• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/include/math-emu/
1/* Software floating-point emulation. Common operations.
2   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
3   This file is part of the GNU C Library.
4   Contributed by Richard Henderson (rth@cygnus.com),
5		  Jakub Jelinek (jj@ultra.linux.cz),
6		  David S. Miller (davem@redhat.com) and
7		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
8
9   The GNU C Library is free software; you can redistribute it and/or
10   modify it under the terms of the GNU Library General Public License as
11   published by the Free Software Foundation; either version 2 of the
12   License, or (at your option) any later version.
13
14   The GNU C Library is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17   Library General Public License for more details.
18
19   You should have received a copy of the GNU Library General Public
20   License along with the GNU C Library; see the file COPYING.LIB.  If
21   not, write to the Free Software Foundation, Inc.,
22   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
23
24#ifndef __MATH_EMU_OP_COMMON_H__
25#define __MATH_EMU_OP_COMMON_H__
26
27#define _FP_DECL(wc, X)			\
28  _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0;	\
29  _FP_FRAC_DECL_##wc(X)
30
31/*
32 * Finish truly unpacking a native fp value by classifying the kind
33 * of fp value and normalizing both the exponent and the fraction.
34 */
35
36#define _FP_UNPACK_CANONICAL(fs, wc, X)					\
37do {									\
38  switch (X##_e)							\
39  {									\
40  default:								\
41    _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs;			\
42    _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\
43    X##_e -= _FP_EXPBIAS_##fs;						\
44    X##_c = FP_CLS_NORMAL;						\
45    break;								\
46									\
47  case 0:								\
48    if (_FP_FRAC_ZEROP_##wc(X))						\
49      X##_c = FP_CLS_ZERO;						\
50    else								\
51      {									\
52	/* a denormalized number */					\
53	_FP_I_TYPE _shift;						\
54	_FP_FRAC_CLZ_##wc(_shift, X);					\
55	_shift -= _FP_FRACXBITS_##fs;					\
56	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\
57	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\
58	X##_c = FP_CLS_NORMAL;						\
59	FP_SET_EXCEPTION(FP_EX_DENORM);					\
60	if (FP_DENORM_ZERO)						\
61	  {								\
62	    FP_SET_EXCEPTION(FP_EX_INEXACT);				\
63	    X##_c = FP_CLS_ZERO;					\
64	  }								\
65      }									\
66    break;								\
67									\
68  case _FP_EXPMAX_##fs:							\
69    if (_FP_FRAC_ZEROP_##wc(X))						\
70      X##_c = FP_CLS_INF;						\
71    else								\
72      {									\
73	X##_c = FP_CLS_NAN;						\
74	/* Check for signaling NaN */					\
75	if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))		\
76	  FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN);		\
77      }									\
78    break;								\
79  }									\
80} while (0)
81
82/*
83 * Before packing the bits back into the native fp result, take care
84 * of such mundane things as rounding and overflow.  Also, for some
85 * kinds of fp values, the original parts may not have been fully
86 * extracted -- but that is ok, we can regenerate them now.
87 */
88
89#define _FP_PACK_CANONICAL(fs, wc, X)				\
90do {								\
91  switch (X##_c)						\
92  {								\
93  case FP_CLS_NORMAL:						\
94    X##_e += _FP_EXPBIAS_##fs;					\
95    if (X##_e > 0)						\
96      {								\
97	_FP_ROUND(wc, X);					\
98	if (_FP_FRAC_OVERP_##wc(fs, X))				\
99	  {							\
100	    _FP_FRAC_CLEAR_OVERP_##wc(fs, X);			\
101	    X##_e++;						\
102	  }							\
103	_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\
104	if (X##_e >= _FP_EXPMAX_##fs)				\
105	  {							\
106	    /* overflow */					\
107	    switch (FP_ROUNDMODE)				\
108	      {							\
109	      case FP_RND_NEAREST:				\
110		X##_c = FP_CLS_INF;				\
111		break;						\
112	      case FP_RND_PINF:					\
113		if (!X##_s) X##_c = FP_CLS_INF;			\
114		break;						\
115	      case FP_RND_MINF:					\
116		if (X##_s) X##_c = FP_CLS_INF;			\
117		break;						\
118	      }							\
119	    if (X##_c == FP_CLS_INF)				\
120	      {							\
121		/* Overflow to infinity */			\
122		X##_e = _FP_EXPMAX_##fs;			\
123		_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
124	      }							\
125	    else						\
126	      {							\
127		/* Overflow to maximum normal */		\
128		X##_e = _FP_EXPMAX_##fs - 1;			\
129		_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc);		\
130	      }							\
131	    FP_SET_EXCEPTION(FP_EX_OVERFLOW);			\
132            FP_SET_EXCEPTION(FP_EX_INEXACT);			\
133	  }							\
134      }								\
135    else							\
136      {								\
137	/* we've got a denormalized number */			\
138	X##_e = -X##_e + 1;					\
139	if (X##_e <= _FP_WFRACBITS_##fs)			\
140	  {							\
141	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\
142	    if (_FP_FRAC_HIGH_##fs(X)				\
143		& (_FP_OVERFLOW_##fs >> 1))			\
144	      {							\
145	        X##_e = 1;					\
146	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
147	      }							\
148	    else						\
149	      {							\
150		_FP_ROUND(wc, X);				\
151		if (_FP_FRAC_HIGH_##fs(X)			\
152		   & (_FP_OVERFLOW_##fs >> 1))			\
153		  {						\
154		    X##_e = 1;					\
155		    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
156		    FP_SET_EXCEPTION(FP_EX_INEXACT);		\
157		  }						\
158		else						\
159		  {						\
160		    X##_e = 0;					\
161		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);		\
162		  }						\
163	      }							\
164	    if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) ||		\
165		(FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW))	\
166		FP_SET_EXCEPTION(FP_EX_UNDERFLOW);		\
167	  }							\
168	else							\
169	  {							\
170	    /* underflow to zero */				\
171	    X##_e = 0;						\
172	    if (!_FP_FRAC_ZEROP_##wc(X))			\
173	      {							\
174	        _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);		\
175	        _FP_ROUND(wc, X);				\
176	        _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS);	\
177	      }							\
178	    FP_SET_EXCEPTION(FP_EX_UNDERFLOW);			\
179	  }							\
180      }								\
181    break;							\
182								\
183  case FP_CLS_ZERO:						\
184    X##_e = 0;							\
185    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
186    break;							\
187								\
188  case FP_CLS_INF:						\
189    X##_e = _FP_EXPMAX_##fs;					\
190    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
191    break;							\
192								\
193  case FP_CLS_NAN:						\
194    X##_e = _FP_EXPMAX_##fs;					\
195    if (!_FP_KEEPNANFRACP)					\
196      {								\
197	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\
198	X##_s = _FP_NANSIGN_##fs;				\
199      }								\
200    else							\
201      _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs;		\
202    break;							\
203  }								\
204} while (0)
205
206/* This one accepts raw argument and not cooked,  returns
207 * 1 if X is a signaling NaN.
208 */
209#define _FP_ISSIGNAN(fs, wc, X)					\
210({								\
211  int __ret = 0;						\
212  if (X##_e == _FP_EXPMAX_##fs)					\
213    {								\
214      if (!_FP_FRAC_ZEROP_##wc(X)				\
215	  && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
216	__ret = 1;						\
217    }								\
218  __ret;							\
219})
220
221
222
223
224
225/*
226 * Main addition routine.  The input values should be cooked.
227 */
228
229#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP)				     \
230do {									     \
231  switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \
232  {									     \
233  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \
234    {									     \
235      /* shift the smaller number so that its exponent matches the larger */ \
236      _FP_I_TYPE diff = X##_e - Y##_e;					     \
237									     \
238      if (diff < 0)							     \
239	{								     \
240	  diff = -diff;							     \
241	  if (diff <= _FP_WFRACBITS_##fs)				     \
242	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \
243	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \
244	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \
245	  R##_e = Y##_e;						     \
246	}								     \
247      else								     \
248	{								     \
249	  if (diff > 0)							     \
250	    {								     \
251	      if (diff <= _FP_WFRACBITS_##fs)				     \
252	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \
253	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \
254	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \
255	    }								     \
256	  R##_e = X##_e;						     \
257	}								     \
258									     \
259      R##_c = FP_CLS_NORMAL;						     \
260									     \
261      if (X##_s == Y##_s)						     \
262	{								     \
263	  R##_s = X##_s;						     \
264	  _FP_FRAC_ADD_##wc(R, X, Y);					     \
265	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \
266	    {								     \
267	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \
268	      R##_e++;							     \
269	    }								     \
270	}								     \
271      else								     \
272	{								     \
273	  R##_s = X##_s;						     \
274	  _FP_FRAC_SUB_##wc(R, X, Y);					     \
275	  if (_FP_FRAC_ZEROP_##wc(R))					     \
276	    {								     \
277	      /* return an exact zero */				     \
278	      if (FP_ROUNDMODE == FP_RND_MINF)				     \
279		R##_s |= Y##_s;						     \
280	      else							     \
281		R##_s &= Y##_s;						     \
282	      R##_c = FP_CLS_ZERO;					     \
283	    }								     \
284	  else								     \
285	    {								     \
286	      if (_FP_FRAC_NEGP_##wc(R))				     \
287		{							     \
288		  _FP_FRAC_SUB_##wc(R, Y, X);				     \
289		  R##_s = Y##_s;					     \
290		}							     \
291									     \
292	      /* renormalize after subtraction */			     \
293	      _FP_FRAC_CLZ_##wc(diff, R);				     \
294	      diff -= _FP_WFRACXBITS_##fs;				     \
295	      if (diff)							     \
296		{							     \
297		  R##_e -= diff;					     \
298		  _FP_FRAC_SLL_##wc(R, diff);				     \
299		}							     \
300	    }								     \
301	}								     \
302      break;								     \
303    }									     \
304									     \
305  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \
306    _FP_CHOOSENAN(fs, wc, R, X, Y, OP);					     \
307    break;								     \
308									     \
309  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \
310    R##_e = X##_e;							     \
311  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \
312  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \
313  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \
314    _FP_FRAC_COPY_##wc(R, X);						     \
315    R##_s = X##_s;							     \
316    R##_c = X##_c;							     \
317    break;								     \
318									     \
319  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \
320    R##_e = Y##_e;							     \
321  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \
322  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \
323  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \
324    _FP_FRAC_COPY_##wc(R, Y);						     \
325    R##_s = Y##_s;							     \
326    R##_c = Y##_c;							     \
327    break;								     \
328									     \
329  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \
330    if (X##_s != Y##_s)							     \
331      {									     \
332	/* +INF + -INF => NAN */					     \
333	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \
334	R##_s = _FP_NANSIGN_##fs;					     \
335	R##_c = FP_CLS_NAN;						     \
336	FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI);		     \
337	break;								     \
338      }									     \
339    /* FALLTHRU */							     \
340									     \
341  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \
342  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \
343    R##_s = X##_s;							     \
344    R##_c = FP_CLS_INF;							     \
345    break;								     \
346									     \
347  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \
348  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \
349    R##_s = Y##_s;							     \
350    R##_c = FP_CLS_INF;							     \
351    break;								     \
352									     \
353  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \
354    /* make sure the sign is correct */					     \
355    if (FP_ROUNDMODE == FP_RND_MINF)					     \
356      R##_s = X##_s | Y##_s;						     \
357    else								     \
358      R##_s = X##_s & Y##_s;						     \
359    R##_c = FP_CLS_ZERO;						     \
360    break;								     \
361									     \
362  default:								     \
363    abort();								     \
364  }									     \
365} while (0)
366
367#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
368#define _FP_SUB(fs, wc, R, X, Y)					     \
369  do {									     \
370    if (Y##_c != FP_CLS_NAN) Y##_s ^= 1;				     \
371    _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-');				     \
372  } while (0)
373
374
375
376#define _FP_NEG(fs, wc, R, X)		\
377  do {					\
378    _FP_FRAC_COPY_##wc(R, X);		\
379    R##_c = X##_c;			\
380    R##_e = X##_e;			\
381    R##_s = 1 ^ X##_s;			\
382  } while (0)
383
384
385/*
386 * Main multiplication routine.  The input values should be cooked.
387 */
388
389#define _FP_MUL(fs, wc, R, X, Y)			\
390do {							\
391  R##_s = X##_s ^ Y##_s;				\
392  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
393  {							\
394  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
395    R##_c = FP_CLS_NORMAL;				\
396    R##_e = X##_e + Y##_e + 1;				\
397							\
398    _FP_MUL_MEAT_##fs(R,X,Y);				\
399							\
400    if (_FP_FRAC_OVERP_##wc(fs, R))			\
401      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\
402    else						\
403      R##_e--;						\
404    break;						\
405							\
406  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
407    _FP_CHOOSENAN(fs, wc, R, X, Y, '*');		\
408    break;						\
409							\
410  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
411  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
412  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
413    R##_s = X##_s;					\
414							\
415  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
416  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
417  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
418  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
419    _FP_FRAC_COPY_##wc(R, X);				\
420    R##_c = X##_c;					\
421    break;						\
422							\
423  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
424  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
425  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
426    R##_s = Y##_s;					\
427							\
428  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
429  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
430    _FP_FRAC_COPY_##wc(R, Y);				\
431    R##_c = Y##_c;					\
432    break;						\
433							\
434  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
435  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
436    R##_s = _FP_NANSIGN_##fs;				\
437    R##_c = FP_CLS_NAN;					\
438    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
439    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
440    break;						\
441							\
442  default:						\
443    abort();						\
444  }							\
445} while (0)
446
447
448/*
449 * Main division routine.  The input values should be cooked.
450 */
451
452#define _FP_DIV(fs, wc, R, X, Y)			\
453do {							\
454  R##_s = X##_s ^ Y##_s;				\
455  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
456  {							\
457  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
458    R##_c = FP_CLS_NORMAL;				\
459    R##_e = X##_e - Y##_e;				\
460							\
461    _FP_DIV_MEAT_##fs(R,X,Y);				\
462    break;						\
463							\
464  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
465    _FP_CHOOSENAN(fs, wc, R, X, Y, '/');		\
466    break;						\
467							\
468  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
469  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
470  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
471    R##_s = X##_s;					\
472    _FP_FRAC_COPY_##wc(R, X);				\
473    R##_c = X##_c;					\
474    break;						\
475							\
476  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
477  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
478  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
479    R##_s = Y##_s;					\
480    _FP_FRAC_COPY_##wc(R, Y);				\
481    R##_c = Y##_c;					\
482    break;						\
483							\
484  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
485  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
486  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
487    R##_c = FP_CLS_ZERO;				\
488    break;						\
489							\
490  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
491    FP_SET_EXCEPTION(FP_EX_DIVZERO);			\
492  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
493  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
494    R##_c = FP_CLS_INF;					\
495    break;						\
496							\
497  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
498    R##_s = _FP_NANSIGN_##fs;				\
499    R##_c = FP_CLS_NAN;					\
500    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
501    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
502    break;						\
503							\
504  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
505    R##_s = _FP_NANSIGN_##fs;				\
506    R##_c = FP_CLS_NAN;					\
507    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
508    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
509    break;						\
510							\
511  default:						\
512    abort();						\
513  }							\
514} while (0)
515
516
517/*
518 * Main differential comparison routine.  The inputs should be raw not
519 * cooked.  The return is -1,0,1 for normal values, 2 otherwise.
520 */
521
522#define _FP_CMP(fs, wc, ret, X, Y, un)					\
523  do {									\
524    /* NANs are unordered */						\
525    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\
526	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\
527      {									\
528	ret = un;							\
529      }									\
530    else								\
531      {									\
532	int __is_zero_x;						\
533	int __is_zero_y;						\
534									\
535	__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\
536	__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\
537									\
538	if (__is_zero_x && __is_zero_y)					\
539		ret = 0;						\
540	else if (__is_zero_x)						\
541		ret = Y##_s ? 1 : -1;					\
542	else if (__is_zero_y)						\
543		ret = X##_s ? -1 : 1;					\
544	else if (X##_s != Y##_s)					\
545	  ret = X##_s ? -1 : 1;						\
546	else if (X##_e > Y##_e)						\
547	  ret = X##_s ? -1 : 1;						\
548	else if (X##_e < Y##_e)						\
549	  ret = X##_s ? 1 : -1;						\
550	else if (_FP_FRAC_GT_##wc(X, Y))				\
551	  ret = X##_s ? -1 : 1;						\
552	else if (_FP_FRAC_GT_##wc(Y, X))				\
553	  ret = X##_s ? 1 : -1;						\
554	else								\
555	  ret = 0;							\
556      }									\
557  } while (0)
558
559
560/* Simplification for strict equality.  */
561
562#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \
563  do {									  \
564    /* NANs are unordered */						  \
565    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \
566	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \
567      {									  \
568	ret = 1;							  \
569      }									  \
570    else								  \
571      {									  \
572	ret = !(X##_e == Y##_e						  \
573		&& _FP_FRAC_EQ_##wc(X, Y)				  \
574		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
575      }									  \
576  } while (0)
577
578/*
579 * Main square root routine.  The input value should be cooked.
580 */
581
582#define _FP_SQRT(fs, wc, R, X)						\
583do {									\
584    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\
585    _FP_W_TYPE q;							\
586    switch (X##_c)							\
587    {									\
588    case FP_CLS_NAN:							\
589	_FP_FRAC_COPY_##wc(R, X);					\
590	R##_s = X##_s;							\
591    	R##_c = FP_CLS_NAN;						\
592    	break;								\
593    case FP_CLS_INF:							\
594    	if (X##_s)							\
595    	  {								\
596    	    R##_s = _FP_NANSIGN_##fs;					\
597	    R##_c = FP_CLS_NAN; /* NAN */				\
598	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
599	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
600    	  }								\
601    	else								\
602    	  {								\
603    	    R##_s = 0;							\
604    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\
605    	  }								\
606    	break;								\
607    case FP_CLS_ZERO:							\
608	R##_s = X##_s;							\
609	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\
610	break;								\
611    case FP_CLS_NORMAL:							\
612    	R##_s = 0;							\
613        if (X##_s)							\
614          {								\
615	    R##_c = FP_CLS_NAN; /* sNAN */				\
616	    R##_s = _FP_NANSIGN_##fs;					\
617	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
618	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
619	    break;							\
620          }								\
621    	R##_c = FP_CLS_NORMAL;						\
622        if (X##_e & 1)							\
623          _FP_FRAC_SLL_##wc(X, 1);					\
624        R##_e = X##_e >> 1;						\
625        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\
626        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\
627        q = _FP_OVERFLOW_##fs >> 1;					\
628        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\
629    }									\
630  } while (0)
631
632/*
633 * Convert from FP to integer
634 */
635
636/* RSIGNED can have following values:
637 * 0:  the number is required to be 0..(2^rsize)-1, if not, NV is set plus
638 *     the result is either 0 or (2^rsize)-1 depending on the sign in such case.
639 * 1:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
640 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
641 *     on the sign in such case.
642 * 2:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
643 *     set plus the result is truncated to fit into destination.
644 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
645 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
646 *     on the sign in such case.
647 */
648#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)				\
649  do {										\
650    switch (X##_c)								\
651      {										\
652      case FP_CLS_NORMAL:							\
653	if (X##_e < 0)								\
654	  {									\
655	    FP_SET_EXCEPTION(FP_EX_INEXACT);					\
656	  case FP_CLS_ZERO:							\
657	    r = 0;								\
658	  }									\
659	else if (X##_e >= rsize - (rsigned > 0 || X##_s)			\
660		 || (!rsigned && X##_s))					\
661	  {	/* overflow */							\
662	  case FP_CLS_NAN:                                                      \
663	  case FP_CLS_INF:							\
664	    if (rsigned == 2)							\
665	      {									\
666		if (X##_c != FP_CLS_NORMAL					\
667		    || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs)			\
668		  r = 0;							\
669		else								\
670		  {								\
671		    _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
672		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
673		  }								\
674	      }									\
675	    else if (rsigned)							\
676	      {									\
677		r = 1;								\
678		r <<= rsize - 1;						\
679		r -= 1 - X##_s;							\
680	      }									\
681	    else								\
682	      {									\
683		r = 0;								\
684		if (X##_s)							\
685		  r = ~r;							\
686	      }									\
687	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
688	  }									\
689	else									\
690	  {									\
691	    if (_FP_W_TYPE_SIZE*wc < rsize)					\
692	      {									\
693		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
694		r <<= X##_e - _FP_WFRACBITS_##fs;				\
695	      }									\
696	    else								\
697	      {									\
698		if (X##_e >= _FP_WFRACBITS_##fs)				\
699		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
700		else if (X##_e < _FP_WFRACBITS_##fs - 1)			\
701		  {								\
702		    _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2),	\
703				      _FP_WFRACBITS_##fs);			\
704		    if (_FP_FRAC_LOW_##wc(X) & 1)				\
705		      FP_SET_EXCEPTION(FP_EX_INEXACT);				\
706		    _FP_FRAC_SRL_##wc(X, 1);					\
707		  }								\
708		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
709	      }									\
710	    if (rsigned && X##_s)						\
711	      r = -r;								\
712	  }									\
713	break;									\
714      }										\
715  } while (0)
716
717#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned)				\
718  do {										\
719    r = 0;									\
720    switch (X##_c)								\
721      {										\
722      case FP_CLS_NORMAL:							\
723	if (X##_e >= _FP_FRACBITS_##fs - 1)					\
724	  {									\
725	    if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs)				\
726	      {									\
727		if (X##_e >= _FP_WFRACBITS_##fs - 1)				\
728		  {								\
729		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
730		    r <<= X##_e - _FP_WFRACBITS_##fs + 1;			\
731		  }								\
732		else								\
733		  {								\
734		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e			\
735				      + _FP_FRACBITS_##fs - 1);			\
736		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
737		  }								\
738	      }									\
739	  }									\
740	else									\
741	  {									\
742	    if (X##_e <= -_FP_WORKBITS - 1)					\
743	      _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);				\
744	    else								\
745	      _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e,		\
746				_FP_WFRACBITS_##fs);				\
747	    _FP_ROUND(wc, X);							\
748	    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);					\
749	    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
750	  }									\
751	if (rsigned && X##_s)							\
752	  r = -r;								\
753	if (X##_e >= rsize - (rsigned > 0 || X##_s)				\
754	    || (!rsigned && X##_s))						\
755	  {	/* overflow */							\
756	  case FP_CLS_NAN:                                                      \
757	  case FP_CLS_INF:							\
758	    if (!rsigned)							\
759	      {									\
760		r = 0;								\
761		if (X##_s)							\
762		  r = ~r;							\
763	      }									\
764	    else if (rsigned != 2)						\
765	      {									\
766		r = 1;								\
767		r <<= rsize - 1;						\
768		r -= 1 - X##_s;							\
769	      }									\
770	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
771	  }									\
772	break;									\
773      case FP_CLS_ZERO:								\
774        break;									\
775      }										\
776  } while (0)
777
778#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\
779  do {									\
780    if (r)								\
781      {									\
782        unsigned rtype ur_;						\
783	X##_c = FP_CLS_NORMAL;						\
784									\
785	if ((X##_s = (r < 0)))						\
786	  ur_ = (unsigned rtype) -r;					\
787	else								\
788	  ur_ = (unsigned rtype) r;					\
789	if (rsize <= _FP_W_TYPE_SIZE)					\
790	  __FP_CLZ(X##_e, ur_);						\
791	else								\
792	  __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), 	\
793		     (_FP_W_TYPE)ur_);					\
794	if (rsize < _FP_W_TYPE_SIZE)					\
795		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\
796	X##_e = rsize - X##_e - 1;					\
797									\
798	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e)	\
799	  __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
800	_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize);			\
801	if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0)			\
802	  _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));	\
803      }									\
804    else								\
805      {									\
806	X##_c = FP_CLS_ZERO, X##_s = 0;					\
807      }									\
808  } while (0)
809
810
811#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\
812  do {							\
813    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\
814    D##_e = S##_e;					\
815    D##_c = S##_c;					\
816    D##_s = S##_s;					\
817  } while (0)
818
819/*
820 * Helper primitives.
821 */
822
823/* Count leading zeros in a word.  */
824
825#ifndef __FP_CLZ
826#if _FP_W_TYPE_SIZE < 64
827/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
828#define __FP_CLZ(r, x)				\
829  do {						\
830    _FP_W_TYPE _t = (x);			\
831    r = _FP_W_TYPE_SIZE - 1;			\
832    if (_t > 0xffff) r -= 16;			\
833    if (_t > 0xffff) _t >>= 16;			\
834    if (_t > 0xff) r -= 8;			\
835    if (_t > 0xff) _t >>= 8;			\
836    if (_t & 0xf0) r -= 4;			\
837    if (_t & 0xf0) _t >>= 4;			\
838    if (_t & 0xc) r -= 2;			\
839    if (_t & 0xc) _t >>= 2;			\
840    if (_t & 0x2) r -= 1;			\
841  } while (0)
842#else /* not _FP_W_TYPE_SIZE < 64 */
843#define __FP_CLZ(r, x)				\
844  do {						\
845    _FP_W_TYPE _t = (x);			\
846    r = _FP_W_TYPE_SIZE - 1;			\
847    if (_t > 0xffffffff) r -= 32;		\
848    if (_t > 0xffffffff) _t >>= 32;		\
849    if (_t > 0xffff) r -= 16;			\
850    if (_t > 0xffff) _t >>= 16;			\
851    if (_t > 0xff) r -= 8;			\
852    if (_t > 0xff) _t >>= 8;			\
853    if (_t & 0xf0) r -= 4;			\
854    if (_t & 0xf0) _t >>= 4;			\
855    if (_t & 0xc) r -= 2;			\
856    if (_t & 0xc) _t >>= 2;			\
857    if (_t & 0x2) r -= 1;			\
858  } while (0)
859#endif /* not _FP_W_TYPE_SIZE < 64 */
860#endif /* ndef __FP_CLZ */
861
862#define _FP_DIV_HELP_imm(q, r, n, d)		\
863  do {						\
864    q = n / d, r = n % d;			\
865  } while (0)
866
867#endif /* __MATH_EMU_OP_COMMON_H__ */
868