• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/include/net/
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Definitions for the TCP module.
7 *
8 * Version:	@(#)tcp.h	1.0.5	05/23/93
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 *		This program is free software; you can redistribute it and/or
14 *		modify it under the terms of the GNU General Public License
15 *		as published by the Free Software Foundation; either version
16 *		2 of the License, or (at your option) any later version.
17 */
18#ifndef _TCP_H
19#define _TCP_H
20
21#define TCP_DEBUG 1
22#define FASTRETRANS_DEBUG 1
23
24#include <linux/list.h>
25#include <linux/tcp.h>
26#include <linux/slab.h>
27#include <linux/cache.h>
28#include <linux/percpu.h>
29#include <linux/skbuff.h>
30#include <linux/dmaengine.h>
31#include <linux/crypto.h>
32#include <linux/cryptohash.h>
33#include <linux/kref.h>
34
35#include <net/inet_connection_sock.h>
36#include <net/inet_timewait_sock.h>
37#include <net/inet_hashtables.h>
38#include <net/checksum.h>
39#include <net/request_sock.h>
40#include <net/sock.h>
41#include <net/snmp.h>
42#include <net/ip.h>
43#include <net/tcp_states.h>
44#include <net/inet_ecn.h>
45#include <net/dst.h>
46
47#include <linux/seq_file.h>
48
49extern struct inet_hashinfo tcp_hashinfo;
50
51extern struct percpu_counter tcp_orphan_count;
52extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54#define MAX_TCP_HEADER	(128 + MAX_HEADER)
55#define MAX_TCP_OPTION_SPACE 40
56
57/*
58 * Never offer a window over 32767 without using window scaling. Some
59 * poor stacks do signed 16bit maths!
60 */
61#define MAX_TCP_WINDOW		32767U
62
63/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64#define TCP_MIN_MSS		88U
65
66/* The least MTU to use for probing */
67#define TCP_BASE_MSS		512
68
69/* After receiving this amount of duplicate ACKs fast retransmit starts. */
70#define TCP_FASTRETRANS_THRESH 3
71
72/* Maximal reordering. */
73#define TCP_MAX_REORDERING	127
74
75/* Maximal number of ACKs sent quickly to accelerate slow-start. */
76#define TCP_MAX_QUICKACKS	16U
77
78/* urg_data states */
79#define TCP_URG_VALID	0x0100
80#define TCP_URG_NOTYET	0x0200
81#define TCP_URG_READ	0x0400
82
83#define TCP_RETR1	3	/*
84				 * This is how many retries it does before it
85				 * tries to figure out if the gateway is
86				 * down. Minimal RFC value is 3; it corresponds
87				 * to ~3sec-8min depending on RTO.
88				 */
89
90#define TCP_RETR2	15	/*
91				 * This should take at least
92				 * 90 minutes to time out.
93				 * RFC1122 says that the limit is 100 sec.
94				 * 15 is ~13-30min depending on RTO.
95				 */
96
97#define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
98				 * connection: ~180sec is RFC minimum	*/
99
100#define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
101				 * connection: ~180sec is RFC minimum	*/
102
103
104#define TCP_ORPHAN_RETRIES 7	/* number of times to retry on an orphaned
105				 * socket. 7 is ~50sec-16min.
106				 */
107
108
109#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
110				  * state, about 60 seconds	*/
111#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
112                                 /* BSD style FIN_WAIT2 deadlock breaker.
113				  * It used to be 3min, new value is 60sec,
114				  * to combine FIN-WAIT-2 timeout with
115				  * TIME-WAIT timer.
116				  */
117
118#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
119#if HZ >= 100
120#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
121#define TCP_ATO_MIN	((unsigned)(HZ/25))
122#else
123#define TCP_DELACK_MIN	4U
124#define TCP_ATO_MIN	4U
125#endif
126#define TCP_RTO_MAX	((unsigned)(120*HZ))
127#define TCP_RTO_MIN	((unsigned)(HZ/5))
128#define TCP_TIMEOUT_INIT ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value	*/
129
130#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
131					                 * for local resources.
132					                 */
133
134#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
135#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
136#define TCP_KEEPALIVE_INTVL	(75*HZ)
137
138#define MAX_TCP_KEEPIDLE	32767
139#define MAX_TCP_KEEPINTVL	32767
140#define MAX_TCP_KEEPCNT		127
141#define MAX_TCP_SYNCNT		127
142
143#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
144
145#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
146#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
147					 * after this time. It should be equal
148					 * (or greater than) TCP_TIMEWAIT_LEN
149					 * to provide reliability equal to one
150					 * provided by timewait state.
151					 */
152#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
153					 * timestamps. It must be less than
154					 * minimal timewait lifetime.
155					 */
156/*
157 *	TCP option
158 */
159
160#define TCPOPT_NOP		1	/* Padding */
161#define TCPOPT_EOL		0	/* End of options */
162#define TCPOPT_MSS		2	/* Segment size negotiating */
163#define TCPOPT_WINDOW		3	/* Window scaling */
164#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
165#define TCPOPT_SACK             5       /* SACK Block */
166#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
167#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
168#define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
169
170/*
171 *     TCP option lengths
172 */
173
174#define TCPOLEN_MSS            4
175#define TCPOLEN_WINDOW         3
176#define TCPOLEN_SACK_PERM      2
177#define TCPOLEN_TIMESTAMP      10
178#define TCPOLEN_MD5SIG         18
179#define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
180#define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
181#define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
182#define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
183
184/* But this is what stacks really send out. */
185#define TCPOLEN_TSTAMP_ALIGNED		12
186#define TCPOLEN_WSCALE_ALIGNED		4
187#define TCPOLEN_SACKPERM_ALIGNED	4
188#define TCPOLEN_SACK_BASE		2
189#define TCPOLEN_SACK_BASE_ALIGNED	4
190#define TCPOLEN_SACK_PERBLOCK		8
191#define TCPOLEN_MD5SIG_ALIGNED		20
192#define TCPOLEN_MSS_ALIGNED		4
193
194/* Flags in tp->nonagle */
195#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
196#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
197#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
198
199/* TCP thin-stream limits */
200#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
201
202extern struct inet_timewait_death_row tcp_death_row;
203
204/* sysctl variables for tcp */
205extern int sysctl_tcp_timestamps;
206extern int sysctl_tcp_window_scaling;
207extern int sysctl_tcp_sack;
208extern int sysctl_tcp_fin_timeout;
209extern int sysctl_tcp_keepalive_time;
210extern int sysctl_tcp_keepalive_probes;
211extern int sysctl_tcp_keepalive_intvl;
212extern int sysctl_tcp_syn_retries;
213extern int sysctl_tcp_synack_retries;
214extern int sysctl_tcp_retries1;
215extern int sysctl_tcp_retries2;
216extern int sysctl_tcp_orphan_retries;
217extern int sysctl_tcp_syncookies;
218extern int sysctl_tcp_retrans_collapse;
219extern int sysctl_tcp_stdurg;
220extern int sysctl_tcp_rfc1337;
221extern int sysctl_tcp_abort_on_overflow;
222extern int sysctl_tcp_max_orphans;
223extern int sysctl_tcp_fack;
224extern int sysctl_tcp_reordering;
225extern int sysctl_tcp_ecn;
226extern int sysctl_tcp_dsack;
227extern int sysctl_tcp_mem[3];
228extern int sysctl_tcp_wmem[3];
229extern int sysctl_tcp_rmem[3];
230extern int sysctl_tcp_app_win;
231extern int sysctl_tcp_adv_win_scale;
232extern int sysctl_tcp_tw_reuse;
233extern int sysctl_tcp_frto;
234extern int sysctl_tcp_frto_response;
235extern int sysctl_tcp_low_latency;
236extern int sysctl_tcp_dma_copybreak;
237extern int sysctl_tcp_nometrics_save;
238extern int sysctl_tcp_moderate_rcvbuf;
239extern int sysctl_tcp_tso_win_divisor;
240extern int sysctl_tcp_abc;
241extern int sysctl_tcp_mtu_probing;
242extern int sysctl_tcp_base_mss;
243extern int sysctl_tcp_workaround_signed_windows;
244extern int sysctl_tcp_slow_start_after_idle;
245extern int sysctl_tcp_max_ssthresh;
246extern int sysctl_tcp_cookie_size;
247extern int sysctl_tcp_thin_linear_timeouts;
248extern int sysctl_tcp_thin_dupack;
249
250extern atomic_t tcp_memory_allocated;
251extern struct percpu_counter tcp_sockets_allocated;
252extern int tcp_memory_pressure;
253
254/*
255 * The next routines deal with comparing 32 bit unsigned ints
256 * and worry about wraparound (automatic with unsigned arithmetic).
257 */
258
259static inline int before(__u32 seq1, __u32 seq2)
260{
261        return (__s32)(seq1-seq2) < 0;
262}
263#define after(seq2, seq1) 	before(seq1, seq2)
264
265/* is s2<=s1<=s3 ? */
266static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
267{
268	return seq3 - seq2 >= seq1 - seq2;
269}
270
271static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
272{
273	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
274	int orphans = percpu_counter_read_positive(ocp);
275
276	if (orphans << shift > sysctl_tcp_max_orphans) {
277		orphans = percpu_counter_sum_positive(ocp);
278		if (orphans << shift > sysctl_tcp_max_orphans)
279			return true;
280	}
281
282	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283	    atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])
284		return true;
285	return false;
286}
287
288/* syncookies: remember time of last synqueue overflow */
289static inline void tcp_synq_overflow(struct sock *sk)
290{
291	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
292}
293
294/* syncookies: no recent synqueue overflow on this listening socket? */
295static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
296{
297	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
298	return time_after(jiffies, last_overflow + TCP_TIMEOUT_INIT);
299}
300
301extern struct proto tcp_prot;
302
303#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
304#define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
305#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
306#define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
307#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
308
309extern void tcp_v4_err(struct sk_buff *skb, u32);
310
311extern void tcp_shutdown (struct sock *sk, int how);
312
313extern int tcp_v4_rcv(struct sk_buff *skb);
314
315extern int tcp_v4_remember_stamp(struct sock *sk);
316extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
317extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
318		       size_t size);
319extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
320			size_t size, int flags);
321extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
322extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
323				 struct tcphdr *th, unsigned len);
324extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
325			       struct tcphdr *th, unsigned len);
326extern void tcp_rcv_space_adjust(struct sock *sk);
327extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
328extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
329extern void tcp_twsk_destructor(struct sock *sk);
330extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
331			       struct pipe_inode_info *pipe, size_t len,
332			       unsigned int flags);
333
334static inline void tcp_dec_quickack_mode(struct sock *sk,
335					 const unsigned int pkts)
336{
337	struct inet_connection_sock *icsk = inet_csk(sk);
338
339	if (icsk->icsk_ack.quick) {
340		if (pkts >= icsk->icsk_ack.quick) {
341			icsk->icsk_ack.quick = 0;
342			/* Leaving quickack mode we deflate ATO. */
343			icsk->icsk_ack.ato   = TCP_ATO_MIN;
344		} else
345			icsk->icsk_ack.quick -= pkts;
346	}
347}
348
349extern void tcp_enter_quickack_mode(struct sock *sk);
350
351#define	TCP_ECN_OK		1
352#define	TCP_ECN_QUEUE_CWR	2
353#define	TCP_ECN_DEMAND_CWR	4
354
355static __inline__ void
356TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
357{
358	if (sysctl_tcp_ecn && th->ece && th->cwr)
359		inet_rsk(req)->ecn_ok = 1;
360}
361
362enum tcp_tw_status {
363	TCP_TW_SUCCESS = 0,
364	TCP_TW_RST = 1,
365	TCP_TW_ACK = 2,
366	TCP_TW_SYN = 3
367};
368
369
370extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
371						     struct sk_buff *skb,
372						     const struct tcphdr *th);
373extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
374				   struct request_sock *req,
375				   struct request_sock **prev);
376extern int tcp_child_process(struct sock *parent, struct sock *child,
377			     struct sk_buff *skb);
378extern int tcp_use_frto(struct sock *sk);
379extern void tcp_enter_frto(struct sock *sk);
380extern void tcp_enter_loss(struct sock *sk, int how);
381extern void tcp_clear_retrans(struct tcp_sock *tp);
382extern void tcp_update_metrics(struct sock *sk);
383extern void tcp_close(struct sock *sk, long timeout);
384extern unsigned int tcp_poll(struct file * file, struct socket *sock,
385			     struct poll_table_struct *wait);
386extern int tcp_getsockopt(struct sock *sk, int level, int optname,
387			  char __user *optval, int __user *optlen);
388extern int tcp_setsockopt(struct sock *sk, int level, int optname,
389			  char __user *optval, unsigned int optlen);
390extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
391				 char __user *optval, int __user *optlen);
392extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
393				 char __user *optval, unsigned int optlen);
394extern void tcp_set_keepalive(struct sock *sk, int val);
395extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
396extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
397		       size_t len, int nonblock, int flags, int *addr_len);
398extern void tcp_parse_options(struct sk_buff *skb,
399			      struct tcp_options_received *opt_rx, u8 **hvpp,
400			      int estab);
401extern u8 *tcp_parse_md5sig_option(struct tcphdr *th);
402
403/*
404 *	TCP v4 functions exported for the inet6 API
405 */
406
407extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
408extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
409extern struct sock * tcp_create_openreq_child(struct sock *sk,
410					      struct request_sock *req,
411					      struct sk_buff *skb);
412extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
413					  struct request_sock *req,
414					  struct dst_entry *dst);
415extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
416extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
417			  int addr_len);
418extern int tcp_connect(struct sock *sk);
419extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
420					struct request_sock *req,
421					struct request_values *rvp);
422extern int tcp_disconnect(struct sock *sk, int flags);
423
424
425/* From syncookies.c */
426extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
427extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
428				    struct ip_options *opt);
429extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
430				     __u16 *mss);
431
432extern __u32 cookie_init_timestamp(struct request_sock *req);
433extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
434
435/* From net/ipv6/syncookies.c */
436extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
437extern __u32 cookie_v6_init_sequence(struct sock *sk, struct sk_buff *skb,
438				     __u16 *mss);
439
440/* tcp_output.c */
441
442extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
443				      int nonagle);
444extern int tcp_may_send_now(struct sock *sk);
445extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
446extern void tcp_retransmit_timer(struct sock *sk);
447extern void tcp_xmit_retransmit_queue(struct sock *);
448extern void tcp_simple_retransmit(struct sock *);
449extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
450extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
451
452extern void tcp_send_probe0(struct sock *);
453extern void tcp_send_partial(struct sock *);
454extern int tcp_write_wakeup(struct sock *);
455extern void tcp_send_fin(struct sock *sk);
456extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
457extern int tcp_send_synack(struct sock *);
458extern void tcp_push_one(struct sock *, unsigned int mss_now);
459extern void tcp_send_ack(struct sock *sk);
460extern void tcp_send_delayed_ack(struct sock *sk);
461
462/* tcp_input.c */
463extern void tcp_cwnd_application_limited(struct sock *sk);
464
465/* tcp_timer.c */
466extern void tcp_init_xmit_timers(struct sock *);
467static inline void tcp_clear_xmit_timers(struct sock *sk)
468{
469	inet_csk_clear_xmit_timers(sk);
470}
471
472extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
473extern unsigned int tcp_current_mss(struct sock *sk);
474
475/* Bound MSS / TSO packet size with the half of the window */
476static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
477{
478	int cutoff;
479
480	/* When peer uses tiny windows, there is no use in packetizing
481	 * to sub-MSS pieces for the sake of SWS or making sure there
482	 * are enough packets in the pipe for fast recovery.
483	 *
484	 * On the other hand, for extremely large MSS devices, handling
485	 * smaller than MSS windows in this way does make sense.
486	 */
487	if (tp->max_window >= 512)
488		cutoff = (tp->max_window >> 1);
489	else
490		cutoff = tp->max_window;
491
492	if (cutoff && pktsize > cutoff)
493		return max_t(int, cutoff, 68U - tp->tcp_header_len);
494	else
495		return pktsize;
496}
497
498/* tcp.c */
499extern void tcp_get_info(struct sock *, struct tcp_info *);
500
501/* Read 'sendfile()'-style from a TCP socket */
502typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
503				unsigned int, size_t);
504extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
505			 sk_read_actor_t recv_actor);
506
507extern void tcp_initialize_rcv_mss(struct sock *sk);
508
509extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
510extern int tcp_mss_to_mtu(struct sock *sk, int mss);
511extern void tcp_mtup_init(struct sock *sk);
512
513static inline void tcp_bound_rto(const struct sock *sk)
514{
515	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
516		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
517}
518
519static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
520{
521	return (tp->srtt >> 3) + tp->rttvar;
522}
523
524static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
525{
526	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
527			       ntohl(TCP_FLAG_ACK) |
528			       snd_wnd);
529}
530
531static inline void tcp_fast_path_on(struct tcp_sock *tp)
532{
533	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
534}
535
536static inline void tcp_fast_path_check(struct sock *sk)
537{
538	struct tcp_sock *tp = tcp_sk(sk);
539
540	if (skb_queue_empty(&tp->out_of_order_queue) &&
541	    tp->rcv_wnd &&
542	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
543	    !tp->urg_data)
544		tcp_fast_path_on(tp);
545}
546
547/* Compute the actual rto_min value */
548static inline u32 tcp_rto_min(struct sock *sk)
549{
550	struct dst_entry *dst = __sk_dst_get(sk);
551	u32 rto_min = TCP_RTO_MIN;
552
553	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
554		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
555	return rto_min;
556}
557
558/* Compute the actual receive window we are currently advertising.
559 * Rcv_nxt can be after the window if our peer push more data
560 * than the offered window.
561 */
562static inline u32 tcp_receive_window(const struct tcp_sock *tp)
563{
564	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
565
566	if (win < 0)
567		win = 0;
568	return (u32) win;
569}
570
571/* Choose a new window, without checks for shrinking, and without
572 * scaling applied to the result.  The caller does these things
573 * if necessary.  This is a "raw" window selection.
574 */
575extern u32 __tcp_select_window(struct sock *sk);
576
577/* TCP timestamps are only 32-bits, this causes a slight
578 * complication on 64-bit systems since we store a snapshot
579 * of jiffies in the buffer control blocks below.  We decided
580 * to use only the low 32-bits of jiffies and hide the ugly
581 * casts with the following macro.
582 */
583#define tcp_time_stamp		((__u32)(jiffies))
584
585#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
586
587#define TCPHDR_FIN 0x01
588#define TCPHDR_SYN 0x02
589#define TCPHDR_RST 0x04
590#define TCPHDR_PSH 0x08
591#define TCPHDR_ACK 0x10
592#define TCPHDR_URG 0x20
593#define TCPHDR_ECE 0x40
594#define TCPHDR_CWR 0x80
595
596struct tcp_skb_cb {
597	union {
598		struct inet_skb_parm	h4;
599#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
600		struct inet6_skb_parm	h6;
601#endif
602	} header;	/* For incoming frames		*/
603	__u32		seq;		/* Starting sequence number	*/
604	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
605	__u32		when;		/* used to compute rtt's	*/
606	__u8		flags;		/* TCP header flags.		*/
607	__u8		sacked;		/* State flags for SACK/FACK.	*/
608#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
609#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
610#define TCPCB_LOST		0x04	/* SKB is lost			*/
611#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
612
613#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
614#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
615
616	__u32		ack_seq;	/* Sequence number ACK'd	*/
617};
618
619#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
620
621/* Due to TSO, an SKB can be composed of multiple actual
622 * packets.  To keep these tracked properly, we use this.
623 */
624static inline int tcp_skb_pcount(const struct sk_buff *skb)
625{
626	return skb_shinfo(skb)->gso_segs;
627}
628
629/* This is valid iff tcp_skb_pcount() > 1. */
630static inline int tcp_skb_mss(const struct sk_buff *skb)
631{
632	return skb_shinfo(skb)->gso_size;
633}
634
635/* Events passed to congestion control interface */
636enum tcp_ca_event {
637	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
638	CA_EVENT_CWND_RESTART,	/* congestion window restart */
639	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
640	CA_EVENT_FRTO,		/* fast recovery timeout */
641	CA_EVENT_LOSS,		/* loss timeout */
642	CA_EVENT_FAST_ACK,	/* in sequence ack */
643	CA_EVENT_SLOW_ACK,	/* other ack */
644};
645
646/*
647 * Interface for adding new TCP congestion control handlers
648 */
649#define TCP_CA_NAME_MAX	16
650#define TCP_CA_MAX	128
651#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
652
653#define TCP_CONG_NON_RESTRICTED 0x1
654#define TCP_CONG_RTT_STAMP	0x2
655
656struct tcp_congestion_ops {
657	struct list_head	list;
658	unsigned long flags;
659
660	/* initialize private data (optional) */
661	void (*init)(struct sock *sk);
662	/* cleanup private data  (optional) */
663	void (*release)(struct sock *sk);
664
665	/* return slow start threshold (required) */
666	u32 (*ssthresh)(struct sock *sk);
667	/* lower bound for congestion window (optional) */
668	u32 (*min_cwnd)(const struct sock *sk);
669	/* do new cwnd calculation (required) */
670	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
671	/* call before changing ca_state (optional) */
672	void (*set_state)(struct sock *sk, u8 new_state);
673	/* call when cwnd event occurs (optional) */
674	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
675	/* new value of cwnd after loss (optional) */
676	u32  (*undo_cwnd)(struct sock *sk);
677	/* hook for packet ack accounting (optional) */
678	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
679	/* get info for inet_diag (optional) */
680	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
681
682	char 		name[TCP_CA_NAME_MAX];
683	struct module 	*owner;
684};
685
686extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
687extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
688
689extern void tcp_init_congestion_control(struct sock *sk);
690extern void tcp_cleanup_congestion_control(struct sock *sk);
691extern int tcp_set_default_congestion_control(const char *name);
692extern void tcp_get_default_congestion_control(char *name);
693extern void tcp_get_available_congestion_control(char *buf, size_t len);
694extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
695extern int tcp_set_allowed_congestion_control(char *allowed);
696extern int tcp_set_congestion_control(struct sock *sk, const char *name);
697extern void tcp_slow_start(struct tcp_sock *tp);
698extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
699
700extern struct tcp_congestion_ops tcp_init_congestion_ops;
701extern u32 tcp_reno_ssthresh(struct sock *sk);
702extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
703extern u32 tcp_reno_min_cwnd(const struct sock *sk);
704extern struct tcp_congestion_ops tcp_reno;
705
706static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
707{
708	struct inet_connection_sock *icsk = inet_csk(sk);
709
710	if (icsk->icsk_ca_ops->set_state)
711		icsk->icsk_ca_ops->set_state(sk, ca_state);
712	icsk->icsk_ca_state = ca_state;
713}
714
715static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
716{
717	const struct inet_connection_sock *icsk = inet_csk(sk);
718
719	if (icsk->icsk_ca_ops->cwnd_event)
720		icsk->icsk_ca_ops->cwnd_event(sk, event);
721}
722
723/* These functions determine how the current flow behaves in respect of SACK
724 * handling. SACK is negotiated with the peer, and therefore it can vary
725 * between different flows.
726 *
727 * tcp_is_sack - SACK enabled
728 * tcp_is_reno - No SACK
729 * tcp_is_fack - FACK enabled, implies SACK enabled
730 */
731static inline int tcp_is_sack(const struct tcp_sock *tp)
732{
733	return tp->rx_opt.sack_ok;
734}
735
736static inline int tcp_is_reno(const struct tcp_sock *tp)
737{
738	return !tcp_is_sack(tp);
739}
740
741static inline int tcp_is_fack(const struct tcp_sock *tp)
742{
743	return tp->rx_opt.sack_ok & 2;
744}
745
746static inline void tcp_enable_fack(struct tcp_sock *tp)
747{
748	tp->rx_opt.sack_ok |= 2;
749}
750
751static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
752{
753	return tp->sacked_out + tp->lost_out;
754}
755
756/* This determines how many packets are "in the network" to the best
757 * of our knowledge.  In many cases it is conservative, but where
758 * detailed information is available from the receiver (via SACK
759 * blocks etc.) we can make more aggressive calculations.
760 *
761 * Use this for decisions involving congestion control, use just
762 * tp->packets_out to determine if the send queue is empty or not.
763 *
764 * Read this equation as:
765 *
766 *	"Packets sent once on transmission queue" MINUS
767 *	"Packets left network, but not honestly ACKed yet" PLUS
768 *	"Packets fast retransmitted"
769 */
770static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
771{
772	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
773}
774
775#define TCP_INFINITE_SSTHRESH	0x7fffffff
776
777static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
778{
779	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
780}
781
782/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
783 * The exception is rate halving phase, when cwnd is decreasing towards
784 * ssthresh.
785 */
786static inline __u32 tcp_current_ssthresh(const struct sock *sk)
787{
788	const struct tcp_sock *tp = tcp_sk(sk);
789	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
790		return tp->snd_ssthresh;
791	else
792		return max(tp->snd_ssthresh,
793			   ((tp->snd_cwnd >> 1) +
794			    (tp->snd_cwnd >> 2)));
795}
796
797/* Use define here intentionally to get WARN_ON location shown at the caller */
798#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
799
800extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
801extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
802
803/* Slow start with delack produces 3 packets of burst, so that
804 * it is safe "de facto".  This will be the default - same as
805 * the default reordering threshold - but if reordering increases,
806 * we must be able to allow cwnd to burst at least this much in order
807 * to not pull it back when holes are filled.
808 */
809static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
810{
811	return tp->reordering;
812}
813
814/* Returns end sequence number of the receiver's advertised window */
815static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
816{
817	return tp->snd_una + tp->snd_wnd;
818}
819extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
820
821static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
822				       const struct sk_buff *skb)
823{
824	if (skb->len < mss)
825		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
826}
827
828static inline void tcp_check_probe_timer(struct sock *sk)
829{
830	struct tcp_sock *tp = tcp_sk(sk);
831	const struct inet_connection_sock *icsk = inet_csk(sk);
832
833	if (!tp->packets_out && !icsk->icsk_pending)
834		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
835					  icsk->icsk_rto, TCP_RTO_MAX);
836}
837
838static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
839{
840	tp->snd_wl1 = seq;
841}
842
843static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
844{
845	tp->snd_wl1 = seq;
846}
847
848/*
849 * Calculate(/check) TCP checksum
850 */
851static inline __sum16 tcp_v4_check(int len, __be32 saddr,
852				   __be32 daddr, __wsum base)
853{
854	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
855}
856
857static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
858{
859	return __skb_checksum_complete(skb);
860}
861
862static inline int tcp_checksum_complete(struct sk_buff *skb)
863{
864	return !skb_csum_unnecessary(skb) &&
865		__tcp_checksum_complete(skb);
866}
867
868/* Prequeue for VJ style copy to user, combined with checksumming. */
869
870static inline void tcp_prequeue_init(struct tcp_sock *tp)
871{
872	tp->ucopy.task = NULL;
873	tp->ucopy.len = 0;
874	tp->ucopy.memory = 0;
875	skb_queue_head_init(&tp->ucopy.prequeue);
876#ifdef CONFIG_NET_DMA
877	tp->ucopy.dma_chan = NULL;
878	tp->ucopy.wakeup = 0;
879	tp->ucopy.pinned_list = NULL;
880	tp->ucopy.dma_cookie = 0;
881#endif
882}
883
884/* Packet is added to VJ-style prequeue for processing in process
885 * context, if a reader task is waiting. Apparently, this exciting
886 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
887 * failed somewhere. Latency? Burstiness? Well, at least now we will
888 * see, why it failed. 8)8)				  --ANK
889 *
890 * NOTE: is this not too big to inline?
891 */
892static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
893{
894	struct tcp_sock *tp = tcp_sk(sk);
895
896	if (sysctl_tcp_low_latency || !tp->ucopy.task)
897		return 0;
898
899	__skb_queue_tail(&tp->ucopy.prequeue, skb);
900	tp->ucopy.memory += skb->truesize;
901	if (tp->ucopy.memory > sk->sk_rcvbuf) {
902		struct sk_buff *skb1;
903
904		BUG_ON(sock_owned_by_user(sk));
905
906		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
907			sk_backlog_rcv(sk, skb1);
908			NET_INC_STATS_BH(sock_net(sk),
909					 LINUX_MIB_TCPPREQUEUEDROPPED);
910		}
911
912		tp->ucopy.memory = 0;
913	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
914		wake_up_interruptible_sync_poll(sk_sleep(sk),
915					   POLLIN | POLLRDNORM | POLLRDBAND);
916		if (!inet_csk_ack_scheduled(sk))
917			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
918						  (3 * tcp_rto_min(sk)) / 4,
919						  TCP_RTO_MAX);
920	}
921	return 1;
922}
923
924
925#undef STATE_TRACE
926
927#ifdef STATE_TRACE
928static const char *statename[]={
929	"Unused","Established","Syn Sent","Syn Recv",
930	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
931	"Close Wait","Last ACK","Listen","Closing"
932};
933#endif
934extern void tcp_set_state(struct sock *sk, int state);
935
936extern void tcp_done(struct sock *sk);
937
938static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
939{
940	rx_opt->dsack = 0;
941	rx_opt->num_sacks = 0;
942}
943
944/* Determine a window scaling and initial window to offer. */
945extern void tcp_select_initial_window(int __space, __u32 mss,
946				      __u32 *rcv_wnd, __u32 *window_clamp,
947				      int wscale_ok, __u8 *rcv_wscale,
948				      __u32 init_rcv_wnd);
949
950static inline int tcp_win_from_space(int space)
951{
952	return sysctl_tcp_adv_win_scale<=0 ?
953		(space>>(-sysctl_tcp_adv_win_scale)) :
954		space - (space>>sysctl_tcp_adv_win_scale);
955}
956
957/* Note: caller must be prepared to deal with negative returns */
958static inline int tcp_space(const struct sock *sk)
959{
960	return tcp_win_from_space(sk->sk_rcvbuf -
961				  atomic_read(&sk->sk_rmem_alloc));
962}
963
964static inline int tcp_full_space(const struct sock *sk)
965{
966	return tcp_win_from_space(sk->sk_rcvbuf);
967}
968
969static inline void tcp_openreq_init(struct request_sock *req,
970				    struct tcp_options_received *rx_opt,
971				    struct sk_buff *skb)
972{
973	struct inet_request_sock *ireq = inet_rsk(req);
974
975	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
976	req->cookie_ts = 0;
977	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
978	req->mss = rx_opt->mss_clamp;
979	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
980	ireq->tstamp_ok = rx_opt->tstamp_ok;
981	ireq->sack_ok = rx_opt->sack_ok;
982	ireq->snd_wscale = rx_opt->snd_wscale;
983	ireq->wscale_ok = rx_opt->wscale_ok;
984	ireq->acked = 0;
985	ireq->ecn_ok = 0;
986	ireq->rmt_port = tcp_hdr(skb)->source;
987	ireq->loc_port = tcp_hdr(skb)->dest;
988}
989
990extern void tcp_enter_memory_pressure(struct sock *sk);
991
992static inline int keepalive_intvl_when(const struct tcp_sock *tp)
993{
994	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
995}
996
997static inline int keepalive_time_when(const struct tcp_sock *tp)
998{
999	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1000}
1001
1002static inline int keepalive_probes(const struct tcp_sock *tp)
1003{
1004	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1005}
1006
1007static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1008{
1009	const struct inet_connection_sock *icsk = &tp->inet_conn;
1010
1011	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1012			  tcp_time_stamp - tp->rcv_tstamp);
1013}
1014
1015static inline int tcp_fin_time(const struct sock *sk)
1016{
1017	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1018	const int rto = inet_csk(sk)->icsk_rto;
1019
1020	if (fin_timeout < (rto << 2) - (rto >> 1))
1021		fin_timeout = (rto << 2) - (rto >> 1);
1022
1023	return fin_timeout;
1024}
1025
1026static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1027				 int paws_win)
1028{
1029	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1030		return 1;
1031	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1032		return 1;
1033
1034	return 0;
1035}
1036
1037static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1038				  int rst)
1039{
1040	if (tcp_paws_check(rx_opt, 0))
1041		return 0;
1042
1043	/* RST segments are not recommended to carry timestamp,
1044	   and, if they do, it is recommended to ignore PAWS because
1045	   "their cleanup function should take precedence over timestamps."
1046	   Certainly, it is mistake. It is necessary to understand the reasons
1047	   of this constraint to relax it: if peer reboots, clock may go
1048	   out-of-sync and half-open connections will not be reset.
1049	   Actually, the problem would be not existing if all
1050	   the implementations followed draft about maintaining clock
1051	   via reboots. Linux-2.2 DOES NOT!
1052
1053	   However, we can relax time bounds for RST segments to MSL.
1054	 */
1055	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1056		return 0;
1057	return 1;
1058}
1059
1060#define TCP_CHECK_TIMER(sk) do { } while (0)
1061
1062static inline void tcp_mib_init(struct net *net)
1063{
1064	/* See RFC 2012 */
1065	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1066	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1067	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1068	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1069}
1070
1071/* from STCP */
1072static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1073{
1074	tp->lost_skb_hint = NULL;
1075	tp->scoreboard_skb_hint = NULL;
1076}
1077
1078static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1079{
1080	tcp_clear_retrans_hints_partial(tp);
1081	tp->retransmit_skb_hint = NULL;
1082}
1083
1084/* MD5 Signature */
1085struct crypto_hash;
1086
1087/* - key database */
1088struct tcp_md5sig_key {
1089	u8			*key;
1090	u8			keylen;
1091};
1092
1093struct tcp4_md5sig_key {
1094	struct tcp_md5sig_key	base;
1095	__be32			addr;
1096};
1097
1098struct tcp6_md5sig_key {
1099	struct tcp_md5sig_key	base;
1100	struct in6_addr		addr;
1101};
1102
1103/* - sock block */
1104struct tcp_md5sig_info {
1105	struct tcp4_md5sig_key	*keys4;
1106#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1107	struct tcp6_md5sig_key	*keys6;
1108	u32			entries6;
1109	u32			alloced6;
1110#endif
1111	u32			entries4;
1112	u32			alloced4;
1113};
1114
1115/* - pseudo header */
1116struct tcp4_pseudohdr {
1117	__be32		saddr;
1118	__be32		daddr;
1119	__u8		pad;
1120	__u8		protocol;
1121	__be16		len;
1122};
1123
1124struct tcp6_pseudohdr {
1125	struct in6_addr	saddr;
1126	struct in6_addr daddr;
1127	__be32		len;
1128	__be32		protocol;	/* including padding */
1129};
1130
1131union tcp_md5sum_block {
1132	struct tcp4_pseudohdr ip4;
1133#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1134	struct tcp6_pseudohdr ip6;
1135#endif
1136};
1137
1138/* - pool: digest algorithm, hash description and scratch buffer */
1139struct tcp_md5sig_pool {
1140	struct hash_desc	md5_desc;
1141	union tcp_md5sum_block	md5_blk;
1142};
1143
1144#define TCP_MD5SIG_MAXKEYS	(~(u32)0)	/* really?! */
1145
1146/* - functions */
1147extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1148			       struct sock *sk, struct request_sock *req,
1149			       struct sk_buff *skb);
1150extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1151						 struct sock *addr_sk);
1152extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1153			     u8 newkeylen);
1154extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1155
1156#ifdef CONFIG_TCP_MD5SIG
1157#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1158				 &(struct tcp_md5sig_key) {		 \
1159					.key = (twsk)->tw_md5_key,	 \
1160					.keylen = (twsk)->tw_md5_keylen, \
1161				} : NULL)
1162#else
1163#define tcp_twsk_md5_key(twsk)	NULL
1164#endif
1165
1166extern struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *);
1167extern void tcp_free_md5sig_pool(void);
1168
1169extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1170extern void tcp_put_md5sig_pool(void);
1171
1172extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, struct tcphdr *);
1173extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, struct sk_buff *,
1174				 unsigned header_len);
1175extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1176			    struct tcp_md5sig_key *key);
1177
1178/* write queue abstraction */
1179static inline void tcp_write_queue_purge(struct sock *sk)
1180{
1181	struct sk_buff *skb;
1182
1183	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1184		sk_wmem_free_skb(sk, skb);
1185	sk_mem_reclaim(sk);
1186	tcp_clear_all_retrans_hints(tcp_sk(sk));
1187}
1188
1189static inline struct sk_buff *tcp_write_queue_head(struct sock *sk)
1190{
1191	return skb_peek(&sk->sk_write_queue);
1192}
1193
1194static inline struct sk_buff *tcp_write_queue_tail(struct sock *sk)
1195{
1196	return skb_peek_tail(&sk->sk_write_queue);
1197}
1198
1199static inline struct sk_buff *tcp_write_queue_next(struct sock *sk, struct sk_buff *skb)
1200{
1201	return skb_queue_next(&sk->sk_write_queue, skb);
1202}
1203
1204static inline struct sk_buff *tcp_write_queue_prev(struct sock *sk, struct sk_buff *skb)
1205{
1206	return skb_queue_prev(&sk->sk_write_queue, skb);
1207}
1208
1209#define tcp_for_write_queue(skb, sk)					\
1210	skb_queue_walk(&(sk)->sk_write_queue, skb)
1211
1212#define tcp_for_write_queue_from(skb, sk)				\
1213	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1214
1215#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1216	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1217
1218static inline struct sk_buff *tcp_send_head(struct sock *sk)
1219{
1220	return sk->sk_send_head;
1221}
1222
1223static inline bool tcp_skb_is_last(const struct sock *sk,
1224				   const struct sk_buff *skb)
1225{
1226	return skb_queue_is_last(&sk->sk_write_queue, skb);
1227}
1228
1229static inline void tcp_advance_send_head(struct sock *sk, struct sk_buff *skb)
1230{
1231	if (tcp_skb_is_last(sk, skb))
1232		sk->sk_send_head = NULL;
1233	else
1234		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1235}
1236
1237static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1238{
1239	if (sk->sk_send_head == skb_unlinked)
1240		sk->sk_send_head = NULL;
1241}
1242
1243static inline void tcp_init_send_head(struct sock *sk)
1244{
1245	sk->sk_send_head = NULL;
1246}
1247
1248static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1249{
1250	__skb_queue_tail(&sk->sk_write_queue, skb);
1251}
1252
1253static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1254{
1255	__tcp_add_write_queue_tail(sk, skb);
1256
1257	/* Queue it, remembering where we must start sending. */
1258	if (sk->sk_send_head == NULL) {
1259		sk->sk_send_head = skb;
1260
1261		if (tcp_sk(sk)->highest_sack == NULL)
1262			tcp_sk(sk)->highest_sack = skb;
1263	}
1264}
1265
1266static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1267{
1268	__skb_queue_head(&sk->sk_write_queue, skb);
1269}
1270
1271/* Insert buff after skb on the write queue of sk.  */
1272static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1273						struct sk_buff *buff,
1274						struct sock *sk)
1275{
1276	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1277}
1278
1279/* Insert new before skb on the write queue of sk.  */
1280static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1281						  struct sk_buff *skb,
1282						  struct sock *sk)
1283{
1284	__skb_queue_before(&sk->sk_write_queue, skb, new);
1285
1286	if (sk->sk_send_head == skb)
1287		sk->sk_send_head = new;
1288}
1289
1290static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1291{
1292	__skb_unlink(skb, &sk->sk_write_queue);
1293}
1294
1295static inline int tcp_write_queue_empty(struct sock *sk)
1296{
1297	return skb_queue_empty(&sk->sk_write_queue);
1298}
1299
1300static inline void tcp_push_pending_frames(struct sock *sk)
1301{
1302	if (tcp_send_head(sk)) {
1303		struct tcp_sock *tp = tcp_sk(sk);
1304
1305		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1306	}
1307}
1308
1309/* Start sequence of the highest skb with SACKed bit, valid only if
1310 * sacked > 0 or when the caller has ensured validity by itself.
1311 */
1312static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1313{
1314	if (!tp->sacked_out)
1315		return tp->snd_una;
1316
1317	if (tp->highest_sack == NULL)
1318		return tp->snd_nxt;
1319
1320	return TCP_SKB_CB(tp->highest_sack)->seq;
1321}
1322
1323static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1324{
1325	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1326						tcp_write_queue_next(sk, skb);
1327}
1328
1329static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1330{
1331	return tcp_sk(sk)->highest_sack;
1332}
1333
1334static inline void tcp_highest_sack_reset(struct sock *sk)
1335{
1336	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1337}
1338
1339/* Called when old skb is about to be deleted (to be combined with new skb) */
1340static inline void tcp_highest_sack_combine(struct sock *sk,
1341					    struct sk_buff *old,
1342					    struct sk_buff *new)
1343{
1344	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1345		tcp_sk(sk)->highest_sack = new;
1346}
1347
1348/* Determines whether this is a thin stream (which may suffer from
1349 * increased latency). Used to trigger latency-reducing mechanisms.
1350 */
1351static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1352{
1353	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1354}
1355
1356/* /proc */
1357enum tcp_seq_states {
1358	TCP_SEQ_STATE_LISTENING,
1359	TCP_SEQ_STATE_OPENREQ,
1360	TCP_SEQ_STATE_ESTABLISHED,
1361	TCP_SEQ_STATE_TIME_WAIT,
1362};
1363
1364struct tcp_seq_afinfo {
1365	char			*name;
1366	sa_family_t		family;
1367	struct file_operations	seq_fops;
1368	struct seq_operations	seq_ops;
1369};
1370
1371struct tcp_iter_state {
1372	struct seq_net_private	p;
1373	sa_family_t		family;
1374	enum tcp_seq_states	state;
1375	struct sock		*syn_wait_sk;
1376	int			bucket, offset, sbucket, num, uid;
1377	loff_t			last_pos;
1378};
1379
1380extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1381extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1382
1383extern struct request_sock_ops tcp_request_sock_ops;
1384extern struct request_sock_ops tcp6_request_sock_ops;
1385
1386extern void tcp_v4_destroy_sock(struct sock *sk);
1387
1388extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1389extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features);
1390extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1391					struct sk_buff *skb);
1392extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1393					 struct sk_buff *skb);
1394extern int tcp_gro_complete(struct sk_buff *skb);
1395extern int tcp4_gro_complete(struct sk_buff *skb);
1396
1397#ifdef CONFIG_PROC_FS
1398extern int tcp4_proc_init(void);
1399extern void tcp4_proc_exit(void);
1400#endif
1401
1402/* TCP af-specific functions */
1403struct tcp_sock_af_ops {
1404#ifdef CONFIG_TCP_MD5SIG
1405	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1406						struct sock *addr_sk);
1407	int			(*calc_md5_hash) (char *location,
1408						  struct tcp_md5sig_key *md5,
1409						  struct sock *sk,
1410						  struct request_sock *req,
1411						  struct sk_buff *skb);
1412	int			(*md5_add) (struct sock *sk,
1413					    struct sock *addr_sk,
1414					    u8 *newkey,
1415					    u8 len);
1416	int			(*md5_parse) (struct sock *sk,
1417					      char __user *optval,
1418					      int optlen);
1419#endif
1420};
1421
1422struct tcp_request_sock_ops {
1423#ifdef CONFIG_TCP_MD5SIG
1424	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1425						struct request_sock *req);
1426	int			(*calc_md5_hash) (char *location,
1427						  struct tcp_md5sig_key *md5,
1428						  struct sock *sk,
1429						  struct request_sock *req,
1430						  struct sk_buff *skb);
1431#endif
1432};
1433
1434/* Using SHA1 for now, define some constants.
1435 */
1436#define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1437#define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1438#define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1439
1440extern int tcp_cookie_generator(u32 *bakery);
1441
1442/**
1443 *	struct tcp_cookie_values - each socket needs extra space for the
1444 *	cookies, together with (optional) space for any SYN data.
1445 *
1446 *	A tcp_sock contains a pointer to the current value, and this is
1447 *	cloned to the tcp_timewait_sock.
1448 *
1449 * @cookie_pair:	variable data from the option exchange.
1450 *
1451 * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1452 *			indicates default (sysctl_tcp_cookie_size).
1453 *			After cookie sent, remembers size of cookie.
1454 *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1455 *
1456 * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1457 *			constant payload is specified (@s_data_constant),
1458 *			holds its length instead.
1459 *			Range 0 to TCP_MSS_DESIRED.
1460 *
1461 * @s_data_payload:	constant data that is to be included in the
1462 *			payload of SYN or SYNACK segments when the
1463 *			cookie option is present.
1464 */
1465struct tcp_cookie_values {
1466	struct kref	kref;
1467	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1468	u8		cookie_pair_size;
1469	u8		cookie_desired;
1470	u16		s_data_desired:11,
1471			s_data_constant:1,
1472			s_data_in:1,
1473			s_data_out:1,
1474			s_data_unused:2;
1475	u8		s_data_payload[0];
1476};
1477
1478static inline void tcp_cookie_values_release(struct kref *kref)
1479{
1480	kfree(container_of(kref, struct tcp_cookie_values, kref));
1481}
1482
1483/* The length of constant payload data.  Note that s_data_desired is
1484 * overloaded, depending on s_data_constant: either the length of constant
1485 * data (returned here) or the limit on variable data.
1486 */
1487static inline int tcp_s_data_size(const struct tcp_sock *tp)
1488{
1489	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1490		? tp->cookie_values->s_data_desired
1491		: 0;
1492}
1493
1494/**
1495 *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1496 *
1497 *	As tcp_request_sock has already been extended in other places, the
1498 *	only remaining method is to pass stack values along as function
1499 *	parameters.  These parameters are not needed after sending SYNACK.
1500 *
1501 * @cookie_bakery:	cryptographic secret and message workspace.
1502 *
1503 * @cookie_plus:	bytes in authenticator/cookie option, copied from
1504 *			struct tcp_options_received (above).
1505 */
1506struct tcp_extend_values {
1507	struct request_values		rv;
1508	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1509	u8				cookie_plus:6,
1510					cookie_out_never:1,
1511					cookie_in_always:1;
1512};
1513
1514static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1515{
1516	return (struct tcp_extend_values *)rvp;
1517}
1518
1519extern void tcp_v4_init(void);
1520extern void tcp_init(void);
1521
1522#endif	/* _TCP_H */
1523