• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/kernel/trace/
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
7#include <linux/trace_clock.h>
8#include <linux/ftrace_irq.h>
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
12#include <linux/hardirq.h>
13#include <linux/kmemcheck.h>
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/hash.h>
20#include <linux/list.h>
21#include <linux/cpu.h>
22#include <linux/fs.h>
23
24#include <asm/local.h>
25#include "trace.h"
26
27/*
28 * The ring buffer header is special. We must manually up keep it.
29 */
30int ring_buffer_print_entry_header(struct trace_seq *s)
31{
32	int ret;
33
34	ret = trace_seq_printf(s, "# compressed entry header\n");
35	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38	ret = trace_seq_printf(s, "\n");
39	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40			       RINGBUF_TYPE_PADDING);
41	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42			       RINGBUF_TYPE_TIME_EXTEND);
43	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45
46	return ret;
47}
48
49/*
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on.  A reader may read
53 * from any per cpu buffer.
54 *
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
58 *
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
62 *
63 * Here's some silly ASCII art.
64 *
65 *   +------+
66 *   |reader|          RING BUFFER
67 *   |page  |
68 *   +------+        +---+   +---+   +---+
69 *                   |   |-->|   |-->|   |
70 *                   +---+   +---+   +---+
71 *                     ^               |
72 *                     |               |
73 *                     +---------------+
74 *
75 *
76 *   +------+
77 *   |reader|          RING BUFFER
78 *   |page  |------------------v
79 *   +------+        +---+   +---+   +---+
80 *                   |   |-->|   |-->|   |
81 *                   +---+   +---+   +---+
82 *                     ^               |
83 *                     |               |
84 *                     +---------------+
85 *
86 *
87 *   +------+
88 *   |reader|          RING BUFFER
89 *   |page  |------------------v
90 *   +------+        +---+   +---+   +---+
91 *      ^            |   |-->|   |-->|   |
92 *      |            +---+   +---+   +---+
93 *      |                              |
94 *      |                              |
95 *      +------------------------------+
96 *
97 *
98 *   +------+
99 *   |buffer|          RING BUFFER
100 *   |page  |------------------v
101 *   +------+        +---+   +---+   +---+
102 *      ^            |   |   |   |-->|   |
103 *      |   New      +---+   +---+   +---+
104 *      |  Reader------^               |
105 *      |   page                       |
106 *      +------------------------------+
107 *
108 *
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
112 *
113 * We will be using cmpxchg soon to make all this lockless.
114 *
115 */
116
117/*
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
123 *
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
126 *
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
130 *
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
133 */
134
135/*
136 * Global flag to disable all recording to ring buffers
137 *  This has two bits: ON, DISABLED
138 *
139 *  ON   DISABLED
140 * ---- ----------
141 *   0      0        : ring buffers are off
142 *   1      0        : ring buffers are on
143 *   X      1        : ring buffers are permanently disabled
144 */
145
146enum {
147	RB_BUFFERS_ON_BIT	= 0,
148	RB_BUFFERS_DISABLED_BIT	= 1,
149};
150
151enum {
152	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
153	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
154};
155
156static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157
158#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
160/**
161 * tracing_on - enable all tracing buffers
162 *
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
165 */
166void tracing_on(void)
167{
168	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169}
170EXPORT_SYMBOL_GPL(tracing_on);
171
172/**
173 * tracing_off - turn off all tracing buffers
174 *
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
179 */
180void tracing_off(void)
181{
182	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183}
184EXPORT_SYMBOL_GPL(tracing_off);
185
186/**
187 * tracing_off_permanent - permanently disable ring buffers
188 *
189 * This function, once called, will disable all ring buffers
190 * permanently.
191 */
192void tracing_off_permanent(void)
193{
194	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195}
196
197/**
198 * tracing_is_on - show state of ring buffers enabled
199 */
200int tracing_is_on(void)
201{
202	return ring_buffer_flags == RB_BUFFERS_ON;
203}
204EXPORT_SYMBOL_GPL(tracing_is_on);
205
206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207#define RB_ALIGNMENT		4U
208#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210
211#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212# define RB_FORCE_8BYTE_ALIGNMENT	0
213# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
214#else
215# define RB_FORCE_8BYTE_ALIGNMENT	1
216# define RB_ARCH_ALIGNMENT		8U
217#endif
218
219/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221
222enum {
223	RB_LEN_TIME_EXTEND = 8,
224	RB_LEN_TIME_STAMP = 16,
225};
226
227static inline int rb_null_event(struct ring_buffer_event *event)
228{
229	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230}
231
232static void rb_event_set_padding(struct ring_buffer_event *event)
233{
234	/* padding has a NULL time_delta */
235	event->type_len = RINGBUF_TYPE_PADDING;
236	event->time_delta = 0;
237}
238
239static unsigned
240rb_event_data_length(struct ring_buffer_event *event)
241{
242	unsigned length;
243
244	if (event->type_len)
245		length = event->type_len * RB_ALIGNMENT;
246	else
247		length = event->array[0];
248	return length + RB_EVNT_HDR_SIZE;
249}
250
251/* inline for ring buffer fast paths */
252static unsigned
253rb_event_length(struct ring_buffer_event *event)
254{
255	switch (event->type_len) {
256	case RINGBUF_TYPE_PADDING:
257		if (rb_null_event(event))
258			/* undefined */
259			return -1;
260		return  event->array[0] + RB_EVNT_HDR_SIZE;
261
262	case RINGBUF_TYPE_TIME_EXTEND:
263		return RB_LEN_TIME_EXTEND;
264
265	case RINGBUF_TYPE_TIME_STAMP:
266		return RB_LEN_TIME_STAMP;
267
268	case RINGBUF_TYPE_DATA:
269		return rb_event_data_length(event);
270	default:
271		BUG();
272	}
273	/* not hit */
274	return 0;
275}
276
277/**
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
280 */
281unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282{
283	unsigned length = rb_event_length(event);
284	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285		return length;
286	length -= RB_EVNT_HDR_SIZE;
287	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288                length -= sizeof(event->array[0]);
289	return length;
290}
291EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292
293/* inline for ring buffer fast paths */
294static void *
295rb_event_data(struct ring_buffer_event *event)
296{
297	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298	/* If length is in len field, then array[0] has the data */
299	if (event->type_len)
300		return (void *)&event->array[0];
301	/* Otherwise length is in array[0] and array[1] has the data */
302	return (void *)&event->array[1];
303}
304
305/**
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
308 */
309void *ring_buffer_event_data(struct ring_buffer_event *event)
310{
311	return rb_event_data(event);
312}
313EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314
315#define for_each_buffer_cpu(buffer, cpu)		\
316	for_each_cpu(cpu, buffer->cpumask)
317
318#define TS_SHIFT	27
319#define TS_MASK		((1ULL << TS_SHIFT) - 1)
320#define TS_DELTA_TEST	(~TS_MASK)
321
322/* Flag when events were overwritten */
323#define RB_MISSED_EVENTS	(1 << 31)
324/* Missed count stored at end */
325#define RB_MISSED_STORED	(1 << 30)
326
327struct buffer_data_page {
328	u64		 time_stamp;	/* page time stamp */
329	local_t		 commit;	/* write committed index */
330	unsigned char	 data[];	/* data of buffer page */
331};
332
333/*
334 * Note, the buffer_page list must be first. The buffer pages
335 * are allocated in cache lines, which means that each buffer
336 * page will be at the beginning of a cache line, and thus
337 * the least significant bits will be zero. We use this to
338 * add flags in the list struct pointers, to make the ring buffer
339 * lockless.
340 */
341struct buffer_page {
342	struct list_head list;		/* list of buffer pages */
343	local_t		 write;		/* index for next write */
344	unsigned	 read;		/* index for next read */
345	local_t		 entries;	/* entries on this page */
346	unsigned long	 real_end;	/* real end of data */
347	struct buffer_data_page *page;	/* Actual data page */
348};
349
350/*
351 * The buffer page counters, write and entries, must be reset
352 * atomically when crossing page boundaries. To synchronize this
353 * update, two counters are inserted into the number. One is
354 * the actual counter for the write position or count on the page.
355 *
356 * The other is a counter of updaters. Before an update happens
357 * the update partition of the counter is incremented. This will
358 * allow the updater to update the counter atomically.
359 *
360 * The counter is 20 bits, and the state data is 12.
361 */
362#define RB_WRITE_MASK		0xfffff
363#define RB_WRITE_INTCNT		(1 << 20)
364
365static void rb_init_page(struct buffer_data_page *bpage)
366{
367	local_set(&bpage->commit, 0);
368}
369
370/**
371 * ring_buffer_page_len - the size of data on the page.
372 * @page: The page to read
373 *
374 * Returns the amount of data on the page, including buffer page header.
375 */
376size_t ring_buffer_page_len(void *page)
377{
378	return local_read(&((struct buffer_data_page *)page)->commit)
379		+ BUF_PAGE_HDR_SIZE;
380}
381
382/*
383 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
384 * this issue out.
385 */
386static void free_buffer_page(struct buffer_page *bpage)
387{
388	free_page((unsigned long)bpage->page);
389	kfree(bpage);
390}
391
392/*
393 * We need to fit the time_stamp delta into 27 bits.
394 */
395static inline int test_time_stamp(u64 delta)
396{
397	if (delta & TS_DELTA_TEST)
398		return 1;
399	return 0;
400}
401
402#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
403
404/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
405#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
406
407/* Max number of timestamps that can fit on a page */
408#define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_EXTEND)
409
410int ring_buffer_print_page_header(struct trace_seq *s)
411{
412	struct buffer_data_page field;
413	int ret;
414
415	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
416			       "offset:0;\tsize:%u;\tsigned:%u;\n",
417			       (unsigned int)sizeof(field.time_stamp),
418			       (unsigned int)is_signed_type(u64));
419
420	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
421			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
422			       (unsigned int)offsetof(typeof(field), commit),
423			       (unsigned int)sizeof(field.commit),
424			       (unsigned int)is_signed_type(long));
425
426	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
427			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
428			       (unsigned int)offsetof(typeof(field), commit),
429			       1,
430			       (unsigned int)is_signed_type(long));
431
432	ret = trace_seq_printf(s, "\tfield: char data;\t"
433			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
434			       (unsigned int)offsetof(typeof(field), data),
435			       (unsigned int)BUF_PAGE_SIZE,
436			       (unsigned int)is_signed_type(char));
437
438	return ret;
439}
440
441/*
442 * head_page == tail_page && head == tail then buffer is empty.
443 */
444struct ring_buffer_per_cpu {
445	int				cpu;
446	atomic_t			record_disabled;
447	struct ring_buffer		*buffer;
448	spinlock_t			reader_lock;	/* serialize readers */
449	arch_spinlock_t			lock;
450	struct lock_class_key		lock_key;
451	struct list_head		*pages;
452	struct buffer_page		*head_page;	/* read from head */
453	struct buffer_page		*tail_page;	/* write to tail */
454	struct buffer_page		*commit_page;	/* committed pages */
455	struct buffer_page		*reader_page;
456	unsigned long			lost_events;
457	unsigned long			last_overrun;
458	local_t				commit_overrun;
459	local_t				overrun;
460	local_t				entries;
461	local_t				committing;
462	local_t				commits;
463	unsigned long			read;
464	u64				write_stamp;
465	u64				read_stamp;
466};
467
468struct ring_buffer {
469	unsigned			pages;
470	unsigned			flags;
471	int				cpus;
472	atomic_t			record_disabled;
473	cpumask_var_t			cpumask;
474
475	struct lock_class_key		*reader_lock_key;
476
477	struct mutex			mutex;
478
479	struct ring_buffer_per_cpu	**buffers;
480
481#ifdef CONFIG_HOTPLUG_CPU
482	struct notifier_block		cpu_notify;
483#endif
484	u64				(*clock)(void);
485};
486
487struct ring_buffer_iter {
488	struct ring_buffer_per_cpu	*cpu_buffer;
489	unsigned long			head;
490	struct buffer_page		*head_page;
491	struct buffer_page		*cache_reader_page;
492	unsigned long			cache_read;
493	u64				read_stamp;
494};
495
496/* buffer may be either ring_buffer or ring_buffer_per_cpu */
497#define RB_WARN_ON(b, cond)						\
498	({								\
499		int _____ret = unlikely(cond);				\
500		if (_____ret) {						\
501			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
502				struct ring_buffer_per_cpu *__b =	\
503					(void *)b;			\
504				atomic_inc(&__b->buffer->record_disabled); \
505			} else						\
506				atomic_inc(&b->record_disabled);	\
507			WARN_ON(1);					\
508		}							\
509		_____ret;						\
510	})
511
512/* Up this if you want to test the TIME_EXTENTS and normalization */
513#define DEBUG_SHIFT 0
514
515static inline u64 rb_time_stamp(struct ring_buffer *buffer)
516{
517	/* shift to debug/test normalization and TIME_EXTENTS */
518	return buffer->clock() << DEBUG_SHIFT;
519}
520
521u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
522{
523	u64 time;
524
525	preempt_disable_notrace();
526	time = rb_time_stamp(buffer);
527	preempt_enable_no_resched_notrace();
528
529	return time;
530}
531EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
532
533void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
534				      int cpu, u64 *ts)
535{
536	/* Just stupid testing the normalize function and deltas */
537	*ts >>= DEBUG_SHIFT;
538}
539EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
540
541/*
542 * Making the ring buffer lockless makes things tricky.
543 * Although writes only happen on the CPU that they are on,
544 * and they only need to worry about interrupts. Reads can
545 * happen on any CPU.
546 *
547 * The reader page is always off the ring buffer, but when the
548 * reader finishes with a page, it needs to swap its page with
549 * a new one from the buffer. The reader needs to take from
550 * the head (writes go to the tail). But if a writer is in overwrite
551 * mode and wraps, it must push the head page forward.
552 *
553 * Here lies the problem.
554 *
555 * The reader must be careful to replace only the head page, and
556 * not another one. As described at the top of the file in the
557 * ASCII art, the reader sets its old page to point to the next
558 * page after head. It then sets the page after head to point to
559 * the old reader page. But if the writer moves the head page
560 * during this operation, the reader could end up with the tail.
561 *
562 * We use cmpxchg to help prevent this race. We also do something
563 * special with the page before head. We set the LSB to 1.
564 *
565 * When the writer must push the page forward, it will clear the
566 * bit that points to the head page, move the head, and then set
567 * the bit that points to the new head page.
568 *
569 * We also don't want an interrupt coming in and moving the head
570 * page on another writer. Thus we use the second LSB to catch
571 * that too. Thus:
572 *
573 * head->list->prev->next        bit 1          bit 0
574 *                              -------        -------
575 * Normal page                     0              0
576 * Points to head page             0              1
577 * New head page                   1              0
578 *
579 * Note we can not trust the prev pointer of the head page, because:
580 *
581 * +----+       +-----+        +-----+
582 * |    |------>|  T  |---X--->|  N  |
583 * |    |<------|     |        |     |
584 * +----+       +-----+        +-----+
585 *   ^                           ^ |
586 *   |          +-----+          | |
587 *   +----------|  R  |----------+ |
588 *              |     |<-----------+
589 *              +-----+
590 *
591 * Key:  ---X-->  HEAD flag set in pointer
592 *         T      Tail page
593 *         R      Reader page
594 *         N      Next page
595 *
596 * (see __rb_reserve_next() to see where this happens)
597 *
598 *  What the above shows is that the reader just swapped out
599 *  the reader page with a page in the buffer, but before it
600 *  could make the new header point back to the new page added
601 *  it was preempted by a writer. The writer moved forward onto
602 *  the new page added by the reader and is about to move forward
603 *  again.
604 *
605 *  You can see, it is legitimate for the previous pointer of
606 *  the head (or any page) not to point back to itself. But only
607 *  temporarially.
608 */
609
610#define RB_PAGE_NORMAL		0UL
611#define RB_PAGE_HEAD		1UL
612#define RB_PAGE_UPDATE		2UL
613
614
615#define RB_FLAG_MASK		3UL
616
617/* PAGE_MOVED is not part of the mask */
618#define RB_PAGE_MOVED		4UL
619
620/*
621 * rb_list_head - remove any bit
622 */
623static struct list_head *rb_list_head(struct list_head *list)
624{
625	unsigned long val = (unsigned long)list;
626
627	return (struct list_head *)(val & ~RB_FLAG_MASK);
628}
629
630/*
631 * rb_is_head_page - test if the given page is the head page
632 *
633 * Because the reader may move the head_page pointer, we can
634 * not trust what the head page is (it may be pointing to
635 * the reader page). But if the next page is a header page,
636 * its flags will be non zero.
637 */
638static int inline
639rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
640		struct buffer_page *page, struct list_head *list)
641{
642	unsigned long val;
643
644	val = (unsigned long)list->next;
645
646	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
647		return RB_PAGE_MOVED;
648
649	return val & RB_FLAG_MASK;
650}
651
652/*
653 * rb_is_reader_page
654 *
655 * The unique thing about the reader page, is that, if the
656 * writer is ever on it, the previous pointer never points
657 * back to the reader page.
658 */
659static int rb_is_reader_page(struct buffer_page *page)
660{
661	struct list_head *list = page->list.prev;
662
663	return rb_list_head(list->next) != &page->list;
664}
665
666/*
667 * rb_set_list_to_head - set a list_head to be pointing to head.
668 */
669static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
670				struct list_head *list)
671{
672	unsigned long *ptr;
673
674	ptr = (unsigned long *)&list->next;
675	*ptr |= RB_PAGE_HEAD;
676	*ptr &= ~RB_PAGE_UPDATE;
677}
678
679/*
680 * rb_head_page_activate - sets up head page
681 */
682static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
683{
684	struct buffer_page *head;
685
686	head = cpu_buffer->head_page;
687	if (!head)
688		return;
689
690	/*
691	 * Set the previous list pointer to have the HEAD flag.
692	 */
693	rb_set_list_to_head(cpu_buffer, head->list.prev);
694}
695
696static void rb_list_head_clear(struct list_head *list)
697{
698	unsigned long *ptr = (unsigned long *)&list->next;
699
700	*ptr &= ~RB_FLAG_MASK;
701}
702
703/*
704 * rb_head_page_dactivate - clears head page ptr (for free list)
705 */
706static void
707rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
708{
709	struct list_head *hd;
710
711	/* Go through the whole list and clear any pointers found. */
712	rb_list_head_clear(cpu_buffer->pages);
713
714	list_for_each(hd, cpu_buffer->pages)
715		rb_list_head_clear(hd);
716}
717
718static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
719			    struct buffer_page *head,
720			    struct buffer_page *prev,
721			    int old_flag, int new_flag)
722{
723	struct list_head *list;
724	unsigned long val = (unsigned long)&head->list;
725	unsigned long ret;
726
727	list = &prev->list;
728
729	val &= ~RB_FLAG_MASK;
730
731	ret = cmpxchg((unsigned long *)&list->next,
732		      val | old_flag, val | new_flag);
733
734	/* check if the reader took the page */
735	if ((ret & ~RB_FLAG_MASK) != val)
736		return RB_PAGE_MOVED;
737
738	return ret & RB_FLAG_MASK;
739}
740
741static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
742				   struct buffer_page *head,
743				   struct buffer_page *prev,
744				   int old_flag)
745{
746	return rb_head_page_set(cpu_buffer, head, prev,
747				old_flag, RB_PAGE_UPDATE);
748}
749
750static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
751				 struct buffer_page *head,
752				 struct buffer_page *prev,
753				 int old_flag)
754{
755	return rb_head_page_set(cpu_buffer, head, prev,
756				old_flag, RB_PAGE_HEAD);
757}
758
759static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
760				   struct buffer_page *head,
761				   struct buffer_page *prev,
762				   int old_flag)
763{
764	return rb_head_page_set(cpu_buffer, head, prev,
765				old_flag, RB_PAGE_NORMAL);
766}
767
768static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
769			       struct buffer_page **bpage)
770{
771	struct list_head *p = rb_list_head((*bpage)->list.next);
772
773	*bpage = list_entry(p, struct buffer_page, list);
774}
775
776static struct buffer_page *
777rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
778{
779	struct buffer_page *head;
780	struct buffer_page *page;
781	struct list_head *list;
782	int i;
783
784	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
785		return NULL;
786
787	/* sanity check */
788	list = cpu_buffer->pages;
789	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
790		return NULL;
791
792	page = head = cpu_buffer->head_page;
793	/*
794	 * It is possible that the writer moves the header behind
795	 * where we started, and we miss in one loop.
796	 * A second loop should grab the header, but we'll do
797	 * three loops just because I'm paranoid.
798	 */
799	for (i = 0; i < 3; i++) {
800		do {
801			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
802				cpu_buffer->head_page = page;
803				return page;
804			}
805			rb_inc_page(cpu_buffer, &page);
806		} while (page != head);
807	}
808
809	RB_WARN_ON(cpu_buffer, 1);
810
811	return NULL;
812}
813
814static int rb_head_page_replace(struct buffer_page *old,
815				struct buffer_page *new)
816{
817	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
818	unsigned long val;
819	unsigned long ret;
820
821	val = *ptr & ~RB_FLAG_MASK;
822	val |= RB_PAGE_HEAD;
823
824	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
825
826	return ret == val;
827}
828
829/*
830 * rb_tail_page_update - move the tail page forward
831 *
832 * Returns 1 if moved tail page, 0 if someone else did.
833 */
834static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
835			       struct buffer_page *tail_page,
836			       struct buffer_page *next_page)
837{
838	struct buffer_page *old_tail;
839	unsigned long old_entries;
840	unsigned long old_write;
841	int ret = 0;
842
843	/*
844	 * The tail page now needs to be moved forward.
845	 *
846	 * We need to reset the tail page, but without messing
847	 * with possible erasing of data brought in by interrupts
848	 * that have moved the tail page and are currently on it.
849	 *
850	 * We add a counter to the write field to denote this.
851	 */
852	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
853	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
854
855	/*
856	 * Just make sure we have seen our old_write and synchronize
857	 * with any interrupts that come in.
858	 */
859	barrier();
860
861	/*
862	 * If the tail page is still the same as what we think
863	 * it is, then it is up to us to update the tail
864	 * pointer.
865	 */
866	if (tail_page == cpu_buffer->tail_page) {
867		/* Zero the write counter */
868		unsigned long val = old_write & ~RB_WRITE_MASK;
869		unsigned long eval = old_entries & ~RB_WRITE_MASK;
870
871		/*
872		 * This will only succeed if an interrupt did
873		 * not come in and change it. In which case, we
874		 * do not want to modify it.
875		 *
876		 * We add (void) to let the compiler know that we do not care
877		 * about the return value of these functions. We use the
878		 * cmpxchg to only update if an interrupt did not already
879		 * do it for us. If the cmpxchg fails, we don't care.
880		 */
881		(void)local_cmpxchg(&next_page->write, old_write, val);
882		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
883
884		/*
885		 * No need to worry about races with clearing out the commit.
886		 * it only can increment when a commit takes place. But that
887		 * only happens in the outer most nested commit.
888		 */
889		local_set(&next_page->page->commit, 0);
890
891		old_tail = cmpxchg(&cpu_buffer->tail_page,
892				   tail_page, next_page);
893
894		if (old_tail == tail_page)
895			ret = 1;
896	}
897
898	return ret;
899}
900
901static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
902			  struct buffer_page *bpage)
903{
904	unsigned long val = (unsigned long)bpage;
905
906	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
907		return 1;
908
909	return 0;
910}
911
912/**
913 * rb_check_list - make sure a pointer to a list has the last bits zero
914 */
915static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
916			 struct list_head *list)
917{
918	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
919		return 1;
920	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
921		return 1;
922	return 0;
923}
924
925/**
926 * check_pages - integrity check of buffer pages
927 * @cpu_buffer: CPU buffer with pages to test
928 *
929 * As a safety measure we check to make sure the data pages have not
930 * been corrupted.
931 */
932static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
933{
934	struct list_head *head = cpu_buffer->pages;
935	struct buffer_page *bpage, *tmp;
936
937	rb_head_page_deactivate(cpu_buffer);
938
939	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
940		return -1;
941	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
942		return -1;
943
944	if (rb_check_list(cpu_buffer, head))
945		return -1;
946
947	list_for_each_entry_safe(bpage, tmp, head, list) {
948		if (RB_WARN_ON(cpu_buffer,
949			       bpage->list.next->prev != &bpage->list))
950			return -1;
951		if (RB_WARN_ON(cpu_buffer,
952			       bpage->list.prev->next != &bpage->list))
953			return -1;
954		if (rb_check_list(cpu_buffer, &bpage->list))
955			return -1;
956	}
957
958	rb_head_page_activate(cpu_buffer);
959
960	return 0;
961}
962
963static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
964			     unsigned nr_pages)
965{
966	struct buffer_page *bpage, *tmp;
967	unsigned long addr;
968	LIST_HEAD(pages);
969	unsigned i;
970
971	WARN_ON(!nr_pages);
972
973	for (i = 0; i < nr_pages; i++) {
974		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
975				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
976		if (!bpage)
977			goto free_pages;
978
979		rb_check_bpage(cpu_buffer, bpage);
980
981		list_add(&bpage->list, &pages);
982
983		addr = __get_free_page(GFP_KERNEL);
984		if (!addr)
985			goto free_pages;
986		bpage->page = (void *)addr;
987		rb_init_page(bpage->page);
988	}
989
990	/*
991	 * The ring buffer page list is a circular list that does not
992	 * start and end with a list head. All page list items point to
993	 * other pages.
994	 */
995	cpu_buffer->pages = pages.next;
996	list_del(&pages);
997
998	rb_check_pages(cpu_buffer);
999
1000	return 0;
1001
1002 free_pages:
1003	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1004		list_del_init(&bpage->list);
1005		free_buffer_page(bpage);
1006	}
1007	return -ENOMEM;
1008}
1009
1010static struct ring_buffer_per_cpu *
1011rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1012{
1013	struct ring_buffer_per_cpu *cpu_buffer;
1014	struct buffer_page *bpage;
1015	unsigned long addr;
1016	int ret;
1017
1018	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1019				  GFP_KERNEL, cpu_to_node(cpu));
1020	if (!cpu_buffer)
1021		return NULL;
1022
1023	cpu_buffer->cpu = cpu;
1024	cpu_buffer->buffer = buffer;
1025	spin_lock_init(&cpu_buffer->reader_lock);
1026	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1027	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1028
1029	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1030			    GFP_KERNEL, cpu_to_node(cpu));
1031	if (!bpage)
1032		goto fail_free_buffer;
1033
1034	rb_check_bpage(cpu_buffer, bpage);
1035
1036	cpu_buffer->reader_page = bpage;
1037	addr = __get_free_page(GFP_KERNEL);
1038	if (!addr)
1039		goto fail_free_reader;
1040	bpage->page = (void *)addr;
1041	rb_init_page(bpage->page);
1042
1043	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1044
1045	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1046	if (ret < 0)
1047		goto fail_free_reader;
1048
1049	cpu_buffer->head_page
1050		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1051	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1052
1053	rb_head_page_activate(cpu_buffer);
1054
1055	return cpu_buffer;
1056
1057 fail_free_reader:
1058	free_buffer_page(cpu_buffer->reader_page);
1059
1060 fail_free_buffer:
1061	kfree(cpu_buffer);
1062	return NULL;
1063}
1064
1065static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1066{
1067	struct list_head *head = cpu_buffer->pages;
1068	struct buffer_page *bpage, *tmp;
1069
1070	free_buffer_page(cpu_buffer->reader_page);
1071
1072	rb_head_page_deactivate(cpu_buffer);
1073
1074	if (head) {
1075		list_for_each_entry_safe(bpage, tmp, head, list) {
1076			list_del_init(&bpage->list);
1077			free_buffer_page(bpage);
1078		}
1079		bpage = list_entry(head, struct buffer_page, list);
1080		free_buffer_page(bpage);
1081	}
1082
1083	kfree(cpu_buffer);
1084}
1085
1086#ifdef CONFIG_HOTPLUG_CPU
1087static int rb_cpu_notify(struct notifier_block *self,
1088			 unsigned long action, void *hcpu);
1089#endif
1090
1091/**
1092 * ring_buffer_alloc - allocate a new ring_buffer
1093 * @size: the size in bytes per cpu that is needed.
1094 * @flags: attributes to set for the ring buffer.
1095 *
1096 * Currently the only flag that is available is the RB_FL_OVERWRITE
1097 * flag. This flag means that the buffer will overwrite old data
1098 * when the buffer wraps. If this flag is not set, the buffer will
1099 * drop data when the tail hits the head.
1100 */
1101struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1102					struct lock_class_key *key)
1103{
1104	struct ring_buffer *buffer;
1105	int bsize;
1106	int cpu;
1107
1108	/* keep it in its own cache line */
1109	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1110			 GFP_KERNEL);
1111	if (!buffer)
1112		return NULL;
1113
1114	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1115		goto fail_free_buffer;
1116
1117	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1118	buffer->flags = flags;
1119	buffer->clock = trace_clock_local;
1120	buffer->reader_lock_key = key;
1121
1122	/* need at least two pages */
1123	if (buffer->pages < 2)
1124		buffer->pages = 2;
1125
1126	/*
1127	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1128	 * in early initcall, it will not be notified of secondary cpus.
1129	 * In that off case, we need to allocate for all possible cpus.
1130	 */
1131#ifdef CONFIG_HOTPLUG_CPU
1132	get_online_cpus();
1133	cpumask_copy(buffer->cpumask, cpu_online_mask);
1134#else
1135	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1136#endif
1137	buffer->cpus = nr_cpu_ids;
1138
1139	bsize = sizeof(void *) * nr_cpu_ids;
1140	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1141				  GFP_KERNEL);
1142	if (!buffer->buffers)
1143		goto fail_free_cpumask;
1144
1145	for_each_buffer_cpu(buffer, cpu) {
1146		buffer->buffers[cpu] =
1147			rb_allocate_cpu_buffer(buffer, cpu);
1148		if (!buffer->buffers[cpu])
1149			goto fail_free_buffers;
1150	}
1151
1152#ifdef CONFIG_HOTPLUG_CPU
1153	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1154	buffer->cpu_notify.priority = 0;
1155	register_cpu_notifier(&buffer->cpu_notify);
1156#endif
1157
1158	put_online_cpus();
1159	mutex_init(&buffer->mutex);
1160
1161	return buffer;
1162
1163 fail_free_buffers:
1164	for_each_buffer_cpu(buffer, cpu) {
1165		if (buffer->buffers[cpu])
1166			rb_free_cpu_buffer(buffer->buffers[cpu]);
1167	}
1168	kfree(buffer->buffers);
1169
1170 fail_free_cpumask:
1171	free_cpumask_var(buffer->cpumask);
1172	put_online_cpus();
1173
1174 fail_free_buffer:
1175	kfree(buffer);
1176	return NULL;
1177}
1178EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1179
1180/**
1181 * ring_buffer_free - free a ring buffer.
1182 * @buffer: the buffer to free.
1183 */
1184void
1185ring_buffer_free(struct ring_buffer *buffer)
1186{
1187	int cpu;
1188
1189	get_online_cpus();
1190
1191#ifdef CONFIG_HOTPLUG_CPU
1192	unregister_cpu_notifier(&buffer->cpu_notify);
1193#endif
1194
1195	for_each_buffer_cpu(buffer, cpu)
1196		rb_free_cpu_buffer(buffer->buffers[cpu]);
1197
1198	put_online_cpus();
1199
1200	kfree(buffer->buffers);
1201	free_cpumask_var(buffer->cpumask);
1202
1203	kfree(buffer);
1204}
1205EXPORT_SYMBOL_GPL(ring_buffer_free);
1206
1207void ring_buffer_set_clock(struct ring_buffer *buffer,
1208			   u64 (*clock)(void))
1209{
1210	buffer->clock = clock;
1211}
1212
1213static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1214
1215static void
1216rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1217{
1218	struct buffer_page *bpage;
1219	struct list_head *p;
1220	unsigned i;
1221
1222	spin_lock_irq(&cpu_buffer->reader_lock);
1223	rb_head_page_deactivate(cpu_buffer);
1224
1225	for (i = 0; i < nr_pages; i++) {
1226		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1227			goto out;
1228		p = cpu_buffer->pages->next;
1229		bpage = list_entry(p, struct buffer_page, list);
1230		list_del_init(&bpage->list);
1231		free_buffer_page(bpage);
1232	}
1233	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1234		goto out;
1235
1236	rb_reset_cpu(cpu_buffer);
1237	rb_check_pages(cpu_buffer);
1238
1239out:
1240	spin_unlock_irq(&cpu_buffer->reader_lock);
1241}
1242
1243static void
1244rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1245		struct list_head *pages, unsigned nr_pages)
1246{
1247	struct buffer_page *bpage;
1248	struct list_head *p;
1249	unsigned i;
1250
1251	spin_lock_irq(&cpu_buffer->reader_lock);
1252	rb_head_page_deactivate(cpu_buffer);
1253
1254	for (i = 0; i < nr_pages; i++) {
1255		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1256			goto out;
1257		p = pages->next;
1258		bpage = list_entry(p, struct buffer_page, list);
1259		list_del_init(&bpage->list);
1260		list_add_tail(&bpage->list, cpu_buffer->pages);
1261	}
1262	rb_reset_cpu(cpu_buffer);
1263	rb_check_pages(cpu_buffer);
1264
1265out:
1266	spin_unlock_irq(&cpu_buffer->reader_lock);
1267}
1268
1269/**
1270 * ring_buffer_resize - resize the ring buffer
1271 * @buffer: the buffer to resize.
1272 * @size: the new size.
1273 *
1274 * Minimum size is 2 * BUF_PAGE_SIZE.
1275 *
1276 * Returns -1 on failure.
1277 */
1278int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1279{
1280	struct ring_buffer_per_cpu *cpu_buffer;
1281	unsigned nr_pages, rm_pages, new_pages;
1282	struct buffer_page *bpage, *tmp;
1283	unsigned long buffer_size;
1284	unsigned long addr;
1285	LIST_HEAD(pages);
1286	int i, cpu;
1287
1288	/*
1289	 * Always succeed at resizing a non-existent buffer:
1290	 */
1291	if (!buffer)
1292		return size;
1293
1294	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1295	size *= BUF_PAGE_SIZE;
1296	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1297
1298	/* we need a minimum of two pages */
1299	if (size < BUF_PAGE_SIZE * 2)
1300		size = BUF_PAGE_SIZE * 2;
1301
1302	if (size == buffer_size)
1303		return size;
1304
1305	atomic_inc(&buffer->record_disabled);
1306
1307	/* Make sure all writers are done with this buffer. */
1308	synchronize_sched();
1309
1310	mutex_lock(&buffer->mutex);
1311	get_online_cpus();
1312
1313	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314
1315	if (size < buffer_size) {
1316
1317		/* easy case, just free pages */
1318		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1319			goto out_fail;
1320
1321		rm_pages = buffer->pages - nr_pages;
1322
1323		for_each_buffer_cpu(buffer, cpu) {
1324			cpu_buffer = buffer->buffers[cpu];
1325			rb_remove_pages(cpu_buffer, rm_pages);
1326		}
1327		goto out;
1328	}
1329
1330	/*
1331	 * This is a bit more difficult. We only want to add pages
1332	 * when we can allocate enough for all CPUs. We do this
1333	 * by allocating all the pages and storing them on a local
1334	 * link list. If we succeed in our allocation, then we
1335	 * add these pages to the cpu_buffers. Otherwise we just free
1336	 * them all and return -ENOMEM;
1337	 */
1338	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1339		goto out_fail;
1340
1341	new_pages = nr_pages - buffer->pages;
1342
1343	for_each_buffer_cpu(buffer, cpu) {
1344		for (i = 0; i < new_pages; i++) {
1345			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1346						  cache_line_size()),
1347					    GFP_KERNEL, cpu_to_node(cpu));
1348			if (!bpage)
1349				goto free_pages;
1350			list_add(&bpage->list, &pages);
1351			addr = __get_free_page(GFP_KERNEL);
1352			if (!addr)
1353				goto free_pages;
1354			bpage->page = (void *)addr;
1355			rb_init_page(bpage->page);
1356		}
1357	}
1358
1359	for_each_buffer_cpu(buffer, cpu) {
1360		cpu_buffer = buffer->buffers[cpu];
1361		rb_insert_pages(cpu_buffer, &pages, new_pages);
1362	}
1363
1364	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1365		goto out_fail;
1366
1367 out:
1368	buffer->pages = nr_pages;
1369	put_online_cpus();
1370	mutex_unlock(&buffer->mutex);
1371
1372	atomic_dec(&buffer->record_disabled);
1373
1374	return size;
1375
1376 free_pages:
1377	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1378		list_del_init(&bpage->list);
1379		free_buffer_page(bpage);
1380	}
1381	put_online_cpus();
1382	mutex_unlock(&buffer->mutex);
1383	atomic_dec(&buffer->record_disabled);
1384	return -ENOMEM;
1385
1386	/*
1387	 * Something went totally wrong, and we are too paranoid
1388	 * to even clean up the mess.
1389	 */
1390 out_fail:
1391	put_online_cpus();
1392	mutex_unlock(&buffer->mutex);
1393	atomic_dec(&buffer->record_disabled);
1394	return -1;
1395}
1396EXPORT_SYMBOL_GPL(ring_buffer_resize);
1397
1398static inline void *
1399__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1400{
1401	return bpage->data + index;
1402}
1403
1404static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1405{
1406	return bpage->page->data + index;
1407}
1408
1409static inline struct ring_buffer_event *
1410rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1411{
1412	return __rb_page_index(cpu_buffer->reader_page,
1413			       cpu_buffer->reader_page->read);
1414}
1415
1416static inline struct ring_buffer_event *
1417rb_iter_head_event(struct ring_buffer_iter *iter)
1418{
1419	return __rb_page_index(iter->head_page, iter->head);
1420}
1421
1422static inline unsigned long rb_page_write(struct buffer_page *bpage)
1423{
1424	return local_read(&bpage->write) & RB_WRITE_MASK;
1425}
1426
1427static inline unsigned rb_page_commit(struct buffer_page *bpage)
1428{
1429	return local_read(&bpage->page->commit);
1430}
1431
1432static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1433{
1434	return local_read(&bpage->entries) & RB_WRITE_MASK;
1435}
1436
1437/* Size is determined by what has been commited */
1438static inline unsigned rb_page_size(struct buffer_page *bpage)
1439{
1440	return rb_page_commit(bpage);
1441}
1442
1443static inline unsigned
1444rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1445{
1446	return rb_page_commit(cpu_buffer->commit_page);
1447}
1448
1449static inline unsigned
1450rb_event_index(struct ring_buffer_event *event)
1451{
1452	unsigned long addr = (unsigned long)event;
1453
1454	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1455}
1456
1457static inline int
1458rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1459		   struct ring_buffer_event *event)
1460{
1461	unsigned long addr = (unsigned long)event;
1462	unsigned long index;
1463
1464	index = rb_event_index(event);
1465	addr &= PAGE_MASK;
1466
1467	return cpu_buffer->commit_page->page == (void *)addr &&
1468		rb_commit_index(cpu_buffer) == index;
1469}
1470
1471static void
1472rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1473{
1474	unsigned long max_count;
1475
1476	/*
1477	 * We only race with interrupts and NMIs on this CPU.
1478	 * If we own the commit event, then we can commit
1479	 * all others that interrupted us, since the interruptions
1480	 * are in stack format (they finish before they come
1481	 * back to us). This allows us to do a simple loop to
1482	 * assign the commit to the tail.
1483	 */
1484 again:
1485	max_count = cpu_buffer->buffer->pages * 100;
1486
1487	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1488		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1489			return;
1490		if (RB_WARN_ON(cpu_buffer,
1491			       rb_is_reader_page(cpu_buffer->tail_page)))
1492			return;
1493		local_set(&cpu_buffer->commit_page->page->commit,
1494			  rb_page_write(cpu_buffer->commit_page));
1495		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1496		cpu_buffer->write_stamp =
1497			cpu_buffer->commit_page->page->time_stamp;
1498		/* add barrier to keep gcc from optimizing too much */
1499		barrier();
1500	}
1501	while (rb_commit_index(cpu_buffer) !=
1502	       rb_page_write(cpu_buffer->commit_page)) {
1503
1504		local_set(&cpu_buffer->commit_page->page->commit,
1505			  rb_page_write(cpu_buffer->commit_page));
1506		RB_WARN_ON(cpu_buffer,
1507			   local_read(&cpu_buffer->commit_page->page->commit) &
1508			   ~RB_WRITE_MASK);
1509		barrier();
1510	}
1511
1512	/* again, keep gcc from optimizing */
1513	barrier();
1514
1515	/*
1516	 * If an interrupt came in just after the first while loop
1517	 * and pushed the tail page forward, we will be left with
1518	 * a dangling commit that will never go forward.
1519	 */
1520	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1521		goto again;
1522}
1523
1524static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1525{
1526	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1527	cpu_buffer->reader_page->read = 0;
1528}
1529
1530static void rb_inc_iter(struct ring_buffer_iter *iter)
1531{
1532	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1533
1534	/*
1535	 * The iterator could be on the reader page (it starts there).
1536	 * But the head could have moved, since the reader was
1537	 * found. Check for this case and assign the iterator
1538	 * to the head page instead of next.
1539	 */
1540	if (iter->head_page == cpu_buffer->reader_page)
1541		iter->head_page = rb_set_head_page(cpu_buffer);
1542	else
1543		rb_inc_page(cpu_buffer, &iter->head_page);
1544
1545	iter->read_stamp = iter->head_page->page->time_stamp;
1546	iter->head = 0;
1547}
1548
1549/**
1550 * ring_buffer_update_event - update event type and data
1551 * @event: the even to update
1552 * @type: the type of event
1553 * @length: the size of the event field in the ring buffer
1554 *
1555 * Update the type and data fields of the event. The length
1556 * is the actual size that is written to the ring buffer,
1557 * and with this, we can determine what to place into the
1558 * data field.
1559 */
1560static void
1561rb_update_event(struct ring_buffer_event *event,
1562			 unsigned type, unsigned length)
1563{
1564	event->type_len = type;
1565
1566	switch (type) {
1567
1568	case RINGBUF_TYPE_PADDING:
1569	case RINGBUF_TYPE_TIME_EXTEND:
1570	case RINGBUF_TYPE_TIME_STAMP:
1571		break;
1572
1573	case 0:
1574		length -= RB_EVNT_HDR_SIZE;
1575		if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1576			event->array[0] = length;
1577		else
1578			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1579		break;
1580	default:
1581		BUG();
1582	}
1583}
1584
1585/*
1586 * rb_handle_head_page - writer hit the head page
1587 *
1588 * Returns: +1 to retry page
1589 *           0 to continue
1590 *          -1 on error
1591 */
1592static int
1593rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1594		    struct buffer_page *tail_page,
1595		    struct buffer_page *next_page)
1596{
1597	struct buffer_page *new_head;
1598	int entries;
1599	int type;
1600	int ret;
1601
1602	entries = rb_page_entries(next_page);
1603
1604	/*
1605	 * The hard part is here. We need to move the head
1606	 * forward, and protect against both readers on
1607	 * other CPUs and writers coming in via interrupts.
1608	 */
1609	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1610				       RB_PAGE_HEAD);
1611
1612	/*
1613	 * type can be one of four:
1614	 *  NORMAL - an interrupt already moved it for us
1615	 *  HEAD   - we are the first to get here.
1616	 *  UPDATE - we are the interrupt interrupting
1617	 *           a current move.
1618	 *  MOVED  - a reader on another CPU moved the next
1619	 *           pointer to its reader page. Give up
1620	 *           and try again.
1621	 */
1622
1623	switch (type) {
1624	case RB_PAGE_HEAD:
1625		/*
1626		 * We changed the head to UPDATE, thus
1627		 * it is our responsibility to update
1628		 * the counters.
1629		 */
1630		local_add(entries, &cpu_buffer->overrun);
1631
1632		/*
1633		 * The entries will be zeroed out when we move the
1634		 * tail page.
1635		 */
1636
1637		/* still more to do */
1638		break;
1639
1640	case RB_PAGE_UPDATE:
1641		/*
1642		 * This is an interrupt that interrupt the
1643		 * previous update. Still more to do.
1644		 */
1645		break;
1646	case RB_PAGE_NORMAL:
1647		/*
1648		 * An interrupt came in before the update
1649		 * and processed this for us.
1650		 * Nothing left to do.
1651		 */
1652		return 1;
1653	case RB_PAGE_MOVED:
1654		/*
1655		 * The reader is on another CPU and just did
1656		 * a swap with our next_page.
1657		 * Try again.
1658		 */
1659		return 1;
1660	default:
1661		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1662		return -1;
1663	}
1664
1665	/*
1666	 * Now that we are here, the old head pointer is
1667	 * set to UPDATE. This will keep the reader from
1668	 * swapping the head page with the reader page.
1669	 * The reader (on another CPU) will spin till
1670	 * we are finished.
1671	 *
1672	 * We just need to protect against interrupts
1673	 * doing the job. We will set the next pointer
1674	 * to HEAD. After that, we set the old pointer
1675	 * to NORMAL, but only if it was HEAD before.
1676	 * otherwise we are an interrupt, and only
1677	 * want the outer most commit to reset it.
1678	 */
1679	new_head = next_page;
1680	rb_inc_page(cpu_buffer, &new_head);
1681
1682	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1683				    RB_PAGE_NORMAL);
1684
1685	/*
1686	 * Valid returns are:
1687	 *  HEAD   - an interrupt came in and already set it.
1688	 *  NORMAL - One of two things:
1689	 *            1) We really set it.
1690	 *            2) A bunch of interrupts came in and moved
1691	 *               the page forward again.
1692	 */
1693	switch (ret) {
1694	case RB_PAGE_HEAD:
1695	case RB_PAGE_NORMAL:
1696		/* OK */
1697		break;
1698	default:
1699		RB_WARN_ON(cpu_buffer, 1);
1700		return -1;
1701	}
1702
1703	/*
1704	 * It is possible that an interrupt came in,
1705	 * set the head up, then more interrupts came in
1706	 * and moved it again. When we get back here,
1707	 * the page would have been set to NORMAL but we
1708	 * just set it back to HEAD.
1709	 *
1710	 * How do you detect this? Well, if that happened
1711	 * the tail page would have moved.
1712	 */
1713	if (ret == RB_PAGE_NORMAL) {
1714		/*
1715		 * If the tail had moved passed next, then we need
1716		 * to reset the pointer.
1717		 */
1718		if (cpu_buffer->tail_page != tail_page &&
1719		    cpu_buffer->tail_page != next_page)
1720			rb_head_page_set_normal(cpu_buffer, new_head,
1721						next_page,
1722						RB_PAGE_HEAD);
1723	}
1724
1725	/*
1726	 * If this was the outer most commit (the one that
1727	 * changed the original pointer from HEAD to UPDATE),
1728	 * then it is up to us to reset it to NORMAL.
1729	 */
1730	if (type == RB_PAGE_HEAD) {
1731		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1732					      tail_page,
1733					      RB_PAGE_UPDATE);
1734		if (RB_WARN_ON(cpu_buffer,
1735			       ret != RB_PAGE_UPDATE))
1736			return -1;
1737	}
1738
1739	return 0;
1740}
1741
1742static unsigned rb_calculate_event_length(unsigned length)
1743{
1744	struct ring_buffer_event event; /* Used only for sizeof array */
1745
1746	/* zero length can cause confusions */
1747	if (!length)
1748		length = 1;
1749
1750	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1751		length += sizeof(event.array[0]);
1752
1753	length += RB_EVNT_HDR_SIZE;
1754	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1755
1756	return length;
1757}
1758
1759static inline void
1760rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1761	      struct buffer_page *tail_page,
1762	      unsigned long tail, unsigned long length)
1763{
1764	struct ring_buffer_event *event;
1765
1766	/*
1767	 * Only the event that crossed the page boundary
1768	 * must fill the old tail_page with padding.
1769	 */
1770	if (tail >= BUF_PAGE_SIZE) {
1771		/*
1772		 * If the page was filled, then we still need
1773		 * to update the real_end. Reset it to zero
1774		 * and the reader will ignore it.
1775		 */
1776		if (tail == BUF_PAGE_SIZE)
1777			tail_page->real_end = 0;
1778
1779		local_sub(length, &tail_page->write);
1780		return;
1781	}
1782
1783	event = __rb_page_index(tail_page, tail);
1784	kmemcheck_annotate_bitfield(event, bitfield);
1785
1786	/*
1787	 * Save the original length to the meta data.
1788	 * This will be used by the reader to add lost event
1789	 * counter.
1790	 */
1791	tail_page->real_end = tail;
1792
1793	/*
1794	 * If this event is bigger than the minimum size, then
1795	 * we need to be careful that we don't subtract the
1796	 * write counter enough to allow another writer to slip
1797	 * in on this page.
1798	 * We put in a discarded commit instead, to make sure
1799	 * that this space is not used again.
1800	 *
1801	 * If we are less than the minimum size, we don't need to
1802	 * worry about it.
1803	 */
1804	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1805		/* No room for any events */
1806
1807		/* Mark the rest of the page with padding */
1808		rb_event_set_padding(event);
1809
1810		/* Set the write back to the previous setting */
1811		local_sub(length, &tail_page->write);
1812		return;
1813	}
1814
1815	/* Put in a discarded event */
1816	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1817	event->type_len = RINGBUF_TYPE_PADDING;
1818	/* time delta must be non zero */
1819	event->time_delta = 1;
1820
1821	/* Set write to end of buffer */
1822	length = (tail + length) - BUF_PAGE_SIZE;
1823	local_sub(length, &tail_page->write);
1824}
1825
1826static struct ring_buffer_event *
1827rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1828	     unsigned long length, unsigned long tail,
1829	     struct buffer_page *tail_page, u64 *ts)
1830{
1831	struct buffer_page *commit_page = cpu_buffer->commit_page;
1832	struct ring_buffer *buffer = cpu_buffer->buffer;
1833	struct buffer_page *next_page;
1834	int ret;
1835
1836	next_page = tail_page;
1837
1838	rb_inc_page(cpu_buffer, &next_page);
1839
1840	/*
1841	 * If for some reason, we had an interrupt storm that made
1842	 * it all the way around the buffer, bail, and warn
1843	 * about it.
1844	 */
1845	if (unlikely(next_page == commit_page)) {
1846		local_inc(&cpu_buffer->commit_overrun);
1847		goto out_reset;
1848	}
1849
1850	/*
1851	 * This is where the fun begins!
1852	 *
1853	 * We are fighting against races between a reader that
1854	 * could be on another CPU trying to swap its reader
1855	 * page with the buffer head.
1856	 *
1857	 * We are also fighting against interrupts coming in and
1858	 * moving the head or tail on us as well.
1859	 *
1860	 * If the next page is the head page then we have filled
1861	 * the buffer, unless the commit page is still on the
1862	 * reader page.
1863	 */
1864	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1865
1866		/*
1867		 * If the commit is not on the reader page, then
1868		 * move the header page.
1869		 */
1870		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1871			/*
1872			 * If we are not in overwrite mode,
1873			 * this is easy, just stop here.
1874			 */
1875			if (!(buffer->flags & RB_FL_OVERWRITE))
1876				goto out_reset;
1877
1878			ret = rb_handle_head_page(cpu_buffer,
1879						  tail_page,
1880						  next_page);
1881			if (ret < 0)
1882				goto out_reset;
1883			if (ret)
1884				goto out_again;
1885		} else {
1886			/*
1887			 * We need to be careful here too. The
1888			 * commit page could still be on the reader
1889			 * page. We could have a small buffer, and
1890			 * have filled up the buffer with events
1891			 * from interrupts and such, and wrapped.
1892			 *
1893			 * Note, if the tail page is also the on the
1894			 * reader_page, we let it move out.
1895			 */
1896			if (unlikely((cpu_buffer->commit_page !=
1897				      cpu_buffer->tail_page) &&
1898				     (cpu_buffer->commit_page ==
1899				      cpu_buffer->reader_page))) {
1900				local_inc(&cpu_buffer->commit_overrun);
1901				goto out_reset;
1902			}
1903		}
1904	}
1905
1906	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1907	if (ret) {
1908		/*
1909		 * Nested commits always have zero deltas, so
1910		 * just reread the time stamp
1911		 */
1912		*ts = rb_time_stamp(buffer);
1913		next_page->page->time_stamp = *ts;
1914	}
1915
1916 out_again:
1917
1918	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1919
1920	/* fail and let the caller try again */
1921	return ERR_PTR(-EAGAIN);
1922
1923 out_reset:
1924	/* reset write */
1925	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1926
1927	return NULL;
1928}
1929
1930static struct ring_buffer_event *
1931__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1932		  unsigned type, unsigned long length, u64 *ts)
1933{
1934	struct buffer_page *tail_page;
1935	struct ring_buffer_event *event;
1936	unsigned long tail, write;
1937
1938	tail_page = cpu_buffer->tail_page;
1939	write = local_add_return(length, &tail_page->write);
1940
1941	/* set write to only the index of the write */
1942	write &= RB_WRITE_MASK;
1943	tail = write - length;
1944
1945	/* See if we shot pass the end of this buffer page */
1946	if (write > BUF_PAGE_SIZE)
1947		return rb_move_tail(cpu_buffer, length, tail,
1948				    tail_page, ts);
1949
1950	/* We reserved something on the buffer */
1951
1952	event = __rb_page_index(tail_page, tail);
1953	kmemcheck_annotate_bitfield(event, bitfield);
1954	rb_update_event(event, type, length);
1955
1956	/* The passed in type is zero for DATA */
1957	if (likely(!type))
1958		local_inc(&tail_page->entries);
1959
1960	/*
1961	 * If this is the first commit on the page, then update
1962	 * its timestamp.
1963	 */
1964	if (!tail)
1965		tail_page->page->time_stamp = *ts;
1966
1967	return event;
1968}
1969
1970static inline int
1971rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1972		  struct ring_buffer_event *event)
1973{
1974	unsigned long new_index, old_index;
1975	struct buffer_page *bpage;
1976	unsigned long index;
1977	unsigned long addr;
1978
1979	new_index = rb_event_index(event);
1980	old_index = new_index + rb_event_length(event);
1981	addr = (unsigned long)event;
1982	addr &= PAGE_MASK;
1983
1984	bpage = cpu_buffer->tail_page;
1985
1986	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1987		unsigned long write_mask =
1988			local_read(&bpage->write) & ~RB_WRITE_MASK;
1989		/*
1990		 * This is on the tail page. It is possible that
1991		 * a write could come in and move the tail page
1992		 * and write to the next page. That is fine
1993		 * because we just shorten what is on this page.
1994		 */
1995		old_index += write_mask;
1996		new_index += write_mask;
1997		index = local_cmpxchg(&bpage->write, old_index, new_index);
1998		if (index == old_index)
1999			return 1;
2000	}
2001
2002	/* could not discard */
2003	return 0;
2004}
2005
2006static int
2007rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2008		  u64 *ts, u64 *delta)
2009{
2010	struct ring_buffer_event *event;
2011	int ret;
2012
2013	WARN_ONCE(*delta > (1ULL << 59),
2014		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2015		  (unsigned long long)*delta,
2016		  (unsigned long long)*ts,
2017		  (unsigned long long)cpu_buffer->write_stamp);
2018
2019	/*
2020	 * The delta is too big, we to add a
2021	 * new timestamp.
2022	 */
2023	event = __rb_reserve_next(cpu_buffer,
2024				  RINGBUF_TYPE_TIME_EXTEND,
2025				  RB_LEN_TIME_EXTEND,
2026				  ts);
2027	if (!event)
2028		return -EBUSY;
2029
2030	if (PTR_ERR(event) == -EAGAIN)
2031		return -EAGAIN;
2032
2033	/* Only a commited time event can update the write stamp */
2034	if (rb_event_is_commit(cpu_buffer, event)) {
2035		/*
2036		 * If this is the first on the page, then it was
2037		 * updated with the page itself. Try to discard it
2038		 * and if we can't just make it zero.
2039		 */
2040		if (rb_event_index(event)) {
2041			event->time_delta = *delta & TS_MASK;
2042			event->array[0] = *delta >> TS_SHIFT;
2043		} else {
2044			/* try to discard, since we do not need this */
2045			if (!rb_try_to_discard(cpu_buffer, event)) {
2046				/* nope, just zero it */
2047				event->time_delta = 0;
2048				event->array[0] = 0;
2049			}
2050		}
2051		cpu_buffer->write_stamp = *ts;
2052		/* let the caller know this was the commit */
2053		ret = 1;
2054	} else {
2055		/* Try to discard the event */
2056		if (!rb_try_to_discard(cpu_buffer, event)) {
2057			/* Darn, this is just wasted space */
2058			event->time_delta = 0;
2059			event->array[0] = 0;
2060		}
2061		ret = 0;
2062	}
2063
2064	*delta = 0;
2065
2066	return ret;
2067}
2068
2069static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2070{
2071	local_inc(&cpu_buffer->committing);
2072	local_inc(&cpu_buffer->commits);
2073}
2074
2075static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2076{
2077	unsigned long commits;
2078
2079	if (RB_WARN_ON(cpu_buffer,
2080		       !local_read(&cpu_buffer->committing)))
2081		return;
2082
2083 again:
2084	commits = local_read(&cpu_buffer->commits);
2085	/* synchronize with interrupts */
2086	barrier();
2087	if (local_read(&cpu_buffer->committing) == 1)
2088		rb_set_commit_to_write(cpu_buffer);
2089
2090	local_dec(&cpu_buffer->committing);
2091
2092	/* synchronize with interrupts */
2093	barrier();
2094
2095	/*
2096	 * Need to account for interrupts coming in between the
2097	 * updating of the commit page and the clearing of the
2098	 * committing counter.
2099	 */
2100	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2101	    !local_read(&cpu_buffer->committing)) {
2102		local_inc(&cpu_buffer->committing);
2103		goto again;
2104	}
2105}
2106
2107static struct ring_buffer_event *
2108rb_reserve_next_event(struct ring_buffer *buffer,
2109		      struct ring_buffer_per_cpu *cpu_buffer,
2110		      unsigned long length)
2111{
2112	struct ring_buffer_event *event;
2113	u64 ts, delta = 0;
2114	int commit = 0;
2115	int nr_loops = 0;
2116
2117	rb_start_commit(cpu_buffer);
2118
2119#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2120	/*
2121	 * Due to the ability to swap a cpu buffer from a buffer
2122	 * it is possible it was swapped before we committed.
2123	 * (committing stops a swap). We check for it here and
2124	 * if it happened, we have to fail the write.
2125	 */
2126	barrier();
2127	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2128		local_dec(&cpu_buffer->committing);
2129		local_dec(&cpu_buffer->commits);
2130		return NULL;
2131	}
2132#endif
2133
2134	length = rb_calculate_event_length(length);
2135 again:
2136	/*
2137	 * We allow for interrupts to reenter here and do a trace.
2138	 * If one does, it will cause this original code to loop
2139	 * back here. Even with heavy interrupts happening, this
2140	 * should only happen a few times in a row. If this happens
2141	 * 1000 times in a row, there must be either an interrupt
2142	 * storm or we have something buggy.
2143	 * Bail!
2144	 */
2145	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2146		goto out_fail;
2147
2148	ts = rb_time_stamp(cpu_buffer->buffer);
2149
2150	/*
2151	 * Only the first commit can update the timestamp.
2152	 * Yes there is a race here. If an interrupt comes in
2153	 * just after the conditional and it traces too, then it
2154	 * will also check the deltas. More than one timestamp may
2155	 * also be made. But only the entry that did the actual
2156	 * commit will be something other than zero.
2157	 */
2158	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2159		   rb_page_write(cpu_buffer->tail_page) ==
2160		   rb_commit_index(cpu_buffer))) {
2161		u64 diff;
2162
2163		diff = ts - cpu_buffer->write_stamp;
2164
2165		/* make sure this diff is calculated here */
2166		barrier();
2167
2168		/* Did the write stamp get updated already? */
2169		if (unlikely(ts < cpu_buffer->write_stamp))
2170			goto get_event;
2171
2172		delta = diff;
2173		if (unlikely(test_time_stamp(delta))) {
2174
2175			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2176			if (commit == -EBUSY)
2177				goto out_fail;
2178
2179			if (commit == -EAGAIN)
2180				goto again;
2181
2182			RB_WARN_ON(cpu_buffer, commit < 0);
2183		}
2184	}
2185
2186 get_event:
2187	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2188	if (unlikely(PTR_ERR(event) == -EAGAIN))
2189		goto again;
2190
2191	if (!event)
2192		goto out_fail;
2193
2194	if (!rb_event_is_commit(cpu_buffer, event))
2195		delta = 0;
2196
2197	event->time_delta = delta;
2198
2199	return event;
2200
2201 out_fail:
2202	rb_end_commit(cpu_buffer);
2203	return NULL;
2204}
2205
2206#ifdef CONFIG_TRACING
2207
2208#define TRACE_RECURSIVE_DEPTH 16
2209
2210static int trace_recursive_lock(void)
2211{
2212	current->trace_recursion++;
2213
2214	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2215		return 0;
2216
2217	/* Disable all tracing before we do anything else */
2218	tracing_off_permanent();
2219
2220	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2221		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2222		    current->trace_recursion,
2223		    hardirq_count() >> HARDIRQ_SHIFT,
2224		    softirq_count() >> SOFTIRQ_SHIFT,
2225		    in_nmi());
2226
2227	WARN_ON_ONCE(1);
2228	return -1;
2229}
2230
2231static void trace_recursive_unlock(void)
2232{
2233	WARN_ON_ONCE(!current->trace_recursion);
2234
2235	current->trace_recursion--;
2236}
2237
2238#else
2239
2240#define trace_recursive_lock()		(0)
2241#define trace_recursive_unlock()	do { } while (0)
2242
2243#endif
2244
2245/**
2246 * ring_buffer_lock_reserve - reserve a part of the buffer
2247 * @buffer: the ring buffer to reserve from
2248 * @length: the length of the data to reserve (excluding event header)
2249 *
2250 * Returns a reseverd event on the ring buffer to copy directly to.
2251 * The user of this interface will need to get the body to write into
2252 * and can use the ring_buffer_event_data() interface.
2253 *
2254 * The length is the length of the data needed, not the event length
2255 * which also includes the event header.
2256 *
2257 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2258 * If NULL is returned, then nothing has been allocated or locked.
2259 */
2260struct ring_buffer_event *
2261ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2262{
2263	struct ring_buffer_per_cpu *cpu_buffer;
2264	struct ring_buffer_event *event;
2265	int cpu;
2266
2267	if (ring_buffer_flags != RB_BUFFERS_ON)
2268		return NULL;
2269
2270	/* If we are tracing schedule, we don't want to recurse */
2271	preempt_disable_notrace();
2272
2273	if (atomic_read(&buffer->record_disabled))
2274		goto out_nocheck;
2275
2276	if (trace_recursive_lock())
2277		goto out_nocheck;
2278
2279	cpu = raw_smp_processor_id();
2280
2281	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2282		goto out;
2283
2284	cpu_buffer = buffer->buffers[cpu];
2285
2286	if (atomic_read(&cpu_buffer->record_disabled))
2287		goto out;
2288
2289	if (length > BUF_MAX_DATA_SIZE)
2290		goto out;
2291
2292	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2293	if (!event)
2294		goto out;
2295
2296	return event;
2297
2298 out:
2299	trace_recursive_unlock();
2300
2301 out_nocheck:
2302	preempt_enable_notrace();
2303	return NULL;
2304}
2305EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2306
2307static void
2308rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2309		      struct ring_buffer_event *event)
2310{
2311	/*
2312	 * The event first in the commit queue updates the
2313	 * time stamp.
2314	 */
2315	if (rb_event_is_commit(cpu_buffer, event))
2316		cpu_buffer->write_stamp += event->time_delta;
2317}
2318
2319static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2320		      struct ring_buffer_event *event)
2321{
2322	local_inc(&cpu_buffer->entries);
2323	rb_update_write_stamp(cpu_buffer, event);
2324	rb_end_commit(cpu_buffer);
2325}
2326
2327/**
2328 * ring_buffer_unlock_commit - commit a reserved
2329 * @buffer: The buffer to commit to
2330 * @event: The event pointer to commit.
2331 *
2332 * This commits the data to the ring buffer, and releases any locks held.
2333 *
2334 * Must be paired with ring_buffer_lock_reserve.
2335 */
2336int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2337			      struct ring_buffer_event *event)
2338{
2339	struct ring_buffer_per_cpu *cpu_buffer;
2340	int cpu = raw_smp_processor_id();
2341
2342	cpu_buffer = buffer->buffers[cpu];
2343
2344	rb_commit(cpu_buffer, event);
2345
2346	trace_recursive_unlock();
2347
2348	preempt_enable_notrace();
2349
2350	return 0;
2351}
2352EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2353
2354static inline void rb_event_discard(struct ring_buffer_event *event)
2355{
2356	/* array[0] holds the actual length for the discarded event */
2357	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2358	event->type_len = RINGBUF_TYPE_PADDING;
2359	/* time delta must be non zero */
2360	if (!event->time_delta)
2361		event->time_delta = 1;
2362}
2363
2364/*
2365 * Decrement the entries to the page that an event is on.
2366 * The event does not even need to exist, only the pointer
2367 * to the page it is on. This may only be called before the commit
2368 * takes place.
2369 */
2370static inline void
2371rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2372		   struct ring_buffer_event *event)
2373{
2374	unsigned long addr = (unsigned long)event;
2375	struct buffer_page *bpage = cpu_buffer->commit_page;
2376	struct buffer_page *start;
2377
2378	addr &= PAGE_MASK;
2379
2380	/* Do the likely case first */
2381	if (likely(bpage->page == (void *)addr)) {
2382		local_dec(&bpage->entries);
2383		return;
2384	}
2385
2386	/*
2387	 * Because the commit page may be on the reader page we
2388	 * start with the next page and check the end loop there.
2389	 */
2390	rb_inc_page(cpu_buffer, &bpage);
2391	start = bpage;
2392	do {
2393		if (bpage->page == (void *)addr) {
2394			local_dec(&bpage->entries);
2395			return;
2396		}
2397		rb_inc_page(cpu_buffer, &bpage);
2398	} while (bpage != start);
2399
2400	/* commit not part of this buffer?? */
2401	RB_WARN_ON(cpu_buffer, 1);
2402}
2403
2404/**
2405 * ring_buffer_commit_discard - discard an event that has not been committed
2406 * @buffer: the ring buffer
2407 * @event: non committed event to discard
2408 *
2409 * Sometimes an event that is in the ring buffer needs to be ignored.
2410 * This function lets the user discard an event in the ring buffer
2411 * and then that event will not be read later.
2412 *
2413 * This function only works if it is called before the the item has been
2414 * committed. It will try to free the event from the ring buffer
2415 * if another event has not been added behind it.
2416 *
2417 * If another event has been added behind it, it will set the event
2418 * up as discarded, and perform the commit.
2419 *
2420 * If this function is called, do not call ring_buffer_unlock_commit on
2421 * the event.
2422 */
2423void ring_buffer_discard_commit(struct ring_buffer *buffer,
2424				struct ring_buffer_event *event)
2425{
2426	struct ring_buffer_per_cpu *cpu_buffer;
2427	int cpu;
2428
2429	/* The event is discarded regardless */
2430	rb_event_discard(event);
2431
2432	cpu = smp_processor_id();
2433	cpu_buffer = buffer->buffers[cpu];
2434
2435	/*
2436	 * This must only be called if the event has not been
2437	 * committed yet. Thus we can assume that preemption
2438	 * is still disabled.
2439	 */
2440	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2441
2442	rb_decrement_entry(cpu_buffer, event);
2443	if (rb_try_to_discard(cpu_buffer, event))
2444		goto out;
2445
2446	/*
2447	 * The commit is still visible by the reader, so we
2448	 * must still update the timestamp.
2449	 */
2450	rb_update_write_stamp(cpu_buffer, event);
2451 out:
2452	rb_end_commit(cpu_buffer);
2453
2454	trace_recursive_unlock();
2455
2456	preempt_enable_notrace();
2457
2458}
2459EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2460
2461/**
2462 * ring_buffer_write - write data to the buffer without reserving
2463 * @buffer: The ring buffer to write to.
2464 * @length: The length of the data being written (excluding the event header)
2465 * @data: The data to write to the buffer.
2466 *
2467 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2468 * one function. If you already have the data to write to the buffer, it
2469 * may be easier to simply call this function.
2470 *
2471 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2472 * and not the length of the event which would hold the header.
2473 */
2474int ring_buffer_write(struct ring_buffer *buffer,
2475			unsigned long length,
2476			void *data)
2477{
2478	struct ring_buffer_per_cpu *cpu_buffer;
2479	struct ring_buffer_event *event;
2480	void *body;
2481	int ret = -EBUSY;
2482	int cpu;
2483
2484	if (ring_buffer_flags != RB_BUFFERS_ON)
2485		return -EBUSY;
2486
2487	preempt_disable_notrace();
2488
2489	if (atomic_read(&buffer->record_disabled))
2490		goto out;
2491
2492	cpu = raw_smp_processor_id();
2493
2494	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2495		goto out;
2496
2497	cpu_buffer = buffer->buffers[cpu];
2498
2499	if (atomic_read(&cpu_buffer->record_disabled))
2500		goto out;
2501
2502	if (length > BUF_MAX_DATA_SIZE)
2503		goto out;
2504
2505	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2506	if (!event)
2507		goto out;
2508
2509	body = rb_event_data(event);
2510
2511	memcpy(body, data, length);
2512
2513	rb_commit(cpu_buffer, event);
2514
2515	ret = 0;
2516 out:
2517	preempt_enable_notrace();
2518
2519	return ret;
2520}
2521EXPORT_SYMBOL_GPL(ring_buffer_write);
2522
2523static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2524{
2525	struct buffer_page *reader = cpu_buffer->reader_page;
2526	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2527	struct buffer_page *commit = cpu_buffer->commit_page;
2528
2529	/* In case of error, head will be NULL */
2530	if (unlikely(!head))
2531		return 1;
2532
2533	return reader->read == rb_page_commit(reader) &&
2534		(commit == reader ||
2535		 (commit == head &&
2536		  head->read == rb_page_commit(commit)));
2537}
2538
2539/**
2540 * ring_buffer_record_disable - stop all writes into the buffer
2541 * @buffer: The ring buffer to stop writes to.
2542 *
2543 * This prevents all writes to the buffer. Any attempt to write
2544 * to the buffer after this will fail and return NULL.
2545 *
2546 * The caller should call synchronize_sched() after this.
2547 */
2548void ring_buffer_record_disable(struct ring_buffer *buffer)
2549{
2550	atomic_inc(&buffer->record_disabled);
2551}
2552EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2553
2554/**
2555 * ring_buffer_record_enable - enable writes to the buffer
2556 * @buffer: The ring buffer to enable writes
2557 *
2558 * Note, multiple disables will need the same number of enables
2559 * to truly enable the writing (much like preempt_disable).
2560 */
2561void ring_buffer_record_enable(struct ring_buffer *buffer)
2562{
2563	atomic_dec(&buffer->record_disabled);
2564}
2565EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2566
2567/**
2568 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2569 * @buffer: The ring buffer to stop writes to.
2570 * @cpu: The CPU buffer to stop
2571 *
2572 * This prevents all writes to the buffer. Any attempt to write
2573 * to the buffer after this will fail and return NULL.
2574 *
2575 * The caller should call synchronize_sched() after this.
2576 */
2577void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2578{
2579	struct ring_buffer_per_cpu *cpu_buffer;
2580
2581	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2582		return;
2583
2584	cpu_buffer = buffer->buffers[cpu];
2585	atomic_inc(&cpu_buffer->record_disabled);
2586}
2587EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2588
2589/**
2590 * ring_buffer_record_enable_cpu - enable writes to the buffer
2591 * @buffer: The ring buffer to enable writes
2592 * @cpu: The CPU to enable.
2593 *
2594 * Note, multiple disables will need the same number of enables
2595 * to truly enable the writing (much like preempt_disable).
2596 */
2597void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2598{
2599	struct ring_buffer_per_cpu *cpu_buffer;
2600
2601	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2602		return;
2603
2604	cpu_buffer = buffer->buffers[cpu];
2605	atomic_dec(&cpu_buffer->record_disabled);
2606}
2607EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2608
2609/**
2610 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2611 * @buffer: The ring buffer
2612 * @cpu: The per CPU buffer to get the entries from.
2613 */
2614unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2615{
2616	struct ring_buffer_per_cpu *cpu_buffer;
2617	unsigned long ret;
2618
2619	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2620		return 0;
2621
2622	cpu_buffer = buffer->buffers[cpu];
2623	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2624		- cpu_buffer->read;
2625
2626	return ret;
2627}
2628EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2629
2630/**
2631 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2632 * @buffer: The ring buffer
2633 * @cpu: The per CPU buffer to get the number of overruns from
2634 */
2635unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2636{
2637	struct ring_buffer_per_cpu *cpu_buffer;
2638	unsigned long ret;
2639
2640	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2641		return 0;
2642
2643	cpu_buffer = buffer->buffers[cpu];
2644	ret = local_read(&cpu_buffer->overrun);
2645
2646	return ret;
2647}
2648EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2649
2650/**
2651 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2652 * @buffer: The ring buffer
2653 * @cpu: The per CPU buffer to get the number of overruns from
2654 */
2655unsigned long
2656ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2657{
2658	struct ring_buffer_per_cpu *cpu_buffer;
2659	unsigned long ret;
2660
2661	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2662		return 0;
2663
2664	cpu_buffer = buffer->buffers[cpu];
2665	ret = local_read(&cpu_buffer->commit_overrun);
2666
2667	return ret;
2668}
2669EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2670
2671/**
2672 * ring_buffer_entries - get the number of entries in a buffer
2673 * @buffer: The ring buffer
2674 *
2675 * Returns the total number of entries in the ring buffer
2676 * (all CPU entries)
2677 */
2678unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2679{
2680	struct ring_buffer_per_cpu *cpu_buffer;
2681	unsigned long entries = 0;
2682	int cpu;
2683
2684	/* if you care about this being correct, lock the buffer */
2685	for_each_buffer_cpu(buffer, cpu) {
2686		cpu_buffer = buffer->buffers[cpu];
2687		entries += (local_read(&cpu_buffer->entries) -
2688			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2689	}
2690
2691	return entries;
2692}
2693EXPORT_SYMBOL_GPL(ring_buffer_entries);
2694
2695/**
2696 * ring_buffer_overruns - get the number of overruns in buffer
2697 * @buffer: The ring buffer
2698 *
2699 * Returns the total number of overruns in the ring buffer
2700 * (all CPU entries)
2701 */
2702unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2703{
2704	struct ring_buffer_per_cpu *cpu_buffer;
2705	unsigned long overruns = 0;
2706	int cpu;
2707
2708	/* if you care about this being correct, lock the buffer */
2709	for_each_buffer_cpu(buffer, cpu) {
2710		cpu_buffer = buffer->buffers[cpu];
2711		overruns += local_read(&cpu_buffer->overrun);
2712	}
2713
2714	return overruns;
2715}
2716EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2717
2718static void rb_iter_reset(struct ring_buffer_iter *iter)
2719{
2720	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2721
2722	/* Iterator usage is expected to have record disabled */
2723	if (list_empty(&cpu_buffer->reader_page->list)) {
2724		iter->head_page = rb_set_head_page(cpu_buffer);
2725		if (unlikely(!iter->head_page))
2726			return;
2727		iter->head = iter->head_page->read;
2728	} else {
2729		iter->head_page = cpu_buffer->reader_page;
2730		iter->head = cpu_buffer->reader_page->read;
2731	}
2732	if (iter->head)
2733		iter->read_stamp = cpu_buffer->read_stamp;
2734	else
2735		iter->read_stamp = iter->head_page->page->time_stamp;
2736	iter->cache_reader_page = cpu_buffer->reader_page;
2737	iter->cache_read = cpu_buffer->read;
2738}
2739
2740/**
2741 * ring_buffer_iter_reset - reset an iterator
2742 * @iter: The iterator to reset
2743 *
2744 * Resets the iterator, so that it will start from the beginning
2745 * again.
2746 */
2747void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2748{
2749	struct ring_buffer_per_cpu *cpu_buffer;
2750	unsigned long flags;
2751
2752	if (!iter)
2753		return;
2754
2755	cpu_buffer = iter->cpu_buffer;
2756
2757	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2758	rb_iter_reset(iter);
2759	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2760}
2761EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2762
2763/**
2764 * ring_buffer_iter_empty - check if an iterator has no more to read
2765 * @iter: The iterator to check
2766 */
2767int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2768{
2769	struct ring_buffer_per_cpu *cpu_buffer;
2770
2771	cpu_buffer = iter->cpu_buffer;
2772
2773	return iter->head_page == cpu_buffer->commit_page &&
2774		iter->head == rb_commit_index(cpu_buffer);
2775}
2776EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2777
2778static void
2779rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2780		     struct ring_buffer_event *event)
2781{
2782	u64 delta;
2783
2784	switch (event->type_len) {
2785	case RINGBUF_TYPE_PADDING:
2786		return;
2787
2788	case RINGBUF_TYPE_TIME_EXTEND:
2789		delta = event->array[0];
2790		delta <<= TS_SHIFT;
2791		delta += event->time_delta;
2792		cpu_buffer->read_stamp += delta;
2793		return;
2794
2795	case RINGBUF_TYPE_TIME_STAMP:
2796		return;
2797
2798	case RINGBUF_TYPE_DATA:
2799		cpu_buffer->read_stamp += event->time_delta;
2800		return;
2801
2802	default:
2803		BUG();
2804	}
2805	return;
2806}
2807
2808static void
2809rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2810			  struct ring_buffer_event *event)
2811{
2812	u64 delta;
2813
2814	switch (event->type_len) {
2815	case RINGBUF_TYPE_PADDING:
2816		return;
2817
2818	case RINGBUF_TYPE_TIME_EXTEND:
2819		delta = event->array[0];
2820		delta <<= TS_SHIFT;
2821		delta += event->time_delta;
2822		iter->read_stamp += delta;
2823		return;
2824
2825	case RINGBUF_TYPE_TIME_STAMP:
2826		return;
2827
2828	case RINGBUF_TYPE_DATA:
2829		iter->read_stamp += event->time_delta;
2830		return;
2831
2832	default:
2833		BUG();
2834	}
2835	return;
2836}
2837
2838static struct buffer_page *
2839rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2840{
2841	struct buffer_page *reader = NULL;
2842	unsigned long overwrite;
2843	unsigned long flags;
2844	int nr_loops = 0;
2845	int ret;
2846
2847	local_irq_save(flags);
2848	arch_spin_lock(&cpu_buffer->lock);
2849
2850 again:
2851	/*
2852	 * This should normally only loop twice. But because the
2853	 * start of the reader inserts an empty page, it causes
2854	 * a case where we will loop three times. There should be no
2855	 * reason to loop four times (that I know of).
2856	 */
2857	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2858		reader = NULL;
2859		goto out;
2860	}
2861
2862	reader = cpu_buffer->reader_page;
2863
2864	/* If there's more to read, return this page */
2865	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2866		goto out;
2867
2868	/* Never should we have an index greater than the size */
2869	if (RB_WARN_ON(cpu_buffer,
2870		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2871		goto out;
2872
2873	/* check if we caught up to the tail */
2874	reader = NULL;
2875	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2876		goto out;
2877
2878	/*
2879	 * Reset the reader page to size zero.
2880	 */
2881	local_set(&cpu_buffer->reader_page->write, 0);
2882	local_set(&cpu_buffer->reader_page->entries, 0);
2883	local_set(&cpu_buffer->reader_page->page->commit, 0);
2884	cpu_buffer->reader_page->real_end = 0;
2885
2886 spin:
2887	/*
2888	 * Splice the empty reader page into the list around the head.
2889	 */
2890	reader = rb_set_head_page(cpu_buffer);
2891	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2892	cpu_buffer->reader_page->list.prev = reader->list.prev;
2893
2894	/*
2895	 * cpu_buffer->pages just needs to point to the buffer, it
2896	 *  has no specific buffer page to point to. Lets move it out
2897	 *  of our way so we don't accidently swap it.
2898	 */
2899	cpu_buffer->pages = reader->list.prev;
2900
2901	/* The reader page will be pointing to the new head */
2902	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2903
2904	/*
2905	 * We want to make sure we read the overruns after we set up our
2906	 * pointers to the next object. The writer side does a
2907	 * cmpxchg to cross pages which acts as the mb on the writer
2908	 * side. Note, the reader will constantly fail the swap
2909	 * while the writer is updating the pointers, so this
2910	 * guarantees that the overwrite recorded here is the one we
2911	 * want to compare with the last_overrun.
2912	 */
2913	smp_mb();
2914	overwrite = local_read(&(cpu_buffer->overrun));
2915
2916	/*
2917	 * Here's the tricky part.
2918	 *
2919	 * We need to move the pointer past the header page.
2920	 * But we can only do that if a writer is not currently
2921	 * moving it. The page before the header page has the
2922	 * flag bit '1' set if it is pointing to the page we want.
2923	 * but if the writer is in the process of moving it
2924	 * than it will be '2' or already moved '0'.
2925	 */
2926
2927	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2928
2929	/*
2930	 * If we did not convert it, then we must try again.
2931	 */
2932	if (!ret)
2933		goto spin;
2934
2935	/*
2936	 * Yeah! We succeeded in replacing the page.
2937	 *
2938	 * Now make the new head point back to the reader page.
2939	 */
2940	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2941	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2942
2943	/* Finally update the reader page to the new head */
2944	cpu_buffer->reader_page = reader;
2945	rb_reset_reader_page(cpu_buffer);
2946
2947	if (overwrite != cpu_buffer->last_overrun) {
2948		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2949		cpu_buffer->last_overrun = overwrite;
2950	}
2951
2952	goto again;
2953
2954 out:
2955	arch_spin_unlock(&cpu_buffer->lock);
2956	local_irq_restore(flags);
2957
2958	return reader;
2959}
2960
2961static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2962{
2963	struct ring_buffer_event *event;
2964	struct buffer_page *reader;
2965	unsigned length;
2966
2967	reader = rb_get_reader_page(cpu_buffer);
2968
2969	/* This function should not be called when buffer is empty */
2970	if (RB_WARN_ON(cpu_buffer, !reader))
2971		return;
2972
2973	event = rb_reader_event(cpu_buffer);
2974
2975	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2976		cpu_buffer->read++;
2977
2978	rb_update_read_stamp(cpu_buffer, event);
2979
2980	length = rb_event_length(event);
2981	cpu_buffer->reader_page->read += length;
2982}
2983
2984static void rb_advance_iter(struct ring_buffer_iter *iter)
2985{
2986	struct ring_buffer_per_cpu *cpu_buffer;
2987	struct ring_buffer_event *event;
2988	unsigned length;
2989
2990	cpu_buffer = iter->cpu_buffer;
2991
2992	/*
2993	 * Check if we are at the end of the buffer.
2994	 */
2995	if (iter->head >= rb_page_size(iter->head_page)) {
2996		/* discarded commits can make the page empty */
2997		if (iter->head_page == cpu_buffer->commit_page)
2998			return;
2999		rb_inc_iter(iter);
3000		return;
3001	}
3002
3003	event = rb_iter_head_event(iter);
3004
3005	length = rb_event_length(event);
3006
3007	/*
3008	 * This should not be called to advance the header if we are
3009	 * at the tail of the buffer.
3010	 */
3011	if (RB_WARN_ON(cpu_buffer,
3012		       (iter->head_page == cpu_buffer->commit_page) &&
3013		       (iter->head + length > rb_commit_index(cpu_buffer))))
3014		return;
3015
3016	rb_update_iter_read_stamp(iter, event);
3017
3018	iter->head += length;
3019
3020	/* check for end of page padding */
3021	if ((iter->head >= rb_page_size(iter->head_page)) &&
3022	    (iter->head_page != cpu_buffer->commit_page))
3023		rb_advance_iter(iter);
3024}
3025
3026static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3027{
3028	return cpu_buffer->lost_events;
3029}
3030
3031static struct ring_buffer_event *
3032rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3033	       unsigned long *lost_events)
3034{
3035	struct ring_buffer_event *event;
3036	struct buffer_page *reader;
3037	int nr_loops = 0;
3038
3039 again:
3040	/*
3041	 * We repeat when a timestamp is encountered. It is possible
3042	 * to get multiple timestamps from an interrupt entering just
3043	 * as one timestamp is about to be written, or from discarded
3044	 * commits. The most that we can have is the number on a single page.
3045	 */
3046	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3047		return NULL;
3048
3049	reader = rb_get_reader_page(cpu_buffer);
3050	if (!reader)
3051		return NULL;
3052
3053	event = rb_reader_event(cpu_buffer);
3054
3055	switch (event->type_len) {
3056	case RINGBUF_TYPE_PADDING:
3057		if (rb_null_event(event))
3058			RB_WARN_ON(cpu_buffer, 1);
3059		/*
3060		 * Because the writer could be discarding every
3061		 * event it creates (which would probably be bad)
3062		 * if we were to go back to "again" then we may never
3063		 * catch up, and will trigger the warn on, or lock
3064		 * the box. Return the padding, and we will release
3065		 * the current locks, and try again.
3066		 */
3067		return event;
3068
3069	case RINGBUF_TYPE_TIME_EXTEND:
3070		/* Internal data, OK to advance */
3071		rb_advance_reader(cpu_buffer);
3072		goto again;
3073
3074	case RINGBUF_TYPE_TIME_STAMP:
3075		rb_advance_reader(cpu_buffer);
3076		goto again;
3077
3078	case RINGBUF_TYPE_DATA:
3079		if (ts) {
3080			*ts = cpu_buffer->read_stamp + event->time_delta;
3081			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3082							 cpu_buffer->cpu, ts);
3083		}
3084		if (lost_events)
3085			*lost_events = rb_lost_events(cpu_buffer);
3086		return event;
3087
3088	default:
3089		BUG();
3090	}
3091
3092	return NULL;
3093}
3094EXPORT_SYMBOL_GPL(ring_buffer_peek);
3095
3096static struct ring_buffer_event *
3097rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3098{
3099	struct ring_buffer *buffer;
3100	struct ring_buffer_per_cpu *cpu_buffer;
3101	struct ring_buffer_event *event;
3102	int nr_loops = 0;
3103
3104	cpu_buffer = iter->cpu_buffer;
3105	buffer = cpu_buffer->buffer;
3106
3107	/*
3108	 * Check if someone performed a consuming read to
3109	 * the buffer. A consuming read invalidates the iterator
3110	 * and we need to reset the iterator in this case.
3111	 */
3112	if (unlikely(iter->cache_read != cpu_buffer->read ||
3113		     iter->cache_reader_page != cpu_buffer->reader_page))
3114		rb_iter_reset(iter);
3115
3116 again:
3117	if (ring_buffer_iter_empty(iter))
3118		return NULL;
3119
3120	/*
3121	 * We repeat when a timestamp is encountered.
3122	 * We can get multiple timestamps by nested interrupts or also
3123	 * if filtering is on (discarding commits). Since discarding
3124	 * commits can be frequent we can get a lot of timestamps.
3125	 * But we limit them by not adding timestamps if they begin
3126	 * at the start of a page.
3127	 */
3128	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3129		return NULL;
3130
3131	if (rb_per_cpu_empty(cpu_buffer))
3132		return NULL;
3133
3134	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3135		rb_inc_iter(iter);
3136		goto again;
3137	}
3138
3139	event = rb_iter_head_event(iter);
3140
3141	switch (event->type_len) {
3142	case RINGBUF_TYPE_PADDING:
3143		if (rb_null_event(event)) {
3144			rb_inc_iter(iter);
3145			goto again;
3146		}
3147		rb_advance_iter(iter);
3148		return event;
3149
3150	case RINGBUF_TYPE_TIME_EXTEND:
3151		/* Internal data, OK to advance */
3152		rb_advance_iter(iter);
3153		goto again;
3154
3155	case RINGBUF_TYPE_TIME_STAMP:
3156		rb_advance_iter(iter);
3157		goto again;
3158
3159	case RINGBUF_TYPE_DATA:
3160		if (ts) {
3161			*ts = iter->read_stamp + event->time_delta;
3162			ring_buffer_normalize_time_stamp(buffer,
3163							 cpu_buffer->cpu, ts);
3164		}
3165		return event;
3166
3167	default:
3168		BUG();
3169	}
3170
3171	return NULL;
3172}
3173EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3174
3175static inline int rb_ok_to_lock(void)
3176{
3177	/*
3178	 * If an NMI die dumps out the content of the ring buffer
3179	 * do not grab locks. We also permanently disable the ring
3180	 * buffer too. A one time deal is all you get from reading
3181	 * the ring buffer from an NMI.
3182	 */
3183	if (likely(!in_nmi()))
3184		return 1;
3185
3186	tracing_off_permanent();
3187	return 0;
3188}
3189
3190/**
3191 * ring_buffer_peek - peek at the next event to be read
3192 * @buffer: The ring buffer to read
3193 * @cpu: The cpu to peak at
3194 * @ts: The timestamp counter of this event.
3195 * @lost_events: a variable to store if events were lost (may be NULL)
3196 *
3197 * This will return the event that will be read next, but does
3198 * not consume the data.
3199 */
3200struct ring_buffer_event *
3201ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3202		 unsigned long *lost_events)
3203{
3204	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3205	struct ring_buffer_event *event;
3206	unsigned long flags;
3207	int dolock;
3208
3209	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3210		return NULL;
3211
3212	dolock = rb_ok_to_lock();
3213 again:
3214	local_irq_save(flags);
3215	if (dolock)
3216		spin_lock(&cpu_buffer->reader_lock);
3217	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3218	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3219		rb_advance_reader(cpu_buffer);
3220	if (dolock)
3221		spin_unlock(&cpu_buffer->reader_lock);
3222	local_irq_restore(flags);
3223
3224	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3225		goto again;
3226
3227	return event;
3228}
3229
3230/**
3231 * ring_buffer_iter_peek - peek at the next event to be read
3232 * @iter: The ring buffer iterator
3233 * @ts: The timestamp counter of this event.
3234 *
3235 * This will return the event that will be read next, but does
3236 * not increment the iterator.
3237 */
3238struct ring_buffer_event *
3239ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3240{
3241	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3242	struct ring_buffer_event *event;
3243	unsigned long flags;
3244
3245 again:
3246	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3247	event = rb_iter_peek(iter, ts);
3248	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3249
3250	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3251		goto again;
3252
3253	return event;
3254}
3255
3256/**
3257 * ring_buffer_consume - return an event and consume it
3258 * @buffer: The ring buffer to get the next event from
3259 * @cpu: the cpu to read the buffer from
3260 * @ts: a variable to store the timestamp (may be NULL)
3261 * @lost_events: a variable to store if events were lost (may be NULL)
3262 *
3263 * Returns the next event in the ring buffer, and that event is consumed.
3264 * Meaning, that sequential reads will keep returning a different event,
3265 * and eventually empty the ring buffer if the producer is slower.
3266 */
3267struct ring_buffer_event *
3268ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3269		    unsigned long *lost_events)
3270{
3271	struct ring_buffer_per_cpu *cpu_buffer;
3272	struct ring_buffer_event *event = NULL;
3273	unsigned long flags;
3274	int dolock;
3275
3276	dolock = rb_ok_to_lock();
3277
3278 again:
3279	/* might be called in atomic */
3280	preempt_disable();
3281
3282	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283		goto out;
3284
3285	cpu_buffer = buffer->buffers[cpu];
3286	local_irq_save(flags);
3287	if (dolock)
3288		spin_lock(&cpu_buffer->reader_lock);
3289
3290	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3291	if (event) {
3292		cpu_buffer->lost_events = 0;
3293		rb_advance_reader(cpu_buffer);
3294	}
3295
3296	if (dolock)
3297		spin_unlock(&cpu_buffer->reader_lock);
3298	local_irq_restore(flags);
3299
3300 out:
3301	preempt_enable();
3302
3303	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3304		goto again;
3305
3306	return event;
3307}
3308EXPORT_SYMBOL_GPL(ring_buffer_consume);
3309
3310/**
3311 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3312 * @buffer: The ring buffer to read from
3313 * @cpu: The cpu buffer to iterate over
3314 *
3315 * This performs the initial preparations necessary to iterate
3316 * through the buffer.  Memory is allocated, buffer recording
3317 * is disabled, and the iterator pointer is returned to the caller.
3318 *
3319 * Disabling buffer recordng prevents the reading from being
3320 * corrupted. This is not a consuming read, so a producer is not
3321 * expected.
3322 *
3323 * After a sequence of ring_buffer_read_prepare calls, the user is
3324 * expected to make at least one call to ring_buffer_prepare_sync.
3325 * Afterwards, ring_buffer_read_start is invoked to get things going
3326 * for real.
3327 *
3328 * This overall must be paired with ring_buffer_finish.
3329 */
3330struct ring_buffer_iter *
3331ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3332{
3333	struct ring_buffer_per_cpu *cpu_buffer;
3334	struct ring_buffer_iter *iter;
3335
3336	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3337		return NULL;
3338
3339	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3340	if (!iter)
3341		return NULL;
3342
3343	cpu_buffer = buffer->buffers[cpu];
3344
3345	iter->cpu_buffer = cpu_buffer;
3346
3347	atomic_inc(&cpu_buffer->record_disabled);
3348
3349	return iter;
3350}
3351EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3352
3353/**
3354 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3355 *
3356 * All previously invoked ring_buffer_read_prepare calls to prepare
3357 * iterators will be synchronized.  Afterwards, read_buffer_read_start
3358 * calls on those iterators are allowed.
3359 */
3360void
3361ring_buffer_read_prepare_sync(void)
3362{
3363	synchronize_sched();
3364}
3365EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3366
3367/**
3368 * ring_buffer_read_start - start a non consuming read of the buffer
3369 * @iter: The iterator returned by ring_buffer_read_prepare
3370 *
3371 * This finalizes the startup of an iteration through the buffer.
3372 * The iterator comes from a call to ring_buffer_read_prepare and
3373 * an intervening ring_buffer_read_prepare_sync must have been
3374 * performed.
3375 *
3376 * Must be paired with ring_buffer_finish.
3377 */
3378void
3379ring_buffer_read_start(struct ring_buffer_iter *iter)
3380{
3381	struct ring_buffer_per_cpu *cpu_buffer;
3382	unsigned long flags;
3383
3384	if (!iter)
3385		return;
3386
3387	cpu_buffer = iter->cpu_buffer;
3388
3389	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3390	arch_spin_lock(&cpu_buffer->lock);
3391	rb_iter_reset(iter);
3392	arch_spin_unlock(&cpu_buffer->lock);
3393	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3394}
3395EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3396
3397/**
3398 * ring_buffer_finish - finish reading the iterator of the buffer
3399 * @iter: The iterator retrieved by ring_buffer_start
3400 *
3401 * This re-enables the recording to the buffer, and frees the
3402 * iterator.
3403 */
3404void
3405ring_buffer_read_finish(struct ring_buffer_iter *iter)
3406{
3407	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3408
3409	atomic_dec(&cpu_buffer->record_disabled);
3410	kfree(iter);
3411}
3412EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3413
3414/**
3415 * ring_buffer_read - read the next item in the ring buffer by the iterator
3416 * @iter: The ring buffer iterator
3417 * @ts: The time stamp of the event read.
3418 *
3419 * This reads the next event in the ring buffer and increments the iterator.
3420 */
3421struct ring_buffer_event *
3422ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3423{
3424	struct ring_buffer_event *event;
3425	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3426	unsigned long flags;
3427
3428	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3429 again:
3430	event = rb_iter_peek(iter, ts);
3431	if (!event)
3432		goto out;
3433
3434	if (event->type_len == RINGBUF_TYPE_PADDING)
3435		goto again;
3436
3437	rb_advance_iter(iter);
3438 out:
3439	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440
3441	return event;
3442}
3443EXPORT_SYMBOL_GPL(ring_buffer_read);
3444
3445/**
3446 * ring_buffer_size - return the size of the ring buffer (in bytes)
3447 * @buffer: The ring buffer.
3448 */
3449unsigned long ring_buffer_size(struct ring_buffer *buffer)
3450{
3451	return BUF_PAGE_SIZE * buffer->pages;
3452}
3453EXPORT_SYMBOL_GPL(ring_buffer_size);
3454
3455static void
3456rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3457{
3458	rb_head_page_deactivate(cpu_buffer);
3459
3460	cpu_buffer->head_page
3461		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3462	local_set(&cpu_buffer->head_page->write, 0);
3463	local_set(&cpu_buffer->head_page->entries, 0);
3464	local_set(&cpu_buffer->head_page->page->commit, 0);
3465
3466	cpu_buffer->head_page->read = 0;
3467
3468	cpu_buffer->tail_page = cpu_buffer->head_page;
3469	cpu_buffer->commit_page = cpu_buffer->head_page;
3470
3471	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3472	local_set(&cpu_buffer->reader_page->write, 0);
3473	local_set(&cpu_buffer->reader_page->entries, 0);
3474	local_set(&cpu_buffer->reader_page->page->commit, 0);
3475	cpu_buffer->reader_page->read = 0;
3476
3477	local_set(&cpu_buffer->commit_overrun, 0);
3478	local_set(&cpu_buffer->overrun, 0);
3479	local_set(&cpu_buffer->entries, 0);
3480	local_set(&cpu_buffer->committing, 0);
3481	local_set(&cpu_buffer->commits, 0);
3482	cpu_buffer->read = 0;
3483
3484	cpu_buffer->write_stamp = 0;
3485	cpu_buffer->read_stamp = 0;
3486
3487	cpu_buffer->lost_events = 0;
3488	cpu_buffer->last_overrun = 0;
3489
3490	rb_head_page_activate(cpu_buffer);
3491}
3492
3493/**
3494 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3495 * @buffer: The ring buffer to reset a per cpu buffer of
3496 * @cpu: The CPU buffer to be reset
3497 */
3498void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3499{
3500	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3501	unsigned long flags;
3502
3503	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3504		return;
3505
3506	atomic_inc(&cpu_buffer->record_disabled);
3507
3508	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3509
3510	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3511		goto out;
3512
3513	arch_spin_lock(&cpu_buffer->lock);
3514
3515	rb_reset_cpu(cpu_buffer);
3516
3517	arch_spin_unlock(&cpu_buffer->lock);
3518
3519 out:
3520	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3521
3522	atomic_dec(&cpu_buffer->record_disabled);
3523}
3524EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3525
3526/**
3527 * ring_buffer_reset - reset a ring buffer
3528 * @buffer: The ring buffer to reset all cpu buffers
3529 */
3530void ring_buffer_reset(struct ring_buffer *buffer)
3531{
3532	int cpu;
3533
3534	for_each_buffer_cpu(buffer, cpu)
3535		ring_buffer_reset_cpu(buffer, cpu);
3536}
3537EXPORT_SYMBOL_GPL(ring_buffer_reset);
3538
3539/**
3540 * rind_buffer_empty - is the ring buffer empty?
3541 * @buffer: The ring buffer to test
3542 */
3543int ring_buffer_empty(struct ring_buffer *buffer)
3544{
3545	struct ring_buffer_per_cpu *cpu_buffer;
3546	unsigned long flags;
3547	int dolock;
3548	int cpu;
3549	int ret;
3550
3551	dolock = rb_ok_to_lock();
3552
3553	/* yes this is racy, but if you don't like the race, lock the buffer */
3554	for_each_buffer_cpu(buffer, cpu) {
3555		cpu_buffer = buffer->buffers[cpu];
3556		local_irq_save(flags);
3557		if (dolock)
3558			spin_lock(&cpu_buffer->reader_lock);
3559		ret = rb_per_cpu_empty(cpu_buffer);
3560		if (dolock)
3561			spin_unlock(&cpu_buffer->reader_lock);
3562		local_irq_restore(flags);
3563
3564		if (!ret)
3565			return 0;
3566	}
3567
3568	return 1;
3569}
3570EXPORT_SYMBOL_GPL(ring_buffer_empty);
3571
3572/**
3573 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3574 * @buffer: The ring buffer
3575 * @cpu: The CPU buffer to test
3576 */
3577int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3578{
3579	struct ring_buffer_per_cpu *cpu_buffer;
3580	unsigned long flags;
3581	int dolock;
3582	int ret;
3583
3584	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3585		return 1;
3586
3587	dolock = rb_ok_to_lock();
3588
3589	cpu_buffer = buffer->buffers[cpu];
3590	local_irq_save(flags);
3591	if (dolock)
3592		spin_lock(&cpu_buffer->reader_lock);
3593	ret = rb_per_cpu_empty(cpu_buffer);
3594	if (dolock)
3595		spin_unlock(&cpu_buffer->reader_lock);
3596	local_irq_restore(flags);
3597
3598	return ret;
3599}
3600EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3601
3602#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3603/**
3604 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3605 * @buffer_a: One buffer to swap with
3606 * @buffer_b: The other buffer to swap with
3607 *
3608 * This function is useful for tracers that want to take a "snapshot"
3609 * of a CPU buffer and has another back up buffer lying around.
3610 * it is expected that the tracer handles the cpu buffer not being
3611 * used at the moment.
3612 */
3613int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3614			 struct ring_buffer *buffer_b, int cpu)
3615{
3616	struct ring_buffer_per_cpu *cpu_buffer_a;
3617	struct ring_buffer_per_cpu *cpu_buffer_b;
3618	int ret = -EINVAL;
3619
3620	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3621	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3622		goto out;
3623
3624	/* At least make sure the two buffers are somewhat the same */
3625	if (buffer_a->pages != buffer_b->pages)
3626		goto out;
3627
3628	ret = -EAGAIN;
3629
3630	if (ring_buffer_flags != RB_BUFFERS_ON)
3631		goto out;
3632
3633	if (atomic_read(&buffer_a->record_disabled))
3634		goto out;
3635
3636	if (atomic_read(&buffer_b->record_disabled))
3637		goto out;
3638
3639	cpu_buffer_a = buffer_a->buffers[cpu];
3640	cpu_buffer_b = buffer_b->buffers[cpu];
3641
3642	if (atomic_read(&cpu_buffer_a->record_disabled))
3643		goto out;
3644
3645	if (atomic_read(&cpu_buffer_b->record_disabled))
3646		goto out;
3647
3648	/*
3649	 * We can't do a synchronize_sched here because this
3650	 * function can be called in atomic context.
3651	 * Normally this will be called from the same CPU as cpu.
3652	 * If not it's up to the caller to protect this.
3653	 */
3654	atomic_inc(&cpu_buffer_a->record_disabled);
3655	atomic_inc(&cpu_buffer_b->record_disabled);
3656
3657	ret = -EBUSY;
3658	if (local_read(&cpu_buffer_a->committing))
3659		goto out_dec;
3660	if (local_read(&cpu_buffer_b->committing))
3661		goto out_dec;
3662
3663	buffer_a->buffers[cpu] = cpu_buffer_b;
3664	buffer_b->buffers[cpu] = cpu_buffer_a;
3665
3666	cpu_buffer_b->buffer = buffer_a;
3667	cpu_buffer_a->buffer = buffer_b;
3668
3669	ret = 0;
3670
3671out_dec:
3672	atomic_dec(&cpu_buffer_a->record_disabled);
3673	atomic_dec(&cpu_buffer_b->record_disabled);
3674out:
3675	return ret;
3676}
3677EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3678#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3679
3680/**
3681 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3682 * @buffer: the buffer to allocate for.
3683 *
3684 * This function is used in conjunction with ring_buffer_read_page.
3685 * When reading a full page from the ring buffer, these functions
3686 * can be used to speed up the process. The calling function should
3687 * allocate a few pages first with this function. Then when it
3688 * needs to get pages from the ring buffer, it passes the result
3689 * of this function into ring_buffer_read_page, which will swap
3690 * the page that was allocated, with the read page of the buffer.
3691 *
3692 * Returns:
3693 *  The page allocated, or NULL on error.
3694 */
3695void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3696{
3697	struct buffer_data_page *bpage;
3698	unsigned long addr;
3699
3700	addr = __get_free_page(GFP_KERNEL);
3701	if (!addr)
3702		return NULL;
3703
3704	bpage = (void *)addr;
3705
3706	rb_init_page(bpage);
3707
3708	return bpage;
3709}
3710EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3711
3712/**
3713 * ring_buffer_free_read_page - free an allocated read page
3714 * @buffer: the buffer the page was allocate for
3715 * @data: the page to free
3716 *
3717 * Free a page allocated from ring_buffer_alloc_read_page.
3718 */
3719void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3720{
3721	free_page((unsigned long)data);
3722}
3723EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3724
3725/**
3726 * ring_buffer_read_page - extract a page from the ring buffer
3727 * @buffer: buffer to extract from
3728 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3729 * @len: amount to extract
3730 * @cpu: the cpu of the buffer to extract
3731 * @full: should the extraction only happen when the page is full.
3732 *
3733 * This function will pull out a page from the ring buffer and consume it.
3734 * @data_page must be the address of the variable that was returned
3735 * from ring_buffer_alloc_read_page. This is because the page might be used
3736 * to swap with a page in the ring buffer.
3737 *
3738 * for example:
3739 *	rpage = ring_buffer_alloc_read_page(buffer);
3740 *	if (!rpage)
3741 *		return error;
3742 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3743 *	if (ret >= 0)
3744 *		process_page(rpage, ret);
3745 *
3746 * When @full is set, the function will not return true unless
3747 * the writer is off the reader page.
3748 *
3749 * Note: it is up to the calling functions to handle sleeps and wakeups.
3750 *  The ring buffer can be used anywhere in the kernel and can not
3751 *  blindly call wake_up. The layer that uses the ring buffer must be
3752 *  responsible for that.
3753 *
3754 * Returns:
3755 *  >=0 if data has been transferred, returns the offset of consumed data.
3756 *  <0 if no data has been transferred.
3757 */
3758int ring_buffer_read_page(struct ring_buffer *buffer,
3759			  void **data_page, size_t len, int cpu, int full)
3760{
3761	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3762	struct ring_buffer_event *event;
3763	struct buffer_data_page *bpage;
3764	struct buffer_page *reader;
3765	unsigned long missed_events;
3766	unsigned long flags;
3767	unsigned int commit;
3768	unsigned int read;
3769	u64 save_timestamp;
3770	int ret = -1;
3771
3772	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3773		goto out;
3774
3775	/*
3776	 * If len is not big enough to hold the page header, then
3777	 * we can not copy anything.
3778	 */
3779	if (len <= BUF_PAGE_HDR_SIZE)
3780		goto out;
3781
3782	len -= BUF_PAGE_HDR_SIZE;
3783
3784	if (!data_page)
3785		goto out;
3786
3787	bpage = *data_page;
3788	if (!bpage)
3789		goto out;
3790
3791	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3792
3793	reader = rb_get_reader_page(cpu_buffer);
3794	if (!reader)
3795		goto out_unlock;
3796
3797	event = rb_reader_event(cpu_buffer);
3798
3799	read = reader->read;
3800	commit = rb_page_commit(reader);
3801
3802	/* Check if any events were dropped */
3803	missed_events = cpu_buffer->lost_events;
3804
3805	/*
3806	 * If this page has been partially read or
3807	 * if len is not big enough to read the rest of the page or
3808	 * a writer is still on the page, then
3809	 * we must copy the data from the page to the buffer.
3810	 * Otherwise, we can simply swap the page with the one passed in.
3811	 */
3812	if (read || (len < (commit - read)) ||
3813	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3814		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3815		unsigned int rpos = read;
3816		unsigned int pos = 0;
3817		unsigned int size;
3818
3819		if (full)
3820			goto out_unlock;
3821
3822		if (len > (commit - read))
3823			len = (commit - read);
3824
3825		size = rb_event_length(event);
3826
3827		if (len < size)
3828			goto out_unlock;
3829
3830		/* save the current timestamp, since the user will need it */
3831		save_timestamp = cpu_buffer->read_stamp;
3832
3833		/* Need to copy one event at a time */
3834		do {
3835			memcpy(bpage->data + pos, rpage->data + rpos, size);
3836
3837			len -= size;
3838
3839			rb_advance_reader(cpu_buffer);
3840			rpos = reader->read;
3841			pos += size;
3842
3843			if (rpos >= commit)
3844				break;
3845
3846			event = rb_reader_event(cpu_buffer);
3847			size = rb_event_length(event);
3848		} while (len > size);
3849
3850		/* update bpage */
3851		local_set(&bpage->commit, pos);
3852		bpage->time_stamp = save_timestamp;
3853
3854		/* we copied everything to the beginning */
3855		read = 0;
3856	} else {
3857		/* update the entry counter */
3858		cpu_buffer->read += rb_page_entries(reader);
3859
3860		/* swap the pages */
3861		rb_init_page(bpage);
3862		bpage = reader->page;
3863		reader->page = *data_page;
3864		local_set(&reader->write, 0);
3865		local_set(&reader->entries, 0);
3866		reader->read = 0;
3867		*data_page = bpage;
3868
3869		/*
3870		 * Use the real_end for the data size,
3871		 * This gives us a chance to store the lost events
3872		 * on the page.
3873		 */
3874		if (reader->real_end)
3875			local_set(&bpage->commit, reader->real_end);
3876	}
3877	ret = read;
3878
3879	cpu_buffer->lost_events = 0;
3880
3881	commit = local_read(&bpage->commit);
3882	/*
3883	 * Set a flag in the commit field if we lost events
3884	 */
3885	if (missed_events) {
3886		/* If there is room at the end of the page to save the
3887		 * missed events, then record it there.
3888		 */
3889		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3890			memcpy(&bpage->data[commit], &missed_events,
3891			       sizeof(missed_events));
3892			local_add(RB_MISSED_STORED, &bpage->commit);
3893			commit += sizeof(missed_events);
3894		}
3895		local_add(RB_MISSED_EVENTS, &bpage->commit);
3896	}
3897
3898	/*
3899	 * This page may be off to user land. Zero it out here.
3900	 */
3901	if (commit < BUF_PAGE_SIZE)
3902		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3903
3904 out_unlock:
3905	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3906
3907 out:
3908	return ret;
3909}
3910EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3911
3912#ifdef CONFIG_TRACING
3913static ssize_t
3914rb_simple_read(struct file *filp, char __user *ubuf,
3915	       size_t cnt, loff_t *ppos)
3916{
3917	unsigned long *p = filp->private_data;
3918	char buf[64];
3919	int r;
3920
3921	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3922		r = sprintf(buf, "permanently disabled\n");
3923	else
3924		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3925
3926	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3927}
3928
3929static ssize_t
3930rb_simple_write(struct file *filp, const char __user *ubuf,
3931		size_t cnt, loff_t *ppos)
3932{
3933	unsigned long *p = filp->private_data;
3934	char buf[64];
3935	unsigned long val;
3936	int ret;
3937
3938	if (cnt >= sizeof(buf))
3939		return -EINVAL;
3940
3941	if (copy_from_user(&buf, ubuf, cnt))
3942		return -EFAULT;
3943
3944	buf[cnt] = 0;
3945
3946	ret = strict_strtoul(buf, 10, &val);
3947	if (ret < 0)
3948		return ret;
3949
3950	if (val)
3951		set_bit(RB_BUFFERS_ON_BIT, p);
3952	else
3953		clear_bit(RB_BUFFERS_ON_BIT, p);
3954
3955	(*ppos)++;
3956
3957	return cnt;
3958}
3959
3960static const struct file_operations rb_simple_fops = {
3961	.open		= tracing_open_generic,
3962	.read		= rb_simple_read,
3963	.write		= rb_simple_write,
3964};
3965
3966
3967static __init int rb_init_debugfs(void)
3968{
3969	struct dentry *d_tracer;
3970
3971	d_tracer = tracing_init_dentry();
3972
3973	trace_create_file("tracing_on", 0644, d_tracer,
3974			    &ring_buffer_flags, &rb_simple_fops);
3975
3976	return 0;
3977}
3978
3979fs_initcall(rb_init_debugfs);
3980#endif
3981
3982#ifdef CONFIG_HOTPLUG_CPU
3983static int rb_cpu_notify(struct notifier_block *self,
3984			 unsigned long action, void *hcpu)
3985{
3986	struct ring_buffer *buffer =
3987		container_of(self, struct ring_buffer, cpu_notify);
3988	long cpu = (long)hcpu;
3989
3990	switch (action) {
3991	case CPU_UP_PREPARE:
3992	case CPU_UP_PREPARE_FROZEN:
3993		if (cpumask_test_cpu(cpu, buffer->cpumask))
3994			return NOTIFY_OK;
3995
3996		buffer->buffers[cpu] =
3997			rb_allocate_cpu_buffer(buffer, cpu);
3998		if (!buffer->buffers[cpu]) {
3999			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4000			     cpu);
4001			return NOTIFY_OK;
4002		}
4003		smp_wmb();
4004		cpumask_set_cpu(cpu, buffer->cpumask);
4005		break;
4006	case CPU_DOWN_PREPARE:
4007	case CPU_DOWN_PREPARE_FROZEN:
4008		/*
4009		 * Do nothing.
4010		 *  If we were to free the buffer, then the user would
4011		 *  lose any trace that was in the buffer.
4012		 */
4013		break;
4014	default:
4015		break;
4016	}
4017	return NOTIFY_OK;
4018}
4019#endif
4020