triggers
1377 * a memory scanning when the pos argument points to the first position.
1378 */
1379static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1380{
1381	struct kmemleak_object *object;
1382	loff_t n = *pos;
1383	int err;
1384
1385	err = mutex_lock_interruptible(&scan_mutex);
1386	if (err < 0)
1387		return ERR_PTR(err);
1388
1389	rcu_read_lock();
1390	list_for_each_entry_rcu(object, &object_list, object_list) {
1391		if (n-- > 0)
1392			continue;
1393		if (get_object(object))
1394			goto out;
1395	}
1396	object = NULL;
1397out:
1398	return object;
1399}
1400
1401/*
1402 * Return the next object in the object_list. The function decrements the
1403 * use_count of the previous object and increases that of the next one.
1404 */
1405static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1406{
1407	struct kmemleak_object *prev_obj = v;
1408	struct kmemleak_object *next_obj = NULL;
1409	struct list_head *n = &prev_obj->object_list;
1410
1411	++(*pos);
1412
1413	list_for_each_continue_rcu(n, &object_list) {
1414		next_obj = list_entry(n, struct kmemleak_object, object_list);
1415		if (get_object(next_obj))
1416			break;
1417	}
1418
1419	put_object(prev_obj);
1420	return next_obj;
1421}
1422
1423/*
1424 * Decrement the use_count of the last object required, if any.
1425 */
1426static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1427{
1428	if (!IS_ERR(v)) {
1429		/*
1430		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1431		 * waiting was interrupted, so only release it if !IS_ERR.
1432		 */
1433		rcu_read_unlock();
1434		mutex_unlock(&scan_mutex);
1435		if (v)
1436			put_object(v);
1437	}
1438}
1439
1440/*
1441 * Print the information for an unreferenced object to the seq file.
1442 */
1443static int kmemleak_seq_show(struct seq_file *seq, void *v)
1444{
1445	struct kmemleak_object *object = v;
1446	unsigned long flags;
1447
1448	spin_lock_irqsave(&object->lock, flags);
1449	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1450		print_unreferenced(seq, object);
1451	spin_unlock_irqrestore(&object->lock, flags);
1452	return 0;
1453}
1454
1455static const struct seq_operations kmemleak_seq_ops = {
1456	.start = kmemleak_seq_start,
1457	.next  = kmemleak_seq_next,
1458	.stop  = kmemleak_seq_stop,
1459	.show  = kmemleak_seq_show,
1460};
1461
1462static int kmemleak_open(struct inode *inode, struct file *file)
1463{
1464	if (!atomic_read(&kmemleak_enabled))
1465		return -EBUSY;
1466
1467	return seq_open(file, &kmemleak_seq_ops);
1468}
1469
1470static int kmemleak_release(struct inode *inode, struct file *file)
1471{
1472	return seq_release(inode, file);
1473}
1474
1475static int dump_str_object_info(const char *str)
1476{
1477	unsigned long flags;
1478	struct kmemleak_object *object;
1479	unsigned long addr;
1480
1481	addr= simple_strtoul(str, NULL, 0);
1482	object = find_and_get_object(addr, 0);
1483	if (!object) {
1484		pr_info("Unknown object at 0x%08lx\n", addr);
1485		return -EINVAL;
1486	}
1487
1488	spin_lock_irqsave(&object->lock, flags);
1489	dump_object_info(object);
1490	spin_unlock_irqrestore(&object->lock, flags);
1491
1492	put_object(object);
1493	return 0;
1494}
1495
1496/*
1497 * We use grey instead of black to ensure we can do future scans on the same
1498 * objects. If we did not do future scans these black objects could
1499 * potentially contain references to newly allocated objects in the future and
1500 * we'd end up with false positives.
1501 */
1502static void kmemleak_clear(void)
1503{
1504	struct kmemleak_object *object;
1505	unsigned long flags;
1506
1507	rcu_read_lock();
1508	list_for_each_entry_rcu(object, &object_list, object_list) {
1509		spin_lock_irqsave(&object->lock, flags);
1510		if ((object->flags & OBJECT_REPORTED) &&
1511		    unreferenced_object(object))
1512			__paint_it(object, KMEMLEAK_GREY);
1513		spin_unlock_irqrestore(&object->lock, flags);
1514	}
1515	rcu_read_unlock();
1516}
1517
1518/*
1519 * File write operation to configure kmemleak at run-time. The following
1520 * commands can be written to the /sys/kernel/debug/kmemleak file:
1521 *   off	- disable kmemleak (irreversible)
1522 *   stack=on	- enable the task stacks scanning
1523 *   stack=off	- disable the tasks stacks scanning
1524 *   scan=on	- start the automatic memory scanning thread
1525 *   scan=off	- stop the automatic memory scanning thread
1526 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1527 *		  disable it)
1528 *   scan	- trigger a memory scan
1529 *   clear	- mark all current reported unreferenced kmemleak objects as
1530 *		  grey to ignore printing them
1531 *   dump=...	- dump information about the object found at the given address
1532 */
1533static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1534			      size_t size, loff_t *ppos)
1535{
1536	char buf[64];
1537	int buf_size;
1538	int ret;
1539
1540	buf_size = min(size, (sizeof(buf) - 1));
1541	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1542		return -EFAULT;
1543	buf[buf_size] = 0;
1544
1545	ret = mutex_lock_interruptible(&scan_mutex);
1546	if (ret < 0)
1547		return ret;
1548
1549	if (strncmp(buf, "off", 3) == 0)
1550		kmemleak_disable();
1551	else if (strncmp(buf, "stack=on", 8) == 0)
1552		kmemleak_stack_scan = 1;
1553	else if (strncmp(buf, "stack=off", 9) == 0)
1554		kmemleak_stack_scan = 0;
1555	else if (strncmp(buf, "scan=on", 7) == 0)
1556		start_scan_thread();
1557	else if (strncmp(buf, "scan=off", 8) == 0)
1558		stop_scan_thread();
1559	else if (strncmp(buf, "scan=", 5) == 0) {
1560		unsigned long secs;
1561
1562		ret = strict_strtoul(buf + 5, 0, &secs);
1563		if (ret < 0)
1564			goto out;
1565		stop_scan_thread();
1566		if (secs) {
1567			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1568			start_scan_thread();
1569		}
1570	} else if (strncmp(buf, "scan", 4) == 0)
1571		kmemleak_scan();
1572	else if (strncmp(buf, "clear", 5) == 0)
1573		kmemleak_clear();
1574	else if (strncmp(buf, "dump=", 5) == 0)
1575		ret = dump_str_object_info(buf + 5);
1576	else
1577		ret = -EINVAL;
1578
1579out:
1580	mutex_unlock(&scan_mutex);
1581	if (ret < 0)
1582		return ret;
1583
1584	/* ignore the rest of the buffer, only one command at a time */
1585	*ppos += size;
1586	return size;
1587}
1588
1589static const struct file_operations kmemleak_fops = {
1590	.owner		= THIS_MODULE,
1591	.open		= kmemleak_open,
1592	.read		= seq_read,
1593	.write		= kmemleak_write,
1594	.llseek		= seq_lseek,
1595	.release	= kmemleak_release,
1596};
1597
1598/*
1599 * Perform the freeing of the kmemleak internal objects after waiting for any
1600 * current memory scan to complete.
1601 */
1602static void kmemleak_do_cleanup(struct work_struct *work)
1603{
1604	struct kmemleak_object *object;
1605
1606	mutex_lock(&scan_mutex);
1607	stop_scan_thread();
1608
1609	rcu_read_lock();
1610	list_for_each_entry_rcu(object, &object_list, object_list)
1611		delete_object_full(object->pointer);
1612	rcu_read_unlock();
1613	mutex_unlock(&scan_mutex);
1614}
1615
1616static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1617
1618/*
1619 * Disable kmemleak. No memory allocation/freeing will be traced once this
1620 * function is called. Disabling kmemleak is an irreversible operation.
1621 */
1622static void kmemleak_disable(void)
1623{
1624	/* atomically check whether it was already invoked */
1625	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1626		return;
1627
1628	/* stop any memory operation tracing */
1629	atomic_set(&kmemleak_early_log, 0);
1630	atomic_set(&kmemleak_enabled, 0);
1631
1632	/* check whether it is too early for a kernel thread */
1633	if (atomic_read(&kmemleak_initialized))
1634		schedule_work(&cleanup_work);
1635
1636	pr_info("Kernel memory leak detector disabled\n");
1637}
1638
1639/*
1640 * Allow boot-time kmemleak disabling (enabled by default).
1641 */
1642static int kmemleak_boot_config(char *str)
1643{
1644	if (!str)
1645		return -EINVAL;
1646	if (strcmp(str, "off") == 0)
1647		kmemleak_disable();
1648	else if (strcmp(str, "on") == 0)
1649		kmemleak_skip_disable = 1;
1650	else
1651		return -EINVAL;
1652	return 0;
1653}
1654early_param("kmemleak", kmemleak_boot_config);
1655
1656/*
1657 * Kmemleak initialization.
1658 */
1659void __init kmemleak_init(void)
1660{
1661	int i;
1662	unsigned long flags;
1663
1664#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1665	if (!kmemleak_skip_disable) {
1666		kmemleak_disable();
1667		return;
1668	}
1669#endif
1670
1671	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1672	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1673
1674	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1675	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1676	INIT_PRIO_TREE_ROOT(&object_tree_root);
1677
1678	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1679	local_irq_save(flags);
1680	if (!atomic_read(&kmemleak_error)) {
1681		atomic_set(&kmemleak_enabled, 1);
1682		atomic_set(&kmemleak_early_log, 0);
1683	}
1684	local_irq_restore(flags);
1685
1686	/*
1687	 * This is the point where tracking allocations is safe. Automatic
1688	 * scanning is started during the late initcall. Add the early logged
1689	 * callbacks to the kmemleak infrastructure.
1690	 */
1691	for (i = 0; i < crt_early_log; i++) {
1692		struct early_log *log = &early_log[i];
1693
1694		switch (log->op_type) {
1695		case KMEMLEAK_ALLOC:
1696			early_alloc(log);
1697			break;
1698		case KMEMLEAK_FREE:
1699			kmemleak_free(log->ptr);
1700			break;
1701		case KMEMLEAK_FREE_PART:
1702			kmemleak_free_part(log->ptr, log->size);
1703			break;
1704		case KMEMLEAK_NOT_LEAK:
1705			kmemleak_not_leak(log->ptr);
1706			break;
1707		case KMEMLEAK_IGNORE:
1708			kmemleak_ignore(log->ptr);
1709			break;
1710		case KMEMLEAK_SCAN_AREA:
1711			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1712			break;
1713		case KMEMLEAK_NO_SCAN:
1714			kmemleak_no_scan(log->ptr);
1715			break;
1716		default:
1717			WARN_ON(1);
1718		}
1719	}
1720}
1721
1722/*
1723 * Late initialization function.
1724 */
1725static int __init kmemleak_late_init(void)
1726{
1727	struct dentry *dentry;
1728
1729	atomic_set(&kmemleak_initialized, 1);
1730
1731	if (atomic_read(&kmemleak_error)) {
1732		/*
1733		 * Some error occured and kmemleak was disabled. There is a
1734		 * small chance that kmemleak_disable() was called immediately
1735		 * after setting kmemleak_initialized and we may end up with
1736		 * two clean-up threads but serialized by scan_mutex.
1737		 */
1738		schedule_work(&cleanup_work);
1739		return -ENOMEM;
1740	}
1741
1742	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1743				     &kmemleak_fops);
1744	if (!dentry)
1745		pr_warning("Failed to create the debugfs kmemleak file\n");
1746	mutex_lock(&scan_mutex);
1747	start_scan_thread();
1748	mutex_unlock(&scan_mutex);
1749
1750	pr_info("Kernel memory leak detector initialized\n");
1751
1752	return 0;
1753}
1754late_initcall(kmemleak_late_init);
1755