1/*
2 * linux/fs/mbcache.c
3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4 */
5
6/*
7 * Filesystem Meta Information Block Cache (mbcache)
8 *
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
12 *
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
17 *
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
21 * or lists.
22 *
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
27 */
28
29#include <linux/kernel.h>
30#include <linux/module.h>
31
32#include <linux/hash.h>
33#include <linux/fs.h>
34#include <linux/mm.h>
35#include <linux/slab.h>
36#include <linux/sched.h>
37#include <linux/init.h>
38#include <linux/mbcache.h>
39
40
41#ifdef MB_CACHE_DEBUG
42# define mb_debug(f...) do { \
43		printk(KERN_DEBUG f); \
44		printk("\n"); \
45	} while (0)
46#define mb_assert(c) do { if (!(c)) \
47		printk(KERN_ERR "assertion " #c " failed\n"); \
48	} while(0)
49#else
50# define mb_debug(f...) do { } while(0)
51# define mb_assert(c) do { } while(0)
52#endif
53#define mb_error(f...) do { \
54		printk(KERN_ERR f); \
55		printk("\n"); \
56	} while(0)
57
58#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59
60static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61
62MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64MODULE_LICENSE("GPL");
65
66EXPORT_SYMBOL(mb_cache_create);
67EXPORT_SYMBOL(mb_cache_shrink);
68EXPORT_SYMBOL(mb_cache_destroy);
69EXPORT_SYMBOL(mb_cache_entry_alloc);
70EXPORT_SYMBOL(mb_cache_entry_insert);
71EXPORT_SYMBOL(mb_cache_entry_release);
72EXPORT_SYMBOL(mb_cache_entry_free);
73EXPORT_SYMBOL(mb_cache_entry_get);
74#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75EXPORT_SYMBOL(mb_cache_entry_find_first);
76EXPORT_SYMBOL(mb_cache_entry_find_next);
77#endif
78
79struct mb_cache {
80	struct list_head		c_cache_list;
81	const char			*c_name;
82	atomic_t			c_entry_count;
83	int				c_max_entries;
84	int				c_bucket_bits;
85	struct kmem_cache		*c_entry_cache;
86	struct list_head		*c_block_hash;
87	struct list_head		*c_index_hash;
88};
89
90
91/*
92 * Global data: list of all mbcache's, lru list, and a spinlock for
93 * accessing cache data structures on SMP machines. The lru list is
94 * global across all mbcaches.
95 */
96
97static LIST_HEAD(mb_cache_list);
98static LIST_HEAD(mb_cache_lru_list);
99static DEFINE_SPINLOCK(mb_cache_spinlock);
100
101/*
102 * What the mbcache registers as to get shrunk dynamically.
103 */
104
105static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask);
106
107static struct shrinker mb_cache_shrinker = {
108	.shrink = mb_cache_shrink_fn,
109	.seeks = DEFAULT_SEEKS,
110};
111
112static inline int
113__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
114{
115	return !list_empty(&ce->e_block_list);
116}
117
118
119static void
120__mb_cache_entry_unhash(struct mb_cache_entry *ce)
121{
122	if (__mb_cache_entry_is_hashed(ce)) {
123		list_del_init(&ce->e_block_list);
124		list_del(&ce->e_index.o_list);
125	}
126}
127
128
129static void
130__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
131{
132	struct mb_cache *cache = ce->e_cache;
133
134	mb_assert(!(ce->e_used || ce->e_queued));
135	kmem_cache_free(cache->c_entry_cache, ce);
136	atomic_dec(&cache->c_entry_count);
137}
138
139
140static void
141__mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
142	__releases(mb_cache_spinlock)
143{
144	/* Wake up all processes queuing for this cache entry. */
145	if (ce->e_queued)
146		wake_up_all(&mb_cache_queue);
147	if (ce->e_used >= MB_CACHE_WRITER)
148		ce->e_used -= MB_CACHE_WRITER;
149	ce->e_used--;
150	if (!(ce->e_used || ce->e_queued)) {
151		if (!__mb_cache_entry_is_hashed(ce))
152			goto forget;
153		mb_assert(list_empty(&ce->e_lru_list));
154		list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
155	}
156	spin_unlock(&mb_cache_spinlock);
157	return;
158forget:
159	spin_unlock(&mb_cache_spinlock);
160	__mb_cache_entry_forget(ce, GFP_KERNEL);
161}
162
163
164/*
165 * mb_cache_shrink_fn()  memory pressure callback
166 *
167 * This function is called by the kernel memory management when memory
168 * gets low.
169 *
170 * @shrink: (ignored)
171 * @nr_to_scan: Number of objects to scan
172 * @gfp_mask: (ignored)
173 *
174 * Returns the number of objects which are present in the cache.
175 */
176static int
177mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
178{
179	LIST_HEAD(free_list);
180	struct mb_cache *cache;
181	struct mb_cache_entry *entry, *tmp;
182	int count = 0;
183
184	mb_debug("trying to free %d entries", nr_to_scan);
185	spin_lock(&mb_cache_spinlock);
186	while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
187		struct mb_cache_entry *ce =
188			list_entry(mb_cache_lru_list.next,
189				   struct mb_cache_entry, e_lru_list);
190		list_move_tail(&ce->e_lru_list, &free_list);
191		__mb_cache_entry_unhash(ce);
192	}
193	list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
194		mb_debug("cache %s (%d)", cache->c_name,
195			  atomic_read(&cache->c_entry_count));
196		count += atomic_read(&cache->c_entry_count);
197	}
198	spin_unlock(&mb_cache_spinlock);
199	list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
200		__mb_cache_entry_forget(entry, gfp_mask);
201	}
202	return (count / 100) * sysctl_vfs_cache_pressure;
203}
204
205
206/*
207 * mb_cache_create()  create a new cache
208 *
209 * All entries in one cache are equal size. Cache entries may be from
210 * multiple devices. If this is the first mbcache created, registers
211 * the cache with kernel memory management. Returns NULL if no more
212 * memory was available.
213 *
214 * @name: name of the cache (informal)
215 * @bucket_bits: log2(number of hash buckets)
216 */
217struct mb_cache *
218mb_cache_create(const char *name, int bucket_bits)
219{
220	int n, bucket_count = 1 << bucket_bits;
221	struct mb_cache *cache = NULL;
222
223	cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
224	if (!cache)
225		return NULL;
226	cache->c_name = name;
227	atomic_set(&cache->c_entry_count, 0);
228	cache->c_bucket_bits = bucket_bits;
229	cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
230	                              GFP_KERNEL);
231	if (!cache->c_block_hash)
232		goto fail;
233	for (n=0; n<bucket_count; n++)
234		INIT_LIST_HEAD(&cache->c_block_hash[n]);
235	cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
236				      GFP_KERNEL);
237	if (!cache->c_index_hash)
238		goto fail;
239	for (n=0; n<bucket_count; n++)
240		INIT_LIST_HEAD(&cache->c_index_hash[n]);
241	cache->c_entry_cache = kmem_cache_create(name,
242		sizeof(struct mb_cache_entry), 0,
243		SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
244	if (!cache->c_entry_cache)
245		goto fail2;
246
247	/*
248	 * Set an upper limit on the number of cache entries so that the hash
249	 * chains won't grow too long.
250	 */
251	cache->c_max_entries = bucket_count << 4;
252
253	spin_lock(&mb_cache_spinlock);
254	list_add(&cache->c_cache_list, &mb_cache_list);
255	spin_unlock(&mb_cache_spinlock);
256	return cache;
257
258fail2:
259	kfree(cache->c_index_hash);
260
261fail:
262	kfree(cache->c_block_hash);
263	kfree(cache);
264	return NULL;
265}
266
267
268/*
269 * mb_cache_shrink()
270 *
271 * Removes all cache entries of a device from the cache. All cache entries
272 * currently in use cannot be freed, and thus remain in the cache. All others
273 * are freed.
274 *
275 * @bdev: which device's cache entries to shrink
276 */
277void
278mb_cache_shrink(struct block_device *bdev)
279{
280	LIST_HEAD(free_list);
281	struct list_head *l, *ltmp;
282
283	spin_lock(&mb_cache_spinlock);
284	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
285		struct mb_cache_entry *ce =
286			list_entry(l, struct mb_cache_entry, e_lru_list);
287		if (ce->e_bdev == bdev) {
288			list_move_tail(&ce->e_lru_list, &free_list);
289			__mb_cache_entry_unhash(ce);
290		}
291	}
292	spin_unlock(&mb_cache_spinlock);
293	list_for_each_safe(l, ltmp, &free_list) {
294		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
295						   e_lru_list), GFP_KERNEL);
296	}
297}
298
299
300/*
301 * mb_cache_destroy()
302 *
303 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
304 * and then destroys it. If this was the last mbcache, un-registers the
305 * mbcache from kernel memory management.
306 */
307void
308mb_cache_destroy(struct mb_cache *cache)
309{
310	LIST_HEAD(free_list);
311	struct list_head *l, *ltmp;
312
313	spin_lock(&mb_cache_spinlock);
314	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
315		struct mb_cache_entry *ce =
316			list_entry(l, struct mb_cache_entry, e_lru_list);
317		if (ce->e_cache == cache) {
318			list_move_tail(&ce->e_lru_list, &free_list);
319			__mb_cache_entry_unhash(ce);
320		}
321	}
322	list_del(&cache->c_cache_list);
323	spin_unlock(&mb_cache_spinlock);
324
325	list_for_each_safe(l, ltmp, &free_list) {
326		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
327						   e_lru_list), GFP_KERNEL);
328	}
329
330	if (atomic_read(&cache->c_entry_count) > 0) {
331		mb_error("cache %s: %d orphaned entries",
332			  cache->c_name,
333			  atomic_read(&cache->c_entry_count));
334	}
335
336	kmem_cache_destroy(cache->c_entry_cache);
337
338	kfree(cache->c_index_hash);
339	kfree(cache->c_block_hash);
340	kfree(cache);
341}
342
343/*
344 * mb_cache_entry_alloc()
345 *
346 * Allocates a new cache entry. The new entry will not be valid initially,
347 * and thus cannot be looked up yet. It should be filled with data, and
348 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
349 * if no more memory was available.
350 */
351struct mb_cache_entry *
352mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
353{
354	struct mb_cache_entry *ce = NULL;
355
356	if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
357		spin_lock(&mb_cache_spinlock);
358		if (!list_empty(&mb_cache_lru_list)) {
359			ce = list_entry(mb_cache_lru_list.next,
360					struct mb_cache_entry, e_lru_list);
361			list_del_init(&ce->e_lru_list);
362			__mb_cache_entry_unhash(ce);
363		}
364		spin_unlock(&mb_cache_spinlock);
365	}
366	if (!ce) {
367		ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
368		if (!ce)
369			return NULL;
370		atomic_inc(&cache->c_entry_count);
371		INIT_LIST_HEAD(&ce->e_lru_list);
372		INIT_LIST_HEAD(&ce->e_block_list);
373		ce->e_cache = cache;
374		ce->e_queued = 0;
375	}
376	ce->e_used = 1 + MB_CACHE_WRITER;
377	return ce;
378}
379
380
381/*
382 * mb_cache_entry_insert()
383 *
384 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
385 * the cache. After this, the cache entry can be looked up, but is not yet
386 * in the lru list as the caller still holds a handle to it. Returns 0 on
387 * success, or -EBUSY if a cache entry for that device + inode exists
388 * already (this may happen after a failed lookup, but when another process
389 * has inserted the same cache entry in the meantime).
390 *
391 * @bdev: device the cache entry belongs to
392 * @block: block number
393 * @key: lookup key
394 */
395int
396mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
397		      sector_t block, unsigned int key)
398{
399	struct mb_cache *cache = ce->e_cache;
400	unsigned int bucket;
401	struct list_head *l;
402	int error = -EBUSY;
403
404	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
405			   cache->c_bucket_bits);
406	spin_lock(&mb_cache_spinlock);
407	list_for_each_prev(l, &cache->c_block_hash[bucket]) {
408		struct mb_cache_entry *ce =
409			list_entry(l, struct mb_cache_entry, e_block_list);
410		if (ce->e_bdev == bdev && ce->e_block == block)
411			goto out;
412	}
413	__mb_cache_entry_unhash(ce);
414	ce->e_bdev = bdev;
415	ce->e_block = block;
416	list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
417	ce->e_index.o_key = key;
418	bucket = hash_long(key, cache->c_bucket_bits);
419	list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
420	error = 0;
421out:
422	spin_unlock(&mb_cache_spinlock);
423	return error;
424}
425
426
427/*
428 * mb_cache_entry_release()
429 *
430 * Release a handle to a cache entry. When the last handle to a cache entry
431 * is released it is either freed (if it is invalid) or otherwise inserted
432 * in to the lru list.
433 */
434void
435mb_cache_entry_release(struct mb_cache_entry *ce)
436{
437	spin_lock(&mb_cache_spinlock);
438	__mb_cache_entry_release_unlock(ce);
439}
440
441
442/*
443 * mb_cache_entry_free()
444 *
445 * This is equivalent to the sequence mb_cache_entry_takeout() --
446 * mb_cache_entry_release().
447 */
448void
449mb_cache_entry_free(struct mb_cache_entry *ce)
450{
451	spin_lock(&mb_cache_spinlock);
452	mb_assert(list_empty(&ce->e_lru_list));
453	__mb_cache_entry_unhash(ce);
454	__mb_cache_entry_release_unlock(ce);
455}
456
457
458/*
459 * mb_cache_entry_get()
460 *
461 * Get a cache entry  by device / block number. (There can only be one entry
462 * in the cache per device and block.) Returns NULL if no such cache entry
463 * exists. The returned cache entry is locked for exclusive access ("single
464 * writer").
465 */
466struct mb_cache_entry *
467mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
468		   sector_t block)
469{
470	unsigned int bucket;
471	struct list_head *l;
472	struct mb_cache_entry *ce;
473
474	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
475			   cache->c_bucket_bits);
476	spin_lock(&mb_cache_spinlock);
477	list_for_each(l, &cache->c_block_hash[bucket]) {
478		ce = list_entry(l, struct mb_cache_entry, e_block_list);
479		if (ce->e_bdev == bdev && ce->e_block == block) {
480			DEFINE_WAIT(wait);
481
482			if (!list_empty(&ce->e_lru_list))
483				list_del_init(&ce->e_lru_list);
484
485			while (ce->e_used > 0) {
486				ce->e_queued++;
487				prepare_to_wait(&mb_cache_queue, &wait,
488						TASK_UNINTERRUPTIBLE);
489				spin_unlock(&mb_cache_spinlock);
490				schedule();
491				spin_lock(&mb_cache_spinlock);
492				ce->e_queued--;
493			}
494			finish_wait(&mb_cache_queue, &wait);
495			ce->e_used += 1 + MB_CACHE_WRITER;
496
497			if (!__mb_cache_entry_is_hashed(ce)) {
498				__mb_cache_entry_release_unlock(ce);
499				return NULL;
500			}
501			goto cleanup;
502		}
503	}
504	ce = NULL;
505
506cleanup:
507	spin_unlock(&mb_cache_spinlock);
508	return ce;
509}
510
511#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
512
513static struct mb_cache_entry *
514__mb_cache_entry_find(struct list_head *l, struct list_head *head,
515		      struct block_device *bdev, unsigned int key)
516{
517	while (l != head) {
518		struct mb_cache_entry *ce =
519			list_entry(l, struct mb_cache_entry, e_index.o_list);
520		if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
521			DEFINE_WAIT(wait);
522
523			if (!list_empty(&ce->e_lru_list))
524				list_del_init(&ce->e_lru_list);
525
526			/* Incrementing before holding the lock gives readers
527			   priority over writers. */
528			ce->e_used++;
529			while (ce->e_used >= MB_CACHE_WRITER) {
530				ce->e_queued++;
531				prepare_to_wait(&mb_cache_queue, &wait,
532						TASK_UNINTERRUPTIBLE);
533				spin_unlock(&mb_cache_spinlock);
534				schedule();
535				spin_lock(&mb_cache_spinlock);
536				ce->e_queued--;
537			}
538			finish_wait(&mb_cache_queue, &wait);
539
540			if (!__mb_cache_entry_is_hashed(ce)) {
541				__mb_cache_entry_release_unlock(ce);
542				spin_lock(&mb_cache_spinlock);
543				return ERR_PTR(-EAGAIN);
544			}
545			return ce;
546		}
547		l = l->next;
548	}
549	return NULL;
550}
551
552
553/*
554 * mb_cache_entry_find_first()
555 *
556 * Find the first cache entry on a given device with a certain key in
557 * an additional index. Additonal matches can be found with
558 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
559 * returned cache entry is locked for shared access ("multiple readers").
560 *
561 * @cache: the cache to search
562 * @bdev: the device the cache entry should belong to
563 * @key: the key in the index
564 */
565struct mb_cache_entry *
566mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
567			  unsigned int key)
568{
569	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
570	struct list_head *l;
571	struct mb_cache_entry *ce;
572
573	spin_lock(&mb_cache_spinlock);
574	l = cache->c_index_hash[bucket].next;
575	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
576	spin_unlock(&mb_cache_spinlock);
577	return ce;
578}
579
580
581/*
582 * mb_cache_entry_find_next()
583 *
584 * Find the next cache entry on a given device with a certain key in an
585 * additional index. Returns NULL if no match could be found. The previous
586 * entry is atomatically released, so that mb_cache_entry_find_next() can
587 * be called like this:
588 *
589 * entry = mb_cache_entry_find_first();
590 * while (entry) {
591 * 	...
592 *	entry = mb_cache_entry_find_next(entry, ...);
593 * }
594 *
595 * @prev: The previous match
596 * @bdev: the device the cache entry should belong to
597 * @key: the key in the index
598 */
599struct mb_cache_entry *
600mb_cache_entry_find_next(struct mb_cache_entry *prev,
601			 struct block_device *bdev, unsigned int key)
602{
603	struct mb_cache *cache = prev->e_cache;
604	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
605	struct list_head *l;
606	struct mb_cache_entry *ce;
607
608	spin_lock(&mb_cache_spinlock);
609	l = prev->e_index.o_list.next;
610	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
611	__mb_cache_entry_release_unlock(prev);
612	return ce;
613}
614
615#endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
616
617static int __init init_mbcache(void)
618{
619	register_shrinker(&mb_cache_shrinker);
620	return 0;
621}
622
623static void __exit exit_mbcache(void)
624{
625	unregister_shrinker(&mb_cache_shrinker);
626}
627
628module_init(init_mbcache)
629module_exit(exit_mbcache)
630