• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/lib/reed_solomon/
1/*
2 * lib/reed_solomon/decode_rs.c
3 *
4 * Overview:
5 *   Generic Reed Solomon encoder / decoder library
6 *
7 * Copyright 2002, Phil Karn, KA9Q
8 * May be used under the terms of the GNU General Public License (GPL)
9 *
10 * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
11 *
12 * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 Exp $
13 *
14 */
15
16/* Generic data width independent code which is included by the
17 * wrappers.
18 */
19{
20	int deg_lambda, el, deg_omega;
21	int i, j, r, k, pad;
22	int nn = rs->nn;
23	int nroots = rs->nroots;
24	int fcr = rs->fcr;
25	int prim = rs->prim;
26	int iprim = rs->iprim;
27	uint16_t *alpha_to = rs->alpha_to;
28	uint16_t *index_of = rs->index_of;
29	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
30	/* Err+Eras Locator poly and syndrome poly The maximum value
31	 * of nroots is 8. So the necessary stack size will be about
32	 * 220 bytes max.
33	 */
34	uint16_t lambda[nroots + 1], syn[nroots];
35	uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
36	uint16_t root[nroots], reg[nroots + 1], loc[nroots];
37	int count = 0;
38	uint16_t msk = (uint16_t) rs->nn;
39
40	/* Check length parameter for validity */
41	pad = nn - nroots - len;
42	BUG_ON(pad < 0 || pad >= nn);
43
44	/* Does the caller provide the syndrome ? */
45	if (s != NULL)
46		goto decode;
47
48	/* form the syndromes; i.e., evaluate data(x) at roots of
49	 * g(x) */
50	for (i = 0; i < nroots; i++)
51		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
52
53	for (j = 1; j < len; j++) {
54		for (i = 0; i < nroots; i++) {
55			if (syn[i] == 0) {
56				syn[i] = (((uint16_t) data[j]) ^
57					  invmsk) & msk;
58			} else {
59				syn[i] = ((((uint16_t) data[j]) ^
60					   invmsk) & msk) ^
61					alpha_to[rs_modnn(rs, index_of[syn[i]] +
62						       (fcr + i) * prim)];
63			}
64		}
65	}
66
67	for (j = 0; j < nroots; j++) {
68		for (i = 0; i < nroots; i++) {
69			if (syn[i] == 0) {
70				syn[i] = ((uint16_t) par[j]) & msk;
71			} else {
72				syn[i] = (((uint16_t) par[j]) & msk) ^
73					alpha_to[rs_modnn(rs, index_of[syn[i]] +
74						       (fcr+i)*prim)];
75			}
76		}
77	}
78	s = syn;
79
80	/* Convert syndromes to index form, checking for nonzero condition */
81	syn_error = 0;
82	for (i = 0; i < nroots; i++) {
83		syn_error |= s[i];
84		s[i] = index_of[s[i]];
85	}
86
87	if (!syn_error) {
88		/* if syndrome is zero, data[] is a codeword and there are no
89		 * errors to correct. So return data[] unmodified
90		 */
91		count = 0;
92		goto finish;
93	}
94
95 decode:
96	memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
97	lambda[0] = 1;
98
99	if (no_eras > 0) {
100		/* Init lambda to be the erasure locator polynomial */
101		lambda[1] = alpha_to[rs_modnn(rs,
102					      prim * (nn - 1 - eras_pos[0]))];
103		for (i = 1; i < no_eras; i++) {
104			u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
105			for (j = i + 1; j > 0; j--) {
106				tmp = index_of[lambda[j - 1]];
107				if (tmp != nn) {
108					lambda[j] ^=
109						alpha_to[rs_modnn(rs, u + tmp)];
110				}
111			}
112		}
113	}
114
115	for (i = 0; i < nroots + 1; i++)
116		b[i] = index_of[lambda[i]];
117
118	/*
119	 * Begin Berlekamp-Massey algorithm to determine error+erasure
120	 * locator polynomial
121	 */
122	r = no_eras;
123	el = no_eras;
124	while (++r <= nroots) {	/* r is the step number */
125		/* Compute discrepancy at the r-th step in poly-form */
126		discr_r = 0;
127		for (i = 0; i < r; i++) {
128			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
129				discr_r ^=
130					alpha_to[rs_modnn(rs,
131							  index_of[lambda[i]] +
132							  s[r - i - 1])];
133			}
134		}
135		discr_r = index_of[discr_r];	/* Index form */
136		if (discr_r == nn) {
137			/* 2 lines below: B(x) <-- x*B(x) */
138			memmove (&b[1], b, nroots * sizeof (b[0]));
139			b[0] = nn;
140		} else {
141			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
142			t[0] = lambda[0];
143			for (i = 0; i < nroots; i++) {
144				if (b[i] != nn) {
145					t[i + 1] = lambda[i + 1] ^
146						alpha_to[rs_modnn(rs, discr_r +
147								  b[i])];
148				} else
149					t[i + 1] = lambda[i + 1];
150			}
151			if (2 * el <= r + no_eras - 1) {
152				el = r + no_eras - el;
153				/*
154				 * 2 lines below: B(x) <-- inv(discr_r) *
155				 * lambda(x)
156				 */
157				for (i = 0; i <= nroots; i++) {
158					b[i] = (lambda[i] == 0) ? nn :
159						rs_modnn(rs, index_of[lambda[i]]
160							 - discr_r + nn);
161				}
162			} else {
163				/* 2 lines below: B(x) <-- x*B(x) */
164				memmove(&b[1], b, nroots * sizeof(b[0]));
165				b[0] = nn;
166			}
167			memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
168		}
169	}
170
171	/* Convert lambda to index form and compute deg(lambda(x)) */
172	deg_lambda = 0;
173	for (i = 0; i < nroots + 1; i++) {
174		lambda[i] = index_of[lambda[i]];
175		if (lambda[i] != nn)
176			deg_lambda = i;
177	}
178	/* Find roots of error+erasure locator polynomial by Chien search */
179	memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
180	count = 0;		/* Number of roots of lambda(x) */
181	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
182		q = 1;		/* lambda[0] is always 0 */
183		for (j = deg_lambda; j > 0; j--) {
184			if (reg[j] != nn) {
185				reg[j] = rs_modnn(rs, reg[j] + j);
186				q ^= alpha_to[reg[j]];
187			}
188		}
189		if (q != 0)
190			continue;	/* Not a root */
191		/* store root (index-form) and error location number */
192		root[count] = i;
193		loc[count] = k;
194		/* If we've already found max possible roots,
195		 * abort the search to save time
196		 */
197		if (++count == deg_lambda)
198			break;
199	}
200	if (deg_lambda != count) {
201		/*
202		 * deg(lambda) unequal to number of roots => uncorrectable
203		 * error detected
204		 */
205		count = -EBADMSG;
206		goto finish;
207	}
208	/*
209	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
210	 * x**nroots). in index form. Also find deg(omega).
211	 */
212	deg_omega = deg_lambda - 1;
213	for (i = 0; i <= deg_omega; i++) {
214		tmp = 0;
215		for (j = i; j >= 0; j--) {
216			if ((s[i - j] != nn) && (lambda[j] != nn))
217				tmp ^=
218				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
219		}
220		omega[i] = index_of[tmp];
221	}
222
223	/*
224	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
225	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
226	 */
227	for (j = count - 1; j >= 0; j--) {
228		num1 = 0;
229		for (i = deg_omega; i >= 0; i--) {
230			if (omega[i] != nn)
231				num1 ^= alpha_to[rs_modnn(rs, omega[i] +
232							i * root[j])];
233		}
234		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
235		den = 0;
236
237		/* lambda[i+1] for i even is the formal derivative
238		 * lambda_pr of lambda[i] */
239		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
240			if (lambda[i + 1] != nn) {
241				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
242						       i * root[j])];
243			}
244		}
245		/* Apply error to data */
246		if (num1 != 0 && loc[j] >= pad) {
247			uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
248						       index_of[num2] +
249						       nn - index_of[den])];
250			/* Store the error correction pattern, if a
251			 * correction buffer is available */
252			if (corr) {
253				corr[j] = cor;
254			} else {
255				/* If a data buffer is given and the
256				 * error is inside the message,
257				 * correct it */
258				if (data && (loc[j] < (nn - nroots)))
259					data[loc[j] - pad] ^= cor;
260			}
261		}
262	}
263
264finish:
265	if (eras_pos != NULL) {
266		for (i = 0; i < count; i++)
267			eras_pos[i] = loc[i] - pad;
268	}
269	return count;
270
271}
272