• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/kernel/power/
1/*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13#include <linux/version.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/spinlock.h>
20#include <linux/kernel.h>
21#include <linux/pm.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30
31#include <asm/uaccess.h>
32#include <asm/mmu_context.h>
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <asm/io.h>
36
37#include "power.h"
38
39static int swsusp_page_is_free(struct page *);
40static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *);
42
43/*
44 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, swsusp will do its best to ensure the image
46 * size will not exceed N bytes, but if that is impossible, it will
47 * try to create the smallest image possible.
48 */
49unsigned long image_size = 500 * 1024 * 1024;
50
51/* List of PBEs needed for restoring the pages that were allocated before
52 * the suspend and included in the suspend image, but have also been
53 * allocated by the "resume" kernel, so their contents cannot be written
54 * directly to their "original" page frames.
55 */
56struct pbe *restore_pblist;
57
58/* Pointer to an auxiliary buffer (1 page) */
59static void *buffer;
60
61/**
62 *	@safe_needed - on resume, for storing the PBE list and the image,
63 *	we can only use memory pages that do not conflict with the pages
64 *	used before suspend.  The unsafe pages have PageNosaveFree set
65 *	and we count them using unsafe_pages.
66 *
67 *	Each allocated image page is marked as PageNosave and PageNosaveFree
68 *	so that swsusp_free() can release it.
69 */
70
71#define PG_ANY		0
72#define PG_SAFE		1
73#define PG_UNSAFE_CLEAR	1
74#define PG_UNSAFE_KEEP	0
75
76static unsigned int allocated_unsafe_pages;
77
78static void *get_image_page(gfp_t gfp_mask, int safe_needed)
79{
80	void *res;
81
82	res = (void *)get_zeroed_page(gfp_mask);
83	if (safe_needed)
84		while (res && swsusp_page_is_free(virt_to_page(res))) {
85			/* The page is unsafe, mark it for swsusp_free() */
86			swsusp_set_page_forbidden(virt_to_page(res));
87			allocated_unsafe_pages++;
88			res = (void *)get_zeroed_page(gfp_mask);
89		}
90	if (res) {
91		swsusp_set_page_forbidden(virt_to_page(res));
92		swsusp_set_page_free(virt_to_page(res));
93	}
94	return res;
95}
96
97unsigned long get_safe_page(gfp_t gfp_mask)
98{
99	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
100}
101
102static struct page *alloc_image_page(gfp_t gfp_mask)
103{
104	struct page *page;
105
106	page = alloc_page(gfp_mask);
107	if (page) {
108		swsusp_set_page_forbidden(page);
109		swsusp_set_page_free(page);
110	}
111	return page;
112}
113
114/**
115 *	free_image_page - free page represented by @addr, allocated with
116 *	get_image_page (page flags set by it must be cleared)
117 */
118
119static inline void free_image_page(void *addr, int clear_nosave_free)
120{
121	struct page *page;
122
123	BUG_ON(!virt_addr_valid(addr));
124
125	page = virt_to_page(addr);
126
127	swsusp_unset_page_forbidden(page);
128	if (clear_nosave_free)
129		swsusp_unset_page_free(page);
130
131	__free_page(page);
132}
133
134/* struct linked_page is used to build chains of pages */
135
136#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
137
138struct linked_page {
139	struct linked_page *next;
140	char data[LINKED_PAGE_DATA_SIZE];
141} __attribute__((packed));
142
143static inline void
144free_list_of_pages(struct linked_page *list, int clear_page_nosave)
145{
146	while (list) {
147		struct linked_page *lp = list->next;
148
149		free_image_page(list, clear_page_nosave);
150		list = lp;
151	}
152}
153
154/**
155  *	struct chain_allocator is used for allocating small objects out of
156  *	a linked list of pages called 'the chain'.
157  *
158  *	The chain grows each time when there is no room for a new object in
159  *	the current page.  The allocated objects cannot be freed individually.
160  *	It is only possible to free them all at once, by freeing the entire
161  *	chain.
162  *
163  *	NOTE: The chain allocator may be inefficient if the allocated objects
164  *	are not much smaller than PAGE_SIZE.
165  */
166
167struct chain_allocator {
168	struct linked_page *chain;	/* the chain */
169	unsigned int used_space;	/* total size of objects allocated out
170					 * of the current page
171					 */
172	gfp_t gfp_mask;		/* mask for allocating pages */
173	int safe_needed;	/* if set, only "safe" pages are allocated */
174};
175
176static void
177chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
178{
179	ca->chain = NULL;
180	ca->used_space = LINKED_PAGE_DATA_SIZE;
181	ca->gfp_mask = gfp_mask;
182	ca->safe_needed = safe_needed;
183}
184
185static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
186{
187	void *ret;
188
189	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
190		struct linked_page *lp;
191
192		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
193		if (!lp)
194			return NULL;
195
196		lp->next = ca->chain;
197		ca->chain = lp;
198		ca->used_space = 0;
199	}
200	ret = ca->chain->data + ca->used_space;
201	ca->used_space += size;
202	return ret;
203}
204
205/**
206 *	Data types related to memory bitmaps.
207 *
208 *	Memory bitmap is a structure consiting of many linked lists of
209 *	objects.  The main list's elements are of type struct zone_bitmap
210 *	and each of them corresonds to one zone.  For each zone bitmap
211 *	object there is a list of objects of type struct bm_block that
212 *	represent each blocks of bitmap in which information is stored.
213 *
214 *	struct memory_bitmap contains a pointer to the main list of zone
215 *	bitmap objects, a struct bm_position used for browsing the bitmap,
216 *	and a pointer to the list of pages used for allocating all of the
217 *	zone bitmap objects and bitmap block objects.
218 *
219 *	NOTE: It has to be possible to lay out the bitmap in memory
220 *	using only allocations of order 0.  Additionally, the bitmap is
221 *	designed to work with arbitrary number of zones (this is over the
222 *	top for now, but let's avoid making unnecessary assumptions ;-).
223 *
224 *	struct zone_bitmap contains a pointer to a list of bitmap block
225 *	objects and a pointer to the bitmap block object that has been
226 *	most recently used for setting bits.  Additionally, it contains the
227 *	pfns that correspond to the start and end of the represented zone.
228 *
229 *	struct bm_block contains a pointer to the memory page in which
230 *	information is stored (in the form of a block of bitmap)
231 *	It also contains the pfns that correspond to the start and end of
232 *	the represented memory area.
233 */
234
235#define BM_END_OF_MAP	(~0UL)
236
237#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
238
239struct bm_block {
240	struct list_head hook;	/* hook into a list of bitmap blocks */
241	unsigned long start_pfn;	/* pfn represented by the first bit */
242	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
243	unsigned long *data;	/* bitmap representing pages */
244};
245
246static inline unsigned long bm_block_bits(struct bm_block *bb)
247{
248	return bb->end_pfn - bb->start_pfn;
249}
250
251/* strcut bm_position is used for browsing memory bitmaps */
252
253struct bm_position {
254	struct bm_block *block;
255	int bit;
256};
257
258struct memory_bitmap {
259	struct list_head blocks;	/* list of bitmap blocks */
260	struct linked_page *p_list;	/* list of pages used to store zone
261					 * bitmap objects and bitmap block
262					 * objects
263					 */
264	struct bm_position cur;	/* most recently used bit position */
265};
266
267/* Functions that operate on memory bitmaps */
268
269static void memory_bm_position_reset(struct memory_bitmap *bm)
270{
271	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
272	bm->cur.bit = 0;
273}
274
275static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
276
277/**
278 *	create_bm_block_list - create a list of block bitmap objects
279 *	@pages - number of pages to track
280 *	@list - list to put the allocated blocks into
281 *	@ca - chain allocator to be used for allocating memory
282 */
283static int create_bm_block_list(unsigned long pages,
284				struct list_head *list,
285				struct chain_allocator *ca)
286{
287	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
288
289	while (nr_blocks-- > 0) {
290		struct bm_block *bb;
291
292		bb = chain_alloc(ca, sizeof(struct bm_block));
293		if (!bb)
294			return -ENOMEM;
295		list_add(&bb->hook, list);
296	}
297
298	return 0;
299}
300
301struct mem_extent {
302	struct list_head hook;
303	unsigned long start;
304	unsigned long end;
305};
306
307/**
308 *	free_mem_extents - free a list of memory extents
309 *	@list - list of extents to empty
310 */
311static void free_mem_extents(struct list_head *list)
312{
313	struct mem_extent *ext, *aux;
314
315	list_for_each_entry_safe(ext, aux, list, hook) {
316		list_del(&ext->hook);
317		kfree(ext);
318	}
319}
320
321/**
322 *	create_mem_extents - create a list of memory extents representing
323 *	                     contiguous ranges of PFNs
324 *	@list - list to put the extents into
325 *	@gfp_mask - mask to use for memory allocations
326 */
327static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
328{
329	struct zone *zone;
330
331	INIT_LIST_HEAD(list);
332
333	for_each_populated_zone(zone) {
334		unsigned long zone_start, zone_end;
335		struct mem_extent *ext, *cur, *aux;
336
337		zone_start = zone->zone_start_pfn;
338		zone_end = zone->zone_start_pfn + zone->spanned_pages;
339
340		list_for_each_entry(ext, list, hook)
341			if (zone_start <= ext->end)
342				break;
343
344		if (&ext->hook == list || zone_end < ext->start) {
345			/* New extent is necessary */
346			struct mem_extent *new_ext;
347
348			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
349			if (!new_ext) {
350				free_mem_extents(list);
351				return -ENOMEM;
352			}
353			new_ext->start = zone_start;
354			new_ext->end = zone_end;
355			list_add_tail(&new_ext->hook, &ext->hook);
356			continue;
357		}
358
359		/* Merge this zone's range of PFNs with the existing one */
360		if (zone_start < ext->start)
361			ext->start = zone_start;
362		if (zone_end > ext->end)
363			ext->end = zone_end;
364
365		/* More merging may be possible */
366		cur = ext;
367		list_for_each_entry_safe_continue(cur, aux, list, hook) {
368			if (zone_end < cur->start)
369				break;
370			if (zone_end < cur->end)
371				ext->end = cur->end;
372			list_del(&cur->hook);
373			kfree(cur);
374		}
375	}
376
377	return 0;
378}
379
380/**
381  *	memory_bm_create - allocate memory for a memory bitmap
382  */
383static int
384memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
385{
386	struct chain_allocator ca;
387	struct list_head mem_extents;
388	struct mem_extent *ext;
389	int error;
390
391	chain_init(&ca, gfp_mask, safe_needed);
392	INIT_LIST_HEAD(&bm->blocks);
393
394	error = create_mem_extents(&mem_extents, gfp_mask);
395	if (error)
396		return error;
397
398	list_for_each_entry(ext, &mem_extents, hook) {
399		struct bm_block *bb;
400		unsigned long pfn = ext->start;
401		unsigned long pages = ext->end - ext->start;
402
403		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
404
405		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
406		if (error)
407			goto Error;
408
409		list_for_each_entry_continue(bb, &bm->blocks, hook) {
410			bb->data = get_image_page(gfp_mask, safe_needed);
411			if (!bb->data) {
412				error = -ENOMEM;
413				goto Error;
414			}
415
416			bb->start_pfn = pfn;
417			if (pages >= BM_BITS_PER_BLOCK) {
418				pfn += BM_BITS_PER_BLOCK;
419				pages -= BM_BITS_PER_BLOCK;
420			} else {
421				/* This is executed only once in the loop */
422				pfn += pages;
423			}
424			bb->end_pfn = pfn;
425		}
426	}
427
428	bm->p_list = ca.chain;
429	memory_bm_position_reset(bm);
430 Exit:
431	free_mem_extents(&mem_extents);
432	return error;
433
434 Error:
435	bm->p_list = ca.chain;
436	memory_bm_free(bm, PG_UNSAFE_CLEAR);
437	goto Exit;
438}
439
440/**
441  *	memory_bm_free - free memory occupied by the memory bitmap @bm
442  */
443static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
444{
445	struct bm_block *bb;
446
447	list_for_each_entry(bb, &bm->blocks, hook)
448		if (bb->data)
449			free_image_page(bb->data, clear_nosave_free);
450
451	free_list_of_pages(bm->p_list, clear_nosave_free);
452
453	INIT_LIST_HEAD(&bm->blocks);
454}
455
456/**
457 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
458 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
459 *	of @bm->cur_zone_bm are updated.
460 */
461static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
462				void **addr, unsigned int *bit_nr)
463{
464	struct bm_block *bb;
465
466	/*
467	 * Check if the pfn corresponds to the current bitmap block and find
468	 * the block where it fits if this is not the case.
469	 */
470	bb = bm->cur.block;
471	if (pfn < bb->start_pfn)
472		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
473			if (pfn >= bb->start_pfn)
474				break;
475
476	if (pfn >= bb->end_pfn)
477		list_for_each_entry_continue(bb, &bm->blocks, hook)
478			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
479				break;
480
481	if (&bb->hook == &bm->blocks)
482		return -EFAULT;
483
484	/* The block has been found */
485	bm->cur.block = bb;
486	pfn -= bb->start_pfn;
487	bm->cur.bit = pfn + 1;
488	*bit_nr = pfn;
489	*addr = bb->data;
490	return 0;
491}
492
493static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
494{
495	void *addr;
496	unsigned int bit;
497	int error;
498
499	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
500	BUG_ON(error);
501	set_bit(bit, addr);
502}
503
504static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
505{
506	void *addr;
507	unsigned int bit;
508	int error;
509
510	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
511	if (!error)
512		set_bit(bit, addr);
513	return error;
514}
515
516static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
517{
518	void *addr;
519	unsigned int bit;
520	int error;
521
522	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
523	BUG_ON(error);
524	clear_bit(bit, addr);
525}
526
527static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
528{
529	void *addr;
530	unsigned int bit;
531	int error;
532
533	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
534	BUG_ON(error);
535	return test_bit(bit, addr);
536}
537
538static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
539{
540	void *addr;
541	unsigned int bit;
542
543	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
544}
545
546/**
547 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
548 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
549 *	returned.
550 *
551 *	It is required to run memory_bm_position_reset() before the first call to
552 *	this function.
553 */
554
555static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
556{
557	struct bm_block *bb;
558	int bit;
559
560	bb = bm->cur.block;
561	do {
562		bit = bm->cur.bit;
563		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
564		if (bit < bm_block_bits(bb))
565			goto Return_pfn;
566
567		bb = list_entry(bb->hook.next, struct bm_block, hook);
568		bm->cur.block = bb;
569		bm->cur.bit = 0;
570	} while (&bb->hook != &bm->blocks);
571
572	memory_bm_position_reset(bm);
573	return BM_END_OF_MAP;
574
575 Return_pfn:
576	bm->cur.bit = bit + 1;
577	return bb->start_pfn + bit;
578}
579
580/**
581 *	This structure represents a range of page frames the contents of which
582 *	should not be saved during the suspend.
583 */
584
585struct nosave_region {
586	struct list_head list;
587	unsigned long start_pfn;
588	unsigned long end_pfn;
589};
590
591static LIST_HEAD(nosave_regions);
592
593/**
594 *	register_nosave_region - register a range of page frames the contents
595 *	of which should not be saved during the suspend (to be used in the early
596 *	initialization code)
597 */
598
599void __init
600__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
601			 int use_kmalloc)
602{
603	struct nosave_region *region;
604
605	if (start_pfn >= end_pfn)
606		return;
607
608	if (!list_empty(&nosave_regions)) {
609		/* Try to extend the previous region (they should be sorted) */
610		region = list_entry(nosave_regions.prev,
611					struct nosave_region, list);
612		if (region->end_pfn == start_pfn) {
613			region->end_pfn = end_pfn;
614			goto Report;
615		}
616	}
617	if (use_kmalloc) {
618		/* during init, this shouldn't fail */
619		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
620		BUG_ON(!region);
621	} else
622		/* This allocation cannot fail */
623		region = alloc_bootmem(sizeof(struct nosave_region));
624	region->start_pfn = start_pfn;
625	region->end_pfn = end_pfn;
626	list_add_tail(&region->list, &nosave_regions);
627 Report:
628	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
629		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
630}
631
632/*
633 * Set bits in this map correspond to the page frames the contents of which
634 * should not be saved during the suspend.
635 */
636static struct memory_bitmap *forbidden_pages_map;
637
638/* Set bits in this map correspond to free page frames. */
639static struct memory_bitmap *free_pages_map;
640
641/*
642 * Each page frame allocated for creating the image is marked by setting the
643 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
644 */
645
646void swsusp_set_page_free(struct page *page)
647{
648	if (free_pages_map)
649		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
650}
651
652static int swsusp_page_is_free(struct page *page)
653{
654	return free_pages_map ?
655		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
656}
657
658void swsusp_unset_page_free(struct page *page)
659{
660	if (free_pages_map)
661		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
662}
663
664static void swsusp_set_page_forbidden(struct page *page)
665{
666	if (forbidden_pages_map)
667		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
668}
669
670int swsusp_page_is_forbidden(struct page *page)
671{
672	return forbidden_pages_map ?
673		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
674}
675
676static void swsusp_unset_page_forbidden(struct page *page)
677{
678	if (forbidden_pages_map)
679		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
680}
681
682/**
683 *	mark_nosave_pages - set bits corresponding to the page frames the
684 *	contents of which should not be saved in a given bitmap.
685 */
686
687static void mark_nosave_pages(struct memory_bitmap *bm)
688{
689	struct nosave_region *region;
690
691	if (list_empty(&nosave_regions))
692		return;
693
694	list_for_each_entry(region, &nosave_regions, list) {
695		unsigned long pfn;
696
697		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
698				region->start_pfn << PAGE_SHIFT,
699				region->end_pfn << PAGE_SHIFT);
700
701		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
702			if (pfn_valid(pfn)) {
703				/*
704				 * It is safe to ignore the result of
705				 * mem_bm_set_bit_check() here, since we won't
706				 * touch the PFNs for which the error is
707				 * returned anyway.
708				 */
709				mem_bm_set_bit_check(bm, pfn);
710			}
711	}
712}
713
714/**
715 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
716 *	frames that should not be saved and free page frames.  The pointers
717 *	forbidden_pages_map and free_pages_map are only modified if everything
718 *	goes well, because we don't want the bits to be used before both bitmaps
719 *	are set up.
720 */
721
722int create_basic_memory_bitmaps(void)
723{
724	struct memory_bitmap *bm1, *bm2;
725	int error = 0;
726
727	BUG_ON(forbidden_pages_map || free_pages_map);
728
729	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
730	if (!bm1)
731		return -ENOMEM;
732
733	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
734	if (error)
735		goto Free_first_object;
736
737	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
738	if (!bm2)
739		goto Free_first_bitmap;
740
741	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
742	if (error)
743		goto Free_second_object;
744
745	forbidden_pages_map = bm1;
746	free_pages_map = bm2;
747	mark_nosave_pages(forbidden_pages_map);
748
749	pr_debug("PM: Basic memory bitmaps created\n");
750
751	return 0;
752
753 Free_second_object:
754	kfree(bm2);
755 Free_first_bitmap:
756 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
757 Free_first_object:
758	kfree(bm1);
759	return -ENOMEM;
760}
761
762/**
763 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
764 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
765 *	so that the bitmaps themselves are not referred to while they are being
766 *	freed.
767 */
768
769void free_basic_memory_bitmaps(void)
770{
771	struct memory_bitmap *bm1, *bm2;
772
773	BUG_ON(!(forbidden_pages_map && free_pages_map));
774
775	bm1 = forbidden_pages_map;
776	bm2 = free_pages_map;
777	forbidden_pages_map = NULL;
778	free_pages_map = NULL;
779	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
780	kfree(bm1);
781	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
782	kfree(bm2);
783
784	pr_debug("PM: Basic memory bitmaps freed\n");
785}
786
787/**
788 *	snapshot_additional_pages - estimate the number of additional pages
789 *	be needed for setting up the suspend image data structures for given
790 *	zone (usually the returned value is greater than the exact number)
791 */
792
793unsigned int snapshot_additional_pages(struct zone *zone)
794{
795	unsigned int res;
796
797	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
798	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
799	return 2 * res;
800}
801
802#ifdef CONFIG_HIGHMEM
803/**
804 *	count_free_highmem_pages - compute the total number of free highmem
805 *	pages, system-wide.
806 */
807
808static unsigned int count_free_highmem_pages(void)
809{
810	struct zone *zone;
811	unsigned int cnt = 0;
812
813	for_each_populated_zone(zone)
814		if (is_highmem(zone))
815			cnt += zone_page_state(zone, NR_FREE_PAGES);
816
817	return cnt;
818}
819
820/**
821 *	saveable_highmem_page - Determine whether a highmem page should be
822 *	included in the suspend image.
823 *
824 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
825 *	and it isn't a part of a free chunk of pages.
826 */
827static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
828{
829	struct page *page;
830
831	if (!pfn_valid(pfn))
832		return NULL;
833
834	page = pfn_to_page(pfn);
835	if (page_zone(page) != zone)
836		return NULL;
837
838	BUG_ON(!PageHighMem(page));
839
840	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
841	    PageReserved(page))
842		return NULL;
843
844	return page;
845}
846
847/**
848 *	count_highmem_pages - compute the total number of saveable highmem
849 *	pages.
850 */
851
852static unsigned int count_highmem_pages(void)
853{
854	struct zone *zone;
855	unsigned int n = 0;
856
857	for_each_populated_zone(zone) {
858		unsigned long pfn, max_zone_pfn;
859
860		if (!is_highmem(zone))
861			continue;
862
863		mark_free_pages(zone);
864		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
865		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
866			if (saveable_highmem_page(zone, pfn))
867				n++;
868	}
869	return n;
870}
871#else
872static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
873{
874	return NULL;
875}
876#endif /* CONFIG_HIGHMEM */
877
878/**
879 *	saveable_page - Determine whether a non-highmem page should be included
880 *	in the suspend image.
881 *
882 *	We should save the page if it isn't Nosave, and is not in the range
883 *	of pages statically defined as 'unsaveable', and it isn't a part of
884 *	a free chunk of pages.
885 */
886static struct page *saveable_page(struct zone *zone, unsigned long pfn)
887{
888	struct page *page;
889
890	if (!pfn_valid(pfn))
891		return NULL;
892
893	page = pfn_to_page(pfn);
894	if (page_zone(page) != zone)
895		return NULL;
896
897	BUG_ON(PageHighMem(page));
898
899	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
900		return NULL;
901
902	if (PageReserved(page)
903	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
904		return NULL;
905
906	return page;
907}
908
909/**
910 *	count_data_pages - compute the total number of saveable non-highmem
911 *	pages.
912 */
913
914static unsigned int count_data_pages(void)
915{
916	struct zone *zone;
917	unsigned long pfn, max_zone_pfn;
918	unsigned int n = 0;
919
920	for_each_populated_zone(zone) {
921		if (is_highmem(zone))
922			continue;
923
924		mark_free_pages(zone);
925		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
926		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
927			if (saveable_page(zone, pfn))
928				n++;
929	}
930	return n;
931}
932
933/* This is needed, because copy_page and memcpy are not usable for copying
934 * task structs.
935 */
936static inline void do_copy_page(long *dst, long *src)
937{
938	int n;
939
940	for (n = PAGE_SIZE / sizeof(long); n; n--)
941		*dst++ = *src++;
942}
943
944
945/**
946 *	safe_copy_page - check if the page we are going to copy is marked as
947 *		present in the kernel page tables (this always is the case if
948 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
949 *		kernel_page_present() always returns 'true').
950 */
951static void safe_copy_page(void *dst, struct page *s_page)
952{
953	if (kernel_page_present(s_page)) {
954		do_copy_page(dst, page_address(s_page));
955	} else {
956		kernel_map_pages(s_page, 1, 1);
957		do_copy_page(dst, page_address(s_page));
958		kernel_map_pages(s_page, 1, 0);
959	}
960}
961
962
963#ifdef CONFIG_HIGHMEM
964static inline struct page *
965page_is_saveable(struct zone *zone, unsigned long pfn)
966{
967	return is_highmem(zone) ?
968		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
969}
970
971static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
972{
973	struct page *s_page, *d_page;
974	void *src, *dst;
975
976	s_page = pfn_to_page(src_pfn);
977	d_page = pfn_to_page(dst_pfn);
978	if (PageHighMem(s_page)) {
979		src = kmap_atomic(s_page, KM_USER0);
980		dst = kmap_atomic(d_page, KM_USER1);
981		do_copy_page(dst, src);
982		kunmap_atomic(src, KM_USER0);
983		kunmap_atomic(dst, KM_USER1);
984	} else {
985		if (PageHighMem(d_page)) {
986			/* Page pointed to by src may contain some kernel
987			 * data modified by kmap_atomic()
988			 */
989			safe_copy_page(buffer, s_page);
990			dst = kmap_atomic(d_page, KM_USER0);
991			memcpy(dst, buffer, PAGE_SIZE);
992			kunmap_atomic(dst, KM_USER0);
993		} else {
994			safe_copy_page(page_address(d_page), s_page);
995		}
996	}
997}
998#else
999#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1000
1001static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1002{
1003	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1004				pfn_to_page(src_pfn));
1005}
1006#endif /* CONFIG_HIGHMEM */
1007
1008static void
1009copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1010{
1011	struct zone *zone;
1012	unsigned long pfn;
1013
1014	for_each_populated_zone(zone) {
1015		unsigned long max_zone_pfn;
1016
1017		mark_free_pages(zone);
1018		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1019		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1020			if (page_is_saveable(zone, pfn))
1021				memory_bm_set_bit(orig_bm, pfn);
1022	}
1023	memory_bm_position_reset(orig_bm);
1024	memory_bm_position_reset(copy_bm);
1025	for(;;) {
1026		pfn = memory_bm_next_pfn(orig_bm);
1027		if (unlikely(pfn == BM_END_OF_MAP))
1028			break;
1029		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1030	}
1031}
1032
1033/* Total number of image pages */
1034static unsigned int nr_copy_pages;
1035/* Number of pages needed for saving the original pfns of the image pages */
1036static unsigned int nr_meta_pages;
1037/*
1038 * Numbers of normal and highmem page frames allocated for hibernation image
1039 * before suspending devices.
1040 */
1041unsigned int alloc_normal, alloc_highmem;
1042/*
1043 * Memory bitmap used for marking saveable pages (during hibernation) or
1044 * hibernation image pages (during restore)
1045 */
1046static struct memory_bitmap orig_bm;
1047/*
1048 * Memory bitmap used during hibernation for marking allocated page frames that
1049 * will contain copies of saveable pages.  During restore it is initially used
1050 * for marking hibernation image pages, but then the set bits from it are
1051 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1052 * used for marking "safe" highmem pages, but it has to be reinitialized for
1053 * this purpose.
1054 */
1055static struct memory_bitmap copy_bm;
1056
1057/**
1058 *	swsusp_free - free pages allocated for the suspend.
1059 *
1060 *	Suspend pages are alocated before the atomic copy is made, so we
1061 *	need to release them after the resume.
1062 */
1063
1064void swsusp_free(void)
1065{
1066	struct zone *zone;
1067	unsigned long pfn, max_zone_pfn;
1068
1069	for_each_populated_zone(zone) {
1070		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1071		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1072			if (pfn_valid(pfn)) {
1073				struct page *page = pfn_to_page(pfn);
1074
1075				if (swsusp_page_is_forbidden(page) &&
1076				    swsusp_page_is_free(page)) {
1077					swsusp_unset_page_forbidden(page);
1078					swsusp_unset_page_free(page);
1079					__free_page(page);
1080				}
1081			}
1082	}
1083	nr_copy_pages = 0;
1084	nr_meta_pages = 0;
1085	restore_pblist = NULL;
1086	buffer = NULL;
1087	alloc_normal = 0;
1088	alloc_highmem = 0;
1089}
1090
1091/* Helper functions used for the shrinking of memory. */
1092
1093#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1094
1095/**
1096 * preallocate_image_pages - Allocate a number of pages for hibernation image
1097 * @nr_pages: Number of page frames to allocate.
1098 * @mask: GFP flags to use for the allocation.
1099 *
1100 * Return value: Number of page frames actually allocated
1101 */
1102static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1103{
1104	unsigned long nr_alloc = 0;
1105
1106	while (nr_pages > 0) {
1107		struct page *page;
1108
1109		page = alloc_image_page(mask);
1110		if (!page)
1111			break;
1112		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1113		if (PageHighMem(page))
1114			alloc_highmem++;
1115		else
1116			alloc_normal++;
1117		nr_pages--;
1118		nr_alloc++;
1119	}
1120
1121	return nr_alloc;
1122}
1123
1124static unsigned long preallocate_image_memory(unsigned long nr_pages,
1125					      unsigned long avail_normal)
1126{
1127	unsigned long alloc;
1128
1129	if (avail_normal <= alloc_normal)
1130		return 0;
1131
1132	alloc = avail_normal - alloc_normal;
1133	if (nr_pages < alloc)
1134		alloc = nr_pages;
1135
1136	return preallocate_image_pages(alloc, GFP_IMAGE);
1137}
1138
1139#ifdef CONFIG_HIGHMEM
1140static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1141{
1142	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1143}
1144
1145/**
1146 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1147 */
1148static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1149{
1150	x *= multiplier;
1151	do_div(x, base);
1152	return (unsigned long)x;
1153}
1154
1155static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1156						unsigned long highmem,
1157						unsigned long total)
1158{
1159	unsigned long alloc = __fraction(nr_pages, highmem, total);
1160
1161	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1162}
1163#else /* CONFIG_HIGHMEM */
1164static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1165{
1166	return 0;
1167}
1168
1169static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1170						unsigned long highmem,
1171						unsigned long total)
1172{
1173	return 0;
1174}
1175#endif /* CONFIG_HIGHMEM */
1176
1177/**
1178 * free_unnecessary_pages - Release preallocated pages not needed for the image
1179 */
1180static void free_unnecessary_pages(void)
1181{
1182	unsigned long save, to_free_normal, to_free_highmem;
1183
1184	save = count_data_pages();
1185	if (alloc_normal >= save) {
1186		to_free_normal = alloc_normal - save;
1187		save = 0;
1188	} else {
1189		to_free_normal = 0;
1190		save -= alloc_normal;
1191	}
1192	save += count_highmem_pages();
1193	if (alloc_highmem >= save) {
1194		to_free_highmem = alloc_highmem - save;
1195	} else {
1196		to_free_highmem = 0;
1197		to_free_normal -= save - alloc_highmem;
1198	}
1199
1200	memory_bm_position_reset(&copy_bm);
1201
1202	while (to_free_normal > 0 || to_free_highmem > 0) {
1203		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1204		struct page *page = pfn_to_page(pfn);
1205
1206		if (PageHighMem(page)) {
1207			if (!to_free_highmem)
1208				continue;
1209			to_free_highmem--;
1210			alloc_highmem--;
1211		} else {
1212			if (!to_free_normal)
1213				continue;
1214			to_free_normal--;
1215			alloc_normal--;
1216		}
1217		memory_bm_clear_bit(&copy_bm, pfn);
1218		swsusp_unset_page_forbidden(page);
1219		swsusp_unset_page_free(page);
1220		__free_page(page);
1221	}
1222}
1223
1224/**
1225 * minimum_image_size - Estimate the minimum acceptable size of an image
1226 * @saveable: Number of saveable pages in the system.
1227 *
1228 * We want to avoid attempting to free too much memory too hard, so estimate the
1229 * minimum acceptable size of a hibernation image to use as the lower limit for
1230 * preallocating memory.
1231 *
1232 * We assume that the minimum image size should be proportional to
1233 *
1234 * [number of saveable pages] - [number of pages that can be freed in theory]
1235 *
1236 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1237 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1238 * minus mapped file pages.
1239 */
1240static unsigned long minimum_image_size(unsigned long saveable)
1241{
1242	unsigned long size;
1243
1244	size = global_page_state(NR_SLAB_RECLAIMABLE)
1245		+ global_page_state(NR_ACTIVE_ANON)
1246		+ global_page_state(NR_INACTIVE_ANON)
1247		+ global_page_state(NR_ACTIVE_FILE)
1248		+ global_page_state(NR_INACTIVE_FILE)
1249		- global_page_state(NR_FILE_MAPPED);
1250
1251	return saveable <= size ? 0 : saveable - size;
1252}
1253
1254/**
1255 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1256 *
1257 * To create a hibernation image it is necessary to make a copy of every page
1258 * frame in use.  We also need a number of page frames to be free during
1259 * hibernation for allocations made while saving the image and for device
1260 * drivers, in case they need to allocate memory from their hibernation
1261 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1262 * respectively, both of which are rough estimates).  To make this happen, we
1263 * compute the total number of available page frames and allocate at least
1264 *
1265 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1266 *
1267 * of them, which corresponds to the maximum size of a hibernation image.
1268 *
1269 * If image_size is set below the number following from the above formula,
1270 * the preallocation of memory is continued until the total number of saveable
1271 * pages in the system is below the requested image size or the minimum
1272 * acceptable image size returned by minimum_image_size(), whichever is greater.
1273 */
1274int hibernate_preallocate_memory(void)
1275{
1276	struct zone *zone;
1277	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1278	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1279	struct timeval start, stop;
1280	int error;
1281
1282	printk(KERN_INFO "PM: Preallocating image memory... ");
1283	do_gettimeofday(&start);
1284
1285	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1286	if (error)
1287		goto err_out;
1288
1289	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1290	if (error)
1291		goto err_out;
1292
1293	alloc_normal = 0;
1294	alloc_highmem = 0;
1295
1296	/* Count the number of saveable data pages. */
1297	save_highmem = count_highmem_pages();
1298	saveable = count_data_pages();
1299
1300	/*
1301	 * Compute the total number of page frames we can use (count) and the
1302	 * number of pages needed for image metadata (size).
1303	 */
1304	count = saveable;
1305	saveable += save_highmem;
1306	highmem = save_highmem;
1307	size = 0;
1308	for_each_populated_zone(zone) {
1309		size += snapshot_additional_pages(zone);
1310		if (is_highmem(zone))
1311			highmem += zone_page_state(zone, NR_FREE_PAGES);
1312		else
1313			count += zone_page_state(zone, NR_FREE_PAGES);
1314	}
1315	avail_normal = count;
1316	count += highmem;
1317	count -= totalreserve_pages;
1318
1319	/* Compute the maximum number of saveable pages to leave in memory. */
1320	max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1321	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1322	if (size > max_size)
1323		size = max_size;
1324	/*
1325	 * If the maximum is not less than the current number of saveable pages
1326	 * in memory, allocate page frames for the image and we're done.
1327	 */
1328	if (size >= saveable) {
1329		pages = preallocate_image_highmem(save_highmem);
1330		pages += preallocate_image_memory(saveable - pages, avail_normal);
1331		goto out;
1332	}
1333
1334	/* Estimate the minimum size of the image. */
1335	pages = minimum_image_size(saveable);
1336	/*
1337	 * To avoid excessive pressure on the normal zone, leave room in it to
1338	 * accommodate an image of the minimum size (unless it's already too
1339	 * small, in which case don't preallocate pages from it at all).
1340	 */
1341	if (avail_normal > pages)
1342		avail_normal -= pages;
1343	else
1344		avail_normal = 0;
1345	if (size < pages)
1346		size = min_t(unsigned long, pages, max_size);
1347
1348	/*
1349	 * Let the memory management subsystem know that we're going to need a
1350	 * large number of page frames to allocate and make it free some memory.
1351	 * NOTE: If this is not done, performance will be hurt badly in some
1352	 * test cases.
1353	 */
1354	shrink_all_memory(saveable - size);
1355
1356	/*
1357	 * The number of saveable pages in memory was too high, so apply some
1358	 * pressure to decrease it.  First, make room for the largest possible
1359	 * image and fail if that doesn't work.  Next, try to decrease the size
1360	 * of the image as much as indicated by 'size' using allocations from
1361	 * highmem and non-highmem zones separately.
1362	 */
1363	pages_highmem = preallocate_image_highmem(highmem / 2);
1364	alloc = (count - max_size) - pages_highmem;
1365	pages = preallocate_image_memory(alloc, avail_normal);
1366	if (pages < alloc) {
1367		/* We have exhausted non-highmem pages, try highmem. */
1368		alloc -= pages;
1369		pages += pages_highmem;
1370		pages_highmem = preallocate_image_highmem(alloc);
1371		if (pages_highmem < alloc)
1372			goto err_out;
1373		pages += pages_highmem;
1374		/*
1375		 * size is the desired number of saveable pages to leave in
1376		 * memory, so try to preallocate (all memory - size) pages.
1377		 */
1378		alloc = (count - pages) - size;
1379		pages += preallocate_image_highmem(alloc);
1380	} else {
1381		/*
1382		 * There are approximately max_size saveable pages at this point
1383		 * and we want to reduce this number down to size.
1384		 */
1385		alloc = max_size - size;
1386		size = preallocate_highmem_fraction(alloc, highmem, count);
1387		pages_highmem += size;
1388		alloc -= size;
1389		size = preallocate_image_memory(alloc, avail_normal);
1390		pages_highmem += preallocate_image_highmem(alloc - size);
1391		pages += pages_highmem + size;
1392	}
1393
1394	/*
1395	 * We only need as many page frames for the image as there are saveable
1396	 * pages in memory, but we have allocated more.  Release the excessive
1397	 * ones now.
1398	 */
1399	free_unnecessary_pages();
1400
1401 out:
1402	do_gettimeofday(&stop);
1403	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1404	swsusp_show_speed(&start, &stop, pages, "Allocated");
1405
1406	return 0;
1407
1408 err_out:
1409	printk(KERN_CONT "\n");
1410	swsusp_free();
1411	return -ENOMEM;
1412}
1413
1414#ifdef CONFIG_HIGHMEM
1415/**
1416  *	count_pages_for_highmem - compute the number of non-highmem pages
1417  *	that will be necessary for creating copies of highmem pages.
1418  */
1419
1420static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1421{
1422	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1423
1424	if (free_highmem >= nr_highmem)
1425		nr_highmem = 0;
1426	else
1427		nr_highmem -= free_highmem;
1428
1429	return nr_highmem;
1430}
1431#else
1432static unsigned int
1433count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1434#endif /* CONFIG_HIGHMEM */
1435
1436/**
1437 *	enough_free_mem - Make sure we have enough free memory for the
1438 *	snapshot image.
1439 */
1440
1441static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1442{
1443	struct zone *zone;
1444	unsigned int free = alloc_normal;
1445
1446	for_each_populated_zone(zone)
1447		if (!is_highmem(zone))
1448			free += zone_page_state(zone, NR_FREE_PAGES);
1449
1450	nr_pages += count_pages_for_highmem(nr_highmem);
1451	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1452		nr_pages, PAGES_FOR_IO, free);
1453
1454	return free > nr_pages + PAGES_FOR_IO;
1455}
1456
1457#ifdef CONFIG_HIGHMEM
1458/**
1459 *	get_highmem_buffer - if there are some highmem pages in the suspend
1460 *	image, we may need the buffer to copy them and/or load their data.
1461 */
1462
1463static inline int get_highmem_buffer(int safe_needed)
1464{
1465	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1466	return buffer ? 0 : -ENOMEM;
1467}
1468
1469/**
1470 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1471 *	Try to allocate as many pages as needed, but if the number of free
1472 *	highmem pages is lesser than that, allocate them all.
1473 */
1474
1475static inline unsigned int
1476alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1477{
1478	unsigned int to_alloc = count_free_highmem_pages();
1479
1480	if (to_alloc > nr_highmem)
1481		to_alloc = nr_highmem;
1482
1483	nr_highmem -= to_alloc;
1484	while (to_alloc-- > 0) {
1485		struct page *page;
1486
1487		page = alloc_image_page(__GFP_HIGHMEM);
1488		memory_bm_set_bit(bm, page_to_pfn(page));
1489	}
1490	return nr_highmem;
1491}
1492#else
1493static inline int get_highmem_buffer(int safe_needed) { return 0; }
1494
1495static inline unsigned int
1496alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1497#endif /* CONFIG_HIGHMEM */
1498
1499/**
1500 *	swsusp_alloc - allocate memory for the suspend image
1501 *
1502 *	We first try to allocate as many highmem pages as there are
1503 *	saveable highmem pages in the system.  If that fails, we allocate
1504 *	non-highmem pages for the copies of the remaining highmem ones.
1505 *
1506 *	In this approach it is likely that the copies of highmem pages will
1507 *	also be located in the high memory, because of the way in which
1508 *	copy_data_pages() works.
1509 */
1510
1511static int
1512swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1513		unsigned int nr_pages, unsigned int nr_highmem)
1514{
1515	int error = 0;
1516
1517	if (nr_highmem > 0) {
1518		error = get_highmem_buffer(PG_ANY);
1519		if (error)
1520			goto err_out;
1521		if (nr_highmem > alloc_highmem) {
1522			nr_highmem -= alloc_highmem;
1523			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1524		}
1525	}
1526	if (nr_pages > alloc_normal) {
1527		nr_pages -= alloc_normal;
1528		while (nr_pages-- > 0) {
1529			struct page *page;
1530
1531			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1532			if (!page)
1533				goto err_out;
1534			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1535		}
1536	}
1537
1538	return 0;
1539
1540 err_out:
1541	swsusp_free();
1542	return error;
1543}
1544
1545asmlinkage int swsusp_save(void)
1546{
1547	unsigned int nr_pages, nr_highmem;
1548
1549	printk(KERN_INFO "PM: Creating hibernation image:\n");
1550
1551	drain_local_pages(NULL);
1552	nr_pages = count_data_pages();
1553	nr_highmem = count_highmem_pages();
1554	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1555
1556	if (!enough_free_mem(nr_pages, nr_highmem)) {
1557		printk(KERN_ERR "PM: Not enough free memory\n");
1558		return -ENOMEM;
1559	}
1560
1561	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1562		printk(KERN_ERR "PM: Memory allocation failed\n");
1563		return -ENOMEM;
1564	}
1565
1566	/* During allocating of suspend pagedir, new cold pages may appear.
1567	 * Kill them.
1568	 */
1569	drain_local_pages(NULL);
1570	copy_data_pages(&copy_bm, &orig_bm);
1571
1572	/*
1573	 * End of critical section. From now on, we can write to memory,
1574	 * but we should not touch disk. This specially means we must _not_
1575	 * touch swap space! Except we must write out our image of course.
1576	 */
1577
1578	nr_pages += nr_highmem;
1579	nr_copy_pages = nr_pages;
1580	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1581
1582	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1583		nr_pages);
1584
1585	return 0;
1586}
1587
1588#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1589static int init_header_complete(struct swsusp_info *info)
1590{
1591	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1592	info->version_code = LINUX_VERSION_CODE;
1593	return 0;
1594}
1595
1596static char *check_image_kernel(struct swsusp_info *info)
1597{
1598	if (info->version_code != LINUX_VERSION_CODE)
1599		return "kernel version";
1600	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1601		return "system type";
1602	if (strcmp(info->uts.release,init_utsname()->release))
1603		return "kernel release";
1604	if (strcmp(info->uts.version,init_utsname()->version))
1605		return "version";
1606	if (strcmp(info->uts.machine,init_utsname()->machine))
1607		return "machine";
1608	return NULL;
1609}
1610#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1611
1612unsigned long snapshot_get_image_size(void)
1613{
1614	return nr_copy_pages + nr_meta_pages + 1;
1615}
1616
1617static int init_header(struct swsusp_info *info)
1618{
1619	memset(info, 0, sizeof(struct swsusp_info));
1620	info->num_physpages = num_physpages;
1621	info->image_pages = nr_copy_pages;
1622	info->pages = snapshot_get_image_size();
1623	info->size = info->pages;
1624	info->size <<= PAGE_SHIFT;
1625	return init_header_complete(info);
1626}
1627
1628/**
1629 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1630 *	are stored in the array @buf[] (1 page at a time)
1631 */
1632
1633static inline void
1634pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1635{
1636	int j;
1637
1638	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1639		buf[j] = memory_bm_next_pfn(bm);
1640		if (unlikely(buf[j] == BM_END_OF_MAP))
1641			break;
1642	}
1643}
1644
1645/**
1646 *	snapshot_read_next - used for reading the system memory snapshot.
1647 *
1648 *	On the first call to it @handle should point to a zeroed
1649 *	snapshot_handle structure.  The structure gets updated and a pointer
1650 *	to it should be passed to this function every next time.
1651 *
1652 *	On success the function returns a positive number.  Then, the caller
1653 *	is allowed to read up to the returned number of bytes from the memory
1654 *	location computed by the data_of() macro.
1655 *
1656 *	The function returns 0 to indicate the end of data stream condition,
1657 *	and a negative number is returned on error.  In such cases the
1658 *	structure pointed to by @handle is not updated and should not be used
1659 *	any more.
1660 */
1661
1662int snapshot_read_next(struct snapshot_handle *handle)
1663{
1664	if (handle->cur > nr_meta_pages + nr_copy_pages)
1665		return 0;
1666
1667	if (!buffer) {
1668		/* This makes the buffer be freed by swsusp_free() */
1669		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1670		if (!buffer)
1671			return -ENOMEM;
1672	}
1673	if (!handle->cur) {
1674		int error;
1675
1676		error = init_header((struct swsusp_info *)buffer);
1677		if (error)
1678			return error;
1679		handle->buffer = buffer;
1680		memory_bm_position_reset(&orig_bm);
1681		memory_bm_position_reset(&copy_bm);
1682	} else if (handle->cur <= nr_meta_pages) {
1683		memset(buffer, 0, PAGE_SIZE);
1684		pack_pfns(buffer, &orig_bm);
1685	} else {
1686		struct page *page;
1687
1688		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1689		if (PageHighMem(page)) {
1690			/* Highmem pages are copied to the buffer,
1691			 * because we can't return with a kmapped
1692			 * highmem page (we may not be called again).
1693			 */
1694			void *kaddr;
1695
1696			kaddr = kmap_atomic(page, KM_USER0);
1697			memcpy(buffer, kaddr, PAGE_SIZE);
1698			kunmap_atomic(kaddr, KM_USER0);
1699			handle->buffer = buffer;
1700		} else {
1701			handle->buffer = page_address(page);
1702		}
1703	}
1704	handle->cur++;
1705	return PAGE_SIZE;
1706}
1707
1708/**
1709 *	mark_unsafe_pages - mark the pages that cannot be used for storing
1710 *	the image during resume, because they conflict with the pages that
1711 *	had been used before suspend
1712 */
1713
1714static int mark_unsafe_pages(struct memory_bitmap *bm)
1715{
1716	struct zone *zone;
1717	unsigned long pfn, max_zone_pfn;
1718
1719	/* Clear page flags */
1720	for_each_populated_zone(zone) {
1721		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1722		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1723			if (pfn_valid(pfn))
1724				swsusp_unset_page_free(pfn_to_page(pfn));
1725	}
1726
1727	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1728	memory_bm_position_reset(bm);
1729	do {
1730		pfn = memory_bm_next_pfn(bm);
1731		if (likely(pfn != BM_END_OF_MAP)) {
1732			if (likely(pfn_valid(pfn)))
1733				swsusp_set_page_free(pfn_to_page(pfn));
1734			else
1735				return -EFAULT;
1736		}
1737	} while (pfn != BM_END_OF_MAP);
1738
1739	allocated_unsafe_pages = 0;
1740
1741	return 0;
1742}
1743
1744static void
1745duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1746{
1747	unsigned long pfn;
1748
1749	memory_bm_position_reset(src);
1750	pfn = memory_bm_next_pfn(src);
1751	while (pfn != BM_END_OF_MAP) {
1752		memory_bm_set_bit(dst, pfn);
1753		pfn = memory_bm_next_pfn(src);
1754	}
1755}
1756
1757static int check_header(struct swsusp_info *info)
1758{
1759	char *reason;
1760
1761	reason = check_image_kernel(info);
1762	if (!reason && info->num_physpages != num_physpages)
1763		reason = "memory size";
1764	if (reason) {
1765		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1766		return -EPERM;
1767	}
1768	return 0;
1769}
1770
1771/**
1772 *	load header - check the image header and copy data from it
1773 */
1774
1775static int
1776load_header(struct swsusp_info *info)
1777{
1778	int error;
1779
1780	restore_pblist = NULL;
1781	error = check_header(info);
1782	if (!error) {
1783		nr_copy_pages = info->image_pages;
1784		nr_meta_pages = info->pages - info->image_pages - 1;
1785	}
1786	return error;
1787}
1788
1789/**
1790 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1791 *	the corresponding bit in the memory bitmap @bm
1792 */
1793static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1794{
1795	int j;
1796
1797	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1798		if (unlikely(buf[j] == BM_END_OF_MAP))
1799			break;
1800
1801		if (memory_bm_pfn_present(bm, buf[j]))
1802			memory_bm_set_bit(bm, buf[j]);
1803		else
1804			return -EFAULT;
1805	}
1806
1807	return 0;
1808}
1809
1810/* List of "safe" pages that may be used to store data loaded from the suspend
1811 * image
1812 */
1813static struct linked_page *safe_pages_list;
1814
1815#ifdef CONFIG_HIGHMEM
1816/* struct highmem_pbe is used for creating the list of highmem pages that
1817 * should be restored atomically during the resume from disk, because the page
1818 * frames they have occupied before the suspend are in use.
1819 */
1820struct highmem_pbe {
1821	struct page *copy_page;	/* data is here now */
1822	struct page *orig_page;	/* data was here before the suspend */
1823	struct highmem_pbe *next;
1824};
1825
1826/* List of highmem PBEs needed for restoring the highmem pages that were
1827 * allocated before the suspend and included in the suspend image, but have
1828 * also been allocated by the "resume" kernel, so their contents cannot be
1829 * written directly to their "original" page frames.
1830 */
1831static struct highmem_pbe *highmem_pblist;
1832
1833/**
1834 *	count_highmem_image_pages - compute the number of highmem pages in the
1835 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1836 *	image pages are assumed to be set.
1837 */
1838
1839static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1840{
1841	unsigned long pfn;
1842	unsigned int cnt = 0;
1843
1844	memory_bm_position_reset(bm);
1845	pfn = memory_bm_next_pfn(bm);
1846	while (pfn != BM_END_OF_MAP) {
1847		if (PageHighMem(pfn_to_page(pfn)))
1848			cnt++;
1849
1850		pfn = memory_bm_next_pfn(bm);
1851	}
1852	return cnt;
1853}
1854
1855/**
1856 *	prepare_highmem_image - try to allocate as many highmem pages as
1857 *	there are highmem image pages (@nr_highmem_p points to the variable
1858 *	containing the number of highmem image pages).  The pages that are
1859 *	"safe" (ie. will not be overwritten when the suspend image is
1860 *	restored) have the corresponding bits set in @bm (it must be
1861 *	unitialized).
1862 *
1863 *	NOTE: This function should not be called if there are no highmem
1864 *	image pages.
1865 */
1866
1867static unsigned int safe_highmem_pages;
1868
1869static struct memory_bitmap *safe_highmem_bm;
1870
1871static int
1872prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1873{
1874	unsigned int to_alloc;
1875
1876	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1877		return -ENOMEM;
1878
1879	if (get_highmem_buffer(PG_SAFE))
1880		return -ENOMEM;
1881
1882	to_alloc = count_free_highmem_pages();
1883	if (to_alloc > *nr_highmem_p)
1884		to_alloc = *nr_highmem_p;
1885	else
1886		*nr_highmem_p = to_alloc;
1887
1888	safe_highmem_pages = 0;
1889	while (to_alloc-- > 0) {
1890		struct page *page;
1891
1892		page = alloc_page(__GFP_HIGHMEM);
1893		if (!swsusp_page_is_free(page)) {
1894			/* The page is "safe", set its bit the bitmap */
1895			memory_bm_set_bit(bm, page_to_pfn(page));
1896			safe_highmem_pages++;
1897		}
1898		/* Mark the page as allocated */
1899		swsusp_set_page_forbidden(page);
1900		swsusp_set_page_free(page);
1901	}
1902	memory_bm_position_reset(bm);
1903	safe_highmem_bm = bm;
1904	return 0;
1905}
1906
1907/**
1908 *	get_highmem_page_buffer - for given highmem image page find the buffer
1909 *	that suspend_write_next() should set for its caller to write to.
1910 *
1911 *	If the page is to be saved to its "original" page frame or a copy of
1912 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1913 *	the copy of the page is to be made in normal memory, so the address of
1914 *	the copy is returned.
1915 *
1916 *	If @buffer is returned, the caller of suspend_write_next() will write
1917 *	the page's contents to @buffer, so they will have to be copied to the
1918 *	right location on the next call to suspend_write_next() and it is done
1919 *	with the help of copy_last_highmem_page().  For this purpose, if
1920 *	@buffer is returned, @last_highmem page is set to the page to which
1921 *	the data will have to be copied from @buffer.
1922 */
1923
1924static struct page *last_highmem_page;
1925
1926static void *
1927get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1928{
1929	struct highmem_pbe *pbe;
1930	void *kaddr;
1931
1932	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1933		/* We have allocated the "original" page frame and we can
1934		 * use it directly to store the loaded page.
1935		 */
1936		last_highmem_page = page;
1937		return buffer;
1938	}
1939	/* The "original" page frame has not been allocated and we have to
1940	 * use a "safe" page frame to store the loaded page.
1941	 */
1942	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1943	if (!pbe) {
1944		swsusp_free();
1945		return ERR_PTR(-ENOMEM);
1946	}
1947	pbe->orig_page = page;
1948	if (safe_highmem_pages > 0) {
1949		struct page *tmp;
1950
1951		/* Copy of the page will be stored in high memory */
1952		kaddr = buffer;
1953		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1954		safe_highmem_pages--;
1955		last_highmem_page = tmp;
1956		pbe->copy_page = tmp;
1957	} else {
1958		/* Copy of the page will be stored in normal memory */
1959		kaddr = safe_pages_list;
1960		safe_pages_list = safe_pages_list->next;
1961		pbe->copy_page = virt_to_page(kaddr);
1962	}
1963	pbe->next = highmem_pblist;
1964	highmem_pblist = pbe;
1965	return kaddr;
1966}
1967
1968/**
1969 *	copy_last_highmem_page - copy the contents of a highmem image from
1970 *	@buffer, where the caller of snapshot_write_next() has place them,
1971 *	to the right location represented by @last_highmem_page .
1972 */
1973
1974static void copy_last_highmem_page(void)
1975{
1976	if (last_highmem_page) {
1977		void *dst;
1978
1979		dst = kmap_atomic(last_highmem_page, KM_USER0);
1980		memcpy(dst, buffer, PAGE_SIZE);
1981		kunmap_atomic(dst, KM_USER0);
1982		last_highmem_page = NULL;
1983	}
1984}
1985
1986static inline int last_highmem_page_copied(void)
1987{
1988	return !last_highmem_page;
1989}
1990
1991static inline void free_highmem_data(void)
1992{
1993	if (safe_highmem_bm)
1994		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1995
1996	if (buffer)
1997		free_image_page(buffer, PG_UNSAFE_CLEAR);
1998}
1999#else
2000static inline int get_safe_write_buffer(void) { return 0; }
2001
2002static unsigned int
2003count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2004
2005static inline int
2006prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2007{
2008	return 0;
2009}
2010
2011static inline void *
2012get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2013{
2014	return ERR_PTR(-EINVAL);
2015}
2016
2017static inline void copy_last_highmem_page(void) {}
2018static inline int last_highmem_page_copied(void) { return 1; }
2019static inline void free_highmem_data(void) {}
2020#endif /* CONFIG_HIGHMEM */
2021
2022/**
2023 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2024 *	be overwritten in the process of restoring the system memory state
2025 *	from the suspend image ("unsafe" pages) and allocate memory for the
2026 *	image.
2027 *
2028 *	The idea is to allocate a new memory bitmap first and then allocate
2029 *	as many pages as needed for the image data, but not to assign these
2030 *	pages to specific tasks initially.  Instead, we just mark them as
2031 *	allocated and create a lists of "safe" pages that will be used
2032 *	later.  On systems with high memory a list of "safe" highmem pages is
2033 *	also created.
2034 */
2035
2036#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2037
2038static int
2039prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2040{
2041	unsigned int nr_pages, nr_highmem;
2042	struct linked_page *sp_list, *lp;
2043	int error;
2044
2045	/* If there is no highmem, the buffer will not be necessary */
2046	free_image_page(buffer, PG_UNSAFE_CLEAR);
2047	buffer = NULL;
2048
2049	nr_highmem = count_highmem_image_pages(bm);
2050	error = mark_unsafe_pages(bm);
2051	if (error)
2052		goto Free;
2053
2054	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2055	if (error)
2056		goto Free;
2057
2058	duplicate_memory_bitmap(new_bm, bm);
2059	memory_bm_free(bm, PG_UNSAFE_KEEP);
2060	if (nr_highmem > 0) {
2061		error = prepare_highmem_image(bm, &nr_highmem);
2062		if (error)
2063			goto Free;
2064	}
2065	/* Reserve some safe pages for potential later use.
2066	 *
2067	 * NOTE: This way we make sure there will be enough safe pages for the
2068	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2069	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2070	 */
2071	sp_list = NULL;
2072	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2073	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2074	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2075	while (nr_pages > 0) {
2076		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2077		if (!lp) {
2078			error = -ENOMEM;
2079			goto Free;
2080		}
2081		lp->next = sp_list;
2082		sp_list = lp;
2083		nr_pages--;
2084	}
2085	/* Preallocate memory for the image */
2086	safe_pages_list = NULL;
2087	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2088	while (nr_pages > 0) {
2089		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2090		if (!lp) {
2091			error = -ENOMEM;
2092			goto Free;
2093		}
2094		if (!swsusp_page_is_free(virt_to_page(lp))) {
2095			/* The page is "safe", add it to the list */
2096			lp->next = safe_pages_list;
2097			safe_pages_list = lp;
2098		}
2099		/* Mark the page as allocated */
2100		swsusp_set_page_forbidden(virt_to_page(lp));
2101		swsusp_set_page_free(virt_to_page(lp));
2102		nr_pages--;
2103	}
2104	/* Free the reserved safe pages so that chain_alloc() can use them */
2105	while (sp_list) {
2106		lp = sp_list->next;
2107		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2108		sp_list = lp;
2109	}
2110	return 0;
2111
2112 Free:
2113	swsusp_free();
2114	return error;
2115}
2116
2117/**
2118 *	get_buffer - compute the address that snapshot_write_next() should
2119 *	set for its caller to write to.
2120 */
2121
2122static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2123{
2124	struct pbe *pbe;
2125	struct page *page;
2126	unsigned long pfn = memory_bm_next_pfn(bm);
2127
2128	if (pfn == BM_END_OF_MAP)
2129		return ERR_PTR(-EFAULT);
2130
2131	page = pfn_to_page(pfn);
2132	if (PageHighMem(page))
2133		return get_highmem_page_buffer(page, ca);
2134
2135	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2136		/* We have allocated the "original" page frame and we can
2137		 * use it directly to store the loaded page.
2138		 */
2139		return page_address(page);
2140
2141	/* The "original" page frame has not been allocated and we have to
2142	 * use a "safe" page frame to store the loaded page.
2143	 */
2144	pbe = chain_alloc(ca, sizeof(struct pbe));
2145	if (!pbe) {
2146		swsusp_free();
2147		return ERR_PTR(-ENOMEM);
2148	}
2149	pbe->orig_address = page_address(page);
2150	pbe->address = safe_pages_list;
2151	safe_pages_list = safe_pages_list->next;
2152	pbe->next = restore_pblist;
2153	restore_pblist = pbe;
2154	return pbe->address;
2155}
2156
2157/**
2158 *	snapshot_write_next - used for writing the system memory snapshot.
2159 *
2160 *	On the first call to it @handle should point to a zeroed
2161 *	snapshot_handle structure.  The structure gets updated and a pointer
2162 *	to it should be passed to this function every next time.
2163 *
2164 *	On success the function returns a positive number.  Then, the caller
2165 *	is allowed to write up to the returned number of bytes to the memory
2166 *	location computed by the data_of() macro.
2167 *
2168 *	The function returns 0 to indicate the "end of file" condition,
2169 *	and a negative number is returned on error.  In such cases the
2170 *	structure pointed to by @handle is not updated and should not be used
2171 *	any more.
2172 */
2173
2174int snapshot_write_next(struct snapshot_handle *handle)
2175{
2176	static struct chain_allocator ca;
2177	int error = 0;
2178
2179	/* Check if we have already loaded the entire image */
2180	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2181		return 0;
2182
2183	handle->sync_read = 1;
2184
2185	if (!handle->cur) {
2186		if (!buffer)
2187			/* This makes the buffer be freed by swsusp_free() */
2188			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2189
2190		if (!buffer)
2191			return -ENOMEM;
2192
2193		handle->buffer = buffer;
2194	} else if (handle->cur == 1) {
2195		error = load_header(buffer);
2196		if (error)
2197			return error;
2198
2199		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2200		if (error)
2201			return error;
2202
2203	} else if (handle->cur <= nr_meta_pages + 1) {
2204		error = unpack_orig_pfns(buffer, &copy_bm);
2205		if (error)
2206			return error;
2207
2208		if (handle->cur == nr_meta_pages + 1) {
2209			error = prepare_image(&orig_bm, &copy_bm);
2210			if (error)
2211				return error;
2212
2213			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2214			memory_bm_position_reset(&orig_bm);
2215			restore_pblist = NULL;
2216			handle->buffer = get_buffer(&orig_bm, &ca);
2217			handle->sync_read = 0;
2218			if (IS_ERR(handle->buffer))
2219				return PTR_ERR(handle->buffer);
2220		}
2221	} else {
2222		copy_last_highmem_page();
2223		handle->buffer = get_buffer(&orig_bm, &ca);
2224		if (IS_ERR(handle->buffer))
2225			return PTR_ERR(handle->buffer);
2226		if (handle->buffer != buffer)
2227			handle->sync_read = 0;
2228	}
2229	handle->cur++;
2230	return PAGE_SIZE;
2231}
2232
2233/**
2234 *	snapshot_write_finalize - must be called after the last call to
2235 *	snapshot_write_next() in case the last page in the image happens
2236 *	to be a highmem page and its contents should be stored in the
2237 *	highmem.  Additionally, it releases the memory that will not be
2238 *	used any more.
2239 */
2240
2241void snapshot_write_finalize(struct snapshot_handle *handle)
2242{
2243	copy_last_highmem_page();
2244	/* Free only if we have loaded the image entirely */
2245	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2246		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2247		free_highmem_data();
2248	}
2249}
2250
2251int snapshot_image_loaded(struct snapshot_handle *handle)
2252{
2253	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2254			handle->cur <= nr_meta_pages + nr_copy_pages);
2255}
2256
2257#ifdef CONFIG_HIGHMEM
2258/* Assumes that @buf is ready and points to a "safe" page */
2259static inline void
2260swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2261{
2262	void *kaddr1, *kaddr2;
2263
2264	kaddr1 = kmap_atomic(p1, KM_USER0);
2265	kaddr2 = kmap_atomic(p2, KM_USER1);
2266	memcpy(buf, kaddr1, PAGE_SIZE);
2267	memcpy(kaddr1, kaddr2, PAGE_SIZE);
2268	memcpy(kaddr2, buf, PAGE_SIZE);
2269	kunmap_atomic(kaddr1, KM_USER0);
2270	kunmap_atomic(kaddr2, KM_USER1);
2271}
2272
2273/**
2274 *	restore_highmem - for each highmem page that was allocated before
2275 *	the suspend and included in the suspend image, and also has been
2276 *	allocated by the "resume" kernel swap its current (ie. "before
2277 *	resume") contents with the previous (ie. "before suspend") one.
2278 *
2279 *	If the resume eventually fails, we can call this function once
2280 *	again and restore the "before resume" highmem state.
2281 */
2282
2283int restore_highmem(void)
2284{
2285	struct highmem_pbe *pbe = highmem_pblist;
2286	void *buf;
2287
2288	if (!pbe)
2289		return 0;
2290
2291	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2292	if (!buf)
2293		return -ENOMEM;
2294
2295	while (pbe) {
2296		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2297		pbe = pbe->next;
2298	}
2299	free_image_page(buf, PG_UNSAFE_CLEAR);
2300	return 0;
2301}
2302#endif /* CONFIG_HIGHMEM */
2303