1/*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/dcache.h>
10#include <linux/init.h>
11#include <linux/slab.h>
12#include <linux/writeback.h>
13#include <linux/module.h>
14#include <linux/backing-dev.h>
15#include <linux/wait.h>
16#include <linux/rwsem.h>
17#include <linux/hash.h>
18#include <linux/swap.h>
19#include <linux/security.h>
20#include <linux/pagemap.h>
21#include <linux/cdev.h>
22#include <linux/bootmem.h>
23#include <linux/fsnotify.h>
24#include <linux/mount.h>
25#include <linux/async.h>
26#include <linux/posix_acl.h>
27
28#include <linux/buffer_head.h>
29
30/*
31 * New inode.c implementation.
32 *
33 * This implementation has the basic premise of trying
34 * to be extremely low-overhead and SMP-safe, yet be
35 * simple enough to be "obviously correct".
36 *
37 * Famous last words.
38 */
39
40/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
41
42/* #define INODE_PARANOIA 1 */
43/* #define INODE_DEBUG 1 */
44
45/*
46 * Inode lookup is no longer as critical as it used to be:
47 * most of the lookups are going to be through the dcache.
48 */
49#define I_HASHBITS	i_hash_shift
50#define I_HASHMASK	i_hash_mask
51
52static unsigned int i_hash_mask __read_mostly;
53static unsigned int i_hash_shift __read_mostly;
54
55/*
56 * Each inode can be on two separate lists. One is
57 * the hash list of the inode, used for lookups. The
58 * other linked list is the "type" list:
59 *  "in_use" - valid inode, i_count > 0, i_nlink > 0
60 *  "dirty"  - as "in_use" but also dirty
61 *  "unused" - valid inode, i_count = 0
62 *
63 * A "dirty" list is maintained for each super block,
64 * allowing for low-overhead inode sync() operations.
65 */
66
67LIST_HEAD(inode_in_use);
68LIST_HEAD(inode_unused);
69static struct hlist_head *inode_hashtable __read_mostly;
70
71/*
72 * A simple spinlock to protect the list manipulations.
73 *
74 * NOTE! You also have to own the lock if you change
75 * the i_state of an inode while it is in use..
76 */
77DEFINE_SPINLOCK(inode_lock);
78
79/*
80 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
81 * icache shrinking path, and the umount path.  Without this exclusion,
82 * by the time prune_icache calls iput for the inode whose pages it has
83 * been invalidating, or by the time it calls clear_inode & destroy_inode
84 * from its final dispose_list, the struct super_block they refer to
85 * (for inode->i_sb->s_op) may already have been freed and reused.
86 *
87 * We make this an rwsem because the fastpath is icache shrinking. In
88 * some cases a filesystem may be doing a significant amount of work in
89 * its inode reclaim code, so this should improve parallelism.
90 */
91static DECLARE_RWSEM(iprune_sem);
92
93/*
94 * Statistics gathering..
95 */
96struct inodes_stat_t inodes_stat;
97
98static struct kmem_cache *inode_cachep __read_mostly;
99
100static void wake_up_inode(struct inode *inode)
101{
102	/*
103	 * Prevent speculative execution through spin_unlock(&inode_lock);
104	 */
105	smp_mb();
106	wake_up_bit(&inode->i_state, __I_NEW);
107}
108
109/**
110 * inode_init_always - perform inode structure intialisation
111 * @sb: superblock inode belongs to
112 * @inode: inode to initialise
113 *
114 * These are initializations that need to be done on every inode
115 * allocation as the fields are not initialised by slab allocation.
116 */
117int inode_init_always(struct super_block *sb, struct inode *inode)
118{
119	static const struct address_space_operations empty_aops;
120	static const struct inode_operations empty_iops;
121	static const struct file_operations empty_fops;
122	struct address_space *const mapping = &inode->i_data;
123
124	inode->i_sb = sb;
125	inode->i_blkbits = sb->s_blocksize_bits;
126	inode->i_flags = 0;
127	atomic_set(&inode->i_count, 1);
128	inode->i_op = &empty_iops;
129	inode->i_fop = &empty_fops;
130	inode->i_nlink = 1;
131	inode->i_uid = 0;
132	inode->i_gid = 0;
133	atomic_set(&inode->i_writecount, 0);
134	inode->i_size = 0;
135	inode->i_blocks = 0;
136	inode->i_bytes = 0;
137	inode->i_generation = 0;
138#ifdef CONFIG_QUOTA
139	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
140#endif
141	inode->i_pipe = NULL;
142	inode->i_bdev = NULL;
143	inode->i_cdev = NULL;
144	inode->i_rdev = 0;
145	inode->dirtied_when = 0;
146
147	if (security_inode_alloc(inode))
148		goto out;
149	spin_lock_init(&inode->i_lock);
150	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
151
152	mutex_init(&inode->i_mutex);
153	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
154
155	init_rwsem(&inode->i_alloc_sem);
156	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
157
158	mapping->a_ops = &empty_aops;
159	mapping->host = inode;
160	mapping->flags = 0;
161	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
162	mapping->assoc_mapping = NULL;
163	mapping->backing_dev_info = &default_backing_dev_info;
164	mapping->writeback_index = 0;
165
166	/*
167	 * If the block_device provides a backing_dev_info for client
168	 * inodes then use that.  Otherwise the inode share the bdev's
169	 * backing_dev_info.
170	 */
171	if (sb->s_bdev) {
172		struct backing_dev_info *bdi;
173
174		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
175		mapping->backing_dev_info = bdi;
176	}
177	inode->i_private = NULL;
178	inode->i_mapping = mapping;
179#ifdef CONFIG_FS_POSIX_ACL
180	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
181#endif
182
183#ifdef CONFIG_FSNOTIFY
184	inode->i_fsnotify_mask = 0;
185#endif
186
187	return 0;
188out:
189	return -ENOMEM;
190}
191EXPORT_SYMBOL(inode_init_always);
192
193static struct inode *alloc_inode(struct super_block *sb)
194{
195	struct inode *inode;
196
197	if (sb->s_op->alloc_inode)
198		inode = sb->s_op->alloc_inode(sb);
199	else
200		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
201
202	if (!inode)
203		return NULL;
204
205	if (unlikely(inode_init_always(sb, inode))) {
206		if (inode->i_sb->s_op->destroy_inode)
207			inode->i_sb->s_op->destroy_inode(inode);
208		else
209			kmem_cache_free(inode_cachep, inode);
210		return NULL;
211	}
212
213	return inode;
214}
215
216void __destroy_inode(struct inode *inode)
217{
218	BUG_ON(inode_has_buffers(inode));
219	security_inode_free(inode);
220	fsnotify_inode_delete(inode);
221#ifdef CONFIG_FS_POSIX_ACL
222	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
223		posix_acl_release(inode->i_acl);
224	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
225		posix_acl_release(inode->i_default_acl);
226#endif
227}
228EXPORT_SYMBOL(__destroy_inode);
229
230void destroy_inode(struct inode *inode)
231{
232	__destroy_inode(inode);
233	if (inode->i_sb->s_op->destroy_inode)
234		inode->i_sb->s_op->destroy_inode(inode);
235	else
236		kmem_cache_free(inode_cachep, (inode));
237}
238
239/*
240 * These are initializations that only need to be done
241 * once, because the fields are idempotent across use
242 * of the inode, so let the slab aware of that.
243 */
244void inode_init_once(struct inode *inode)
245{
246	memset(inode, 0, sizeof(*inode));
247	INIT_HLIST_NODE(&inode->i_hash);
248	INIT_LIST_HEAD(&inode->i_dentry);
249	INIT_LIST_HEAD(&inode->i_devices);
250	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
251	spin_lock_init(&inode->i_data.tree_lock);
252	spin_lock_init(&inode->i_data.i_mmap_lock);
253	INIT_LIST_HEAD(&inode->i_data.private_list);
254	spin_lock_init(&inode->i_data.private_lock);
255	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
256	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
257	i_size_ordered_init(inode);
258#ifdef CONFIG_FSNOTIFY
259	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
260#endif
261}
262EXPORT_SYMBOL(inode_init_once);
263
264static void init_once(void *foo)
265{
266	struct inode *inode = (struct inode *) foo;
267
268	inode_init_once(inode);
269}
270
271/*
272 * inode_lock must be held
273 */
274void __iget(struct inode *inode)
275{
276	if (atomic_inc_return(&inode->i_count) != 1)
277		return;
278
279	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
280		list_move(&inode->i_list, &inode_in_use);
281	inodes_stat.nr_unused--;
282}
283
284void end_writeback(struct inode *inode)
285{
286	might_sleep();
287	BUG_ON(inode->i_data.nrpages);
288	BUG_ON(!list_empty(&inode->i_data.private_list));
289	BUG_ON(!(inode->i_state & I_FREEING));
290	BUG_ON(inode->i_state & I_CLEAR);
291	inode_sync_wait(inode);
292	inode->i_state = I_FREEING | I_CLEAR;
293}
294EXPORT_SYMBOL(end_writeback);
295
296static void evict(struct inode *inode)
297{
298	const struct super_operations *op = inode->i_sb->s_op;
299
300	if (op->evict_inode) {
301		op->evict_inode(inode);
302	} else {
303		if (inode->i_data.nrpages)
304			truncate_inode_pages(&inode->i_data, 0);
305		end_writeback(inode);
306	}
307	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
308		bd_forget(inode);
309	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
310		cd_forget(inode);
311}
312
313/*
314 * dispose_list - dispose of the contents of a local list
315 * @head: the head of the list to free
316 *
317 * Dispose-list gets a local list with local inodes in it, so it doesn't
318 * need to worry about list corruption and SMP locks.
319 */
320static void dispose_list(struct list_head *head)
321{
322	int nr_disposed = 0;
323
324	while (!list_empty(head)) {
325		struct inode *inode;
326
327		inode = list_first_entry(head, struct inode, i_list);
328		list_del(&inode->i_list);
329
330		evict(inode);
331
332		spin_lock(&inode_lock);
333		hlist_del_init(&inode->i_hash);
334		list_del_init(&inode->i_sb_list);
335		spin_unlock(&inode_lock);
336
337		wake_up_inode(inode);
338		destroy_inode(inode);
339		nr_disposed++;
340	}
341	spin_lock(&inode_lock);
342	inodes_stat.nr_inodes -= nr_disposed;
343	spin_unlock(&inode_lock);
344}
345
346/*
347 * Invalidate all inodes for a device.
348 */
349static int invalidate_list(struct list_head *head, struct list_head *dispose)
350{
351	struct list_head *next;
352	int busy = 0, count = 0;
353
354	next = head->next;
355	for (;;) {
356		struct list_head *tmp = next;
357		struct inode *inode;
358
359		/*
360		 * We can reschedule here without worrying about the list's
361		 * consistency because the per-sb list of inodes must not
362		 * change during umount anymore, and because iprune_sem keeps
363		 * shrink_icache_memory() away.
364		 */
365		cond_resched_lock(&inode_lock);
366
367		next = next->next;
368		if (tmp == head)
369			break;
370		inode = list_entry(tmp, struct inode, i_sb_list);
371		if (inode->i_state & I_NEW)
372			continue;
373		invalidate_inode_buffers(inode);
374		if (!atomic_read(&inode->i_count)) {
375			list_move(&inode->i_list, dispose);
376			WARN_ON(inode->i_state & I_NEW);
377			inode->i_state |= I_FREEING;
378			count++;
379			continue;
380		}
381		busy = 1;
382	}
383	/* only unused inodes may be cached with i_count zero */
384	inodes_stat.nr_unused -= count;
385	return busy;
386}
387
388/**
389 *	invalidate_inodes	- discard the inodes on a device
390 *	@sb: superblock
391 *
392 *	Discard all of the inodes for a given superblock. If the discard
393 *	fails because there are busy inodes then a non zero value is returned.
394 *	If the discard is successful all the inodes have been discarded.
395 */
396int invalidate_inodes(struct super_block *sb)
397{
398	int busy;
399	LIST_HEAD(throw_away);
400
401	down_write(&iprune_sem);
402	spin_lock(&inode_lock);
403	fsnotify_unmount_inodes(&sb->s_inodes);
404	busy = invalidate_list(&sb->s_inodes, &throw_away);
405	spin_unlock(&inode_lock);
406
407	dispose_list(&throw_away);
408	up_write(&iprune_sem);
409
410	return busy;
411}
412EXPORT_SYMBOL(invalidate_inodes);
413
414static int can_unuse(struct inode *inode)
415{
416	if (inode->i_state)
417		return 0;
418	if (inode_has_buffers(inode))
419		return 0;
420	if (atomic_read(&inode->i_count))
421		return 0;
422	if (inode->i_data.nrpages)
423		return 0;
424	return 1;
425}
426
427/*
428 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
429 * a temporary list and then are freed outside inode_lock by dispose_list().
430 *
431 * Any inodes which are pinned purely because of attached pagecache have their
432 * pagecache removed.  We expect the final iput() on that inode to add it to
433 * the front of the inode_unused list.  So look for it there and if the
434 * inode is still freeable, proceed.  The right inode is found 99.9% of the
435 * time in testing on a 4-way.
436 *
437 * If the inode has metadata buffers attached to mapping->private_list then
438 * try to remove them.
439 */
440static void prune_icache(int nr_to_scan)
441{
442	LIST_HEAD(freeable);
443	int nr_pruned = 0;
444	int nr_scanned;
445	unsigned long reap = 0;
446
447	down_read(&iprune_sem);
448	spin_lock(&inode_lock);
449	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
450		struct inode *inode;
451
452		if (list_empty(&inode_unused))
453			break;
454
455		inode = list_entry(inode_unused.prev, struct inode, i_list);
456
457		if (inode->i_state || atomic_read(&inode->i_count)) {
458			list_move(&inode->i_list, &inode_unused);
459			continue;
460		}
461		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
462			__iget(inode);
463			spin_unlock(&inode_lock);
464			if (remove_inode_buffers(inode))
465				reap += invalidate_mapping_pages(&inode->i_data,
466								0, -1);
467			iput(inode);
468			spin_lock(&inode_lock);
469
470			if (inode != list_entry(inode_unused.next,
471						struct inode, i_list))
472				continue;	/* wrong inode or list_empty */
473			if (!can_unuse(inode))
474				continue;
475		}
476		list_move(&inode->i_list, &freeable);
477		WARN_ON(inode->i_state & I_NEW);
478		inode->i_state |= I_FREEING;
479		nr_pruned++;
480	}
481	inodes_stat.nr_unused -= nr_pruned;
482	if (current_is_kswapd())
483		__count_vm_events(KSWAPD_INODESTEAL, reap);
484	else
485		__count_vm_events(PGINODESTEAL, reap);
486	spin_unlock(&inode_lock);
487
488	dispose_list(&freeable);
489	up_read(&iprune_sem);
490}
491
492/*
493 * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
494 * "unused" means that no dentries are referring to the inodes: the files are
495 * not open and the dcache references to those inodes have already been
496 * reclaimed.
497 *
498 * This function is passed the number of inodes to scan, and it returns the
499 * total number of remaining possibly-reclaimable inodes.
500 */
501static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
502{
503	if (nr) {
504		/*
505		 * Nasty deadlock avoidance.  We may hold various FS locks,
506		 * and we don't want to recurse into the FS that called us
507		 * in clear_inode() and friends..
508		 */
509		if (!(gfp_mask & __GFP_FS))
510			return -1;
511		prune_icache(nr);
512	}
513	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
514}
515
516static struct shrinker icache_shrinker = {
517	.shrink = shrink_icache_memory,
518	.seeks = DEFAULT_SEEKS,
519};
520
521static void __wait_on_freeing_inode(struct inode *inode);
522/*
523 * Called with the inode lock held.
524 * NOTE: we are not increasing the inode-refcount, you must call __iget()
525 * by hand after calling find_inode now! This simplifies iunique and won't
526 * add any additional branch in the common code.
527 */
528static struct inode *find_inode(struct super_block *sb,
529				struct hlist_head *head,
530				int (*test)(struct inode *, void *),
531				void *data)
532{
533	struct hlist_node *node;
534	struct inode *inode = NULL;
535
536repeat:
537	hlist_for_each_entry(inode, node, head, i_hash) {
538		if (inode->i_sb != sb)
539			continue;
540		if (!test(inode, data))
541			continue;
542		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
543			__wait_on_freeing_inode(inode);
544			goto repeat;
545		}
546		break;
547	}
548	return node ? inode : NULL;
549}
550
551/*
552 * find_inode_fast is the fast path version of find_inode, see the comment at
553 * iget_locked for details.
554 */
555static struct inode *find_inode_fast(struct super_block *sb,
556				struct hlist_head *head, unsigned long ino)
557{
558	struct hlist_node *node;
559	struct inode *inode = NULL;
560
561repeat:
562	hlist_for_each_entry(inode, node, head, i_hash) {
563		if (inode->i_ino != ino)
564			continue;
565		if (inode->i_sb != sb)
566			continue;
567		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
568			__wait_on_freeing_inode(inode);
569			goto repeat;
570		}
571		break;
572	}
573	return node ? inode : NULL;
574}
575
576static unsigned long hash(struct super_block *sb, unsigned long hashval)
577{
578	unsigned long tmp;
579
580	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
581			L1_CACHE_BYTES;
582	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
583	return tmp & I_HASHMASK;
584}
585
586static inline void
587__inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
588			struct inode *inode)
589{
590	inodes_stat.nr_inodes++;
591	list_add(&inode->i_list, &inode_in_use);
592	list_add(&inode->i_sb_list, &sb->s_inodes);
593	if (head)
594		hlist_add_head(&inode->i_hash, head);
595}
596
597/**
598 * inode_add_to_lists - add a new inode to relevant lists
599 * @sb: superblock inode belongs to
600 * @inode: inode to mark in use
601 *
602 * When an inode is allocated it needs to be accounted for, added to the in use
603 * list, the owning superblock and the inode hash. This needs to be done under
604 * the inode_lock, so export a function to do this rather than the inode lock
605 * itself. We calculate the hash list to add to here so it is all internal
606 * which requires the caller to have already set up the inode number in the
607 * inode to add.
608 */
609void inode_add_to_lists(struct super_block *sb, struct inode *inode)
610{
611	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
612
613	spin_lock(&inode_lock);
614	__inode_add_to_lists(sb, head, inode);
615	spin_unlock(&inode_lock);
616}
617EXPORT_SYMBOL_GPL(inode_add_to_lists);
618
619/**
620 *	new_inode 	- obtain an inode
621 *	@sb: superblock
622 *
623 *	Allocates a new inode for given superblock. The default gfp_mask
624 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
625 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
626 *	for the page cache are not reclaimable or migratable,
627 *	mapping_set_gfp_mask() must be called with suitable flags on the
628 *	newly created inode's mapping
629 *
630 */
631struct inode *new_inode(struct super_block *sb)
632{
633	/*
634	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
635	 * error if st_ino won't fit in target struct field. Use 32bit counter
636	 * here to attempt to avoid that.
637	 */
638	static unsigned int last_ino;
639	struct inode *inode;
640
641	spin_lock_prefetch(&inode_lock);
642
643	inode = alloc_inode(sb);
644	if (inode) {
645		spin_lock(&inode_lock);
646		__inode_add_to_lists(sb, NULL, inode);
647		inode->i_ino = ++last_ino;
648		inode->i_state = 0;
649		spin_unlock(&inode_lock);
650	}
651	return inode;
652}
653EXPORT_SYMBOL(new_inode);
654
655void unlock_new_inode(struct inode *inode)
656{
657#ifdef CONFIG_DEBUG_LOCK_ALLOC
658	if (inode->i_mode & S_IFDIR) {
659		struct file_system_type *type = inode->i_sb->s_type;
660
661		/* Set new key only if filesystem hasn't already changed it */
662		if (!lockdep_match_class(&inode->i_mutex,
663		    &type->i_mutex_key)) {
664			/*
665			 * ensure nobody is actually holding i_mutex
666			 */
667			mutex_destroy(&inode->i_mutex);
668			mutex_init(&inode->i_mutex);
669			lockdep_set_class(&inode->i_mutex,
670					  &type->i_mutex_dir_key);
671		}
672	}
673#endif
674	/*
675	 * This is special!  We do not need the spinlock when clearing I_NEW,
676	 * because we're guaranteed that nobody else tries to do anything about
677	 * the state of the inode when it is locked, as we just created it (so
678	 * there can be no old holders that haven't tested I_NEW).
679	 * However we must emit the memory barrier so that other CPUs reliably
680	 * see the clearing of I_NEW after the other inode initialisation has
681	 * completed.
682	 */
683	smp_mb();
684	WARN_ON(!(inode->i_state & I_NEW));
685	inode->i_state &= ~I_NEW;
686	wake_up_inode(inode);
687}
688EXPORT_SYMBOL(unlock_new_inode);
689
690/*
691 * This is called without the inode lock held.. Be careful.
692 *
693 * We no longer cache the sb_flags in i_flags - see fs.h
694 *	-- rmk@arm.uk.linux.org
695 */
696static struct inode *get_new_inode(struct super_block *sb,
697				struct hlist_head *head,
698				int (*test)(struct inode *, void *),
699				int (*set)(struct inode *, void *),
700				void *data)
701{
702	struct inode *inode;
703
704	inode = alloc_inode(sb);
705	if (inode) {
706		struct inode *old;
707
708		spin_lock(&inode_lock);
709		/* We released the lock, so.. */
710		old = find_inode(sb, head, test, data);
711		if (!old) {
712			if (set(inode, data))
713				goto set_failed;
714
715			__inode_add_to_lists(sb, head, inode);
716			inode->i_state = I_NEW;
717			spin_unlock(&inode_lock);
718
719			/* Return the locked inode with I_NEW set, the
720			 * caller is responsible for filling in the contents
721			 */
722			return inode;
723		}
724
725		/*
726		 * Uhhuh, somebody else created the same inode under
727		 * us. Use the old inode instead of the one we just
728		 * allocated.
729		 */
730		__iget(old);
731		spin_unlock(&inode_lock);
732		destroy_inode(inode);
733		inode = old;
734		wait_on_inode(inode);
735	}
736	return inode;
737
738set_failed:
739	spin_unlock(&inode_lock);
740	destroy_inode(inode);
741	return NULL;
742}
743
744/*
745 * get_new_inode_fast is the fast path version of get_new_inode, see the
746 * comment at iget_locked for details.
747 */
748static struct inode *get_new_inode_fast(struct super_block *sb,
749				struct hlist_head *head, unsigned long ino)
750{
751	struct inode *inode;
752
753	inode = alloc_inode(sb);
754	if (inode) {
755		struct inode *old;
756
757		spin_lock(&inode_lock);
758		/* We released the lock, so.. */
759		old = find_inode_fast(sb, head, ino);
760		if (!old) {
761			inode->i_ino = ino;
762			__inode_add_to_lists(sb, head, inode);
763			inode->i_state = I_NEW;
764			spin_unlock(&inode_lock);
765
766			/* Return the locked inode with I_NEW set, the
767			 * caller is responsible for filling in the contents
768			 */
769			return inode;
770		}
771
772		/*
773		 * Uhhuh, somebody else created the same inode under
774		 * us. Use the old inode instead of the one we just
775		 * allocated.
776		 */
777		__iget(old);
778		spin_unlock(&inode_lock);
779		destroy_inode(inode);
780		inode = old;
781		wait_on_inode(inode);
782	}
783	return inode;
784}
785
786/**
787 *	iunique - get a unique inode number
788 *	@sb: superblock
789 *	@max_reserved: highest reserved inode number
790 *
791 *	Obtain an inode number that is unique on the system for a given
792 *	superblock. This is used by file systems that have no natural
793 *	permanent inode numbering system. An inode number is returned that
794 *	is higher than the reserved limit but unique.
795 *
796 *	BUGS:
797 *	With a large number of inodes live on the file system this function
798 *	currently becomes quite slow.
799 */
800ino_t iunique(struct super_block *sb, ino_t max_reserved)
801{
802	/*
803	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
804	 * error if st_ino won't fit in target struct field. Use 32bit counter
805	 * here to attempt to avoid that.
806	 */
807	static unsigned int counter;
808	struct inode *inode;
809	struct hlist_head *head;
810	ino_t res;
811
812	spin_lock(&inode_lock);
813	do {
814		if (counter <= max_reserved)
815			counter = max_reserved + 1;
816		res = counter++;
817		head = inode_hashtable + hash(sb, res);
818		inode = find_inode_fast(sb, head, res);
819	} while (inode != NULL);
820	spin_unlock(&inode_lock);
821
822	return res;
823}
824EXPORT_SYMBOL(iunique);
825
826struct inode *igrab(struct inode *inode)
827{
828	spin_lock(&inode_lock);
829	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
830		__iget(inode);
831	else
832		/*
833		 * Handle the case where s_op->clear_inode is not been
834		 * called yet, and somebody is calling igrab
835		 * while the inode is getting freed.
836		 */
837		inode = NULL;
838	spin_unlock(&inode_lock);
839	return inode;
840}
841EXPORT_SYMBOL(igrab);
842
843/**
844 * ifind - internal function, you want ilookup5() or iget5().
845 * @sb:		super block of file system to search
846 * @head:       the head of the list to search
847 * @test:	callback used for comparisons between inodes
848 * @data:	opaque data pointer to pass to @test
849 * @wait:	if true wait for the inode to be unlocked, if false do not
850 *
851 * ifind() searches for the inode specified by @data in the inode
852 * cache. This is a generalized version of ifind_fast() for file systems where
853 * the inode number is not sufficient for unique identification of an inode.
854 *
855 * If the inode is in the cache, the inode is returned with an incremented
856 * reference count.
857 *
858 * Otherwise NULL is returned.
859 *
860 * Note, @test is called with the inode_lock held, so can't sleep.
861 */
862static struct inode *ifind(struct super_block *sb,
863		struct hlist_head *head, int (*test)(struct inode *, void *),
864		void *data, const int wait)
865{
866	struct inode *inode;
867
868	spin_lock(&inode_lock);
869	inode = find_inode(sb, head, test, data);
870	if (inode) {
871		__iget(inode);
872		spin_unlock(&inode_lock);
873		if (likely(wait))
874			wait_on_inode(inode);
875		return inode;
876	}
877	spin_unlock(&inode_lock);
878	return NULL;
879}
880
881/**
882 * ifind_fast - internal function, you want ilookup() or iget().
883 * @sb:		super block of file system to search
884 * @head:       head of the list to search
885 * @ino:	inode number to search for
886 *
887 * ifind_fast() searches for the inode @ino in the inode cache. This is for
888 * file systems where the inode number is sufficient for unique identification
889 * of an inode.
890 *
891 * If the inode is in the cache, the inode is returned with an incremented
892 * reference count.
893 *
894 * Otherwise NULL is returned.
895 */
896static struct inode *ifind_fast(struct super_block *sb,
897		struct hlist_head *head, unsigned long ino)
898{
899	struct inode *inode;
900
901	spin_lock(&inode_lock);
902	inode = find_inode_fast(sb, head, ino);
903	if (inode) {
904		__iget(inode);
905		spin_unlock(&inode_lock);
906		wait_on_inode(inode);
907		return inode;
908	}
909	spin_unlock(&inode_lock);
910	return NULL;
911}
912
913/**
914 * ilookup5_nowait - search for an inode in the inode cache
915 * @sb:		super block of file system to search
916 * @hashval:	hash value (usually inode number) to search for
917 * @test:	callback used for comparisons between inodes
918 * @data:	opaque data pointer to pass to @test
919 *
920 * ilookup5() uses ifind() to search for the inode specified by @hashval and
921 * @data in the inode cache. This is a generalized version of ilookup() for
922 * file systems where the inode number is not sufficient for unique
923 * identification of an inode.
924 *
925 * If the inode is in the cache, the inode is returned with an incremented
926 * reference count.  Note, the inode lock is not waited upon so you have to be
927 * very careful what you do with the returned inode.  You probably should be
928 * using ilookup5() instead.
929 *
930 * Otherwise NULL is returned.
931 *
932 * Note, @test is called with the inode_lock held, so can't sleep.
933 */
934struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
935		int (*test)(struct inode *, void *), void *data)
936{
937	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
938
939	return ifind(sb, head, test, data, 0);
940}
941EXPORT_SYMBOL(ilookup5_nowait);
942
943/**
944 * ilookup5 - search for an inode in the inode cache
945 * @sb:		super block of file system to search
946 * @hashval:	hash value (usually inode number) to search for
947 * @test:	callback used for comparisons between inodes
948 * @data:	opaque data pointer to pass to @test
949 *
950 * ilookup5() uses ifind() to search for the inode specified by @hashval and
951 * @data in the inode cache. This is a generalized version of ilookup() for
952 * file systems where the inode number is not sufficient for unique
953 * identification of an inode.
954 *
955 * If the inode is in the cache, the inode lock is waited upon and the inode is
956 * returned with an incremented reference count.
957 *
958 * Otherwise NULL is returned.
959 *
960 * Note, @test is called with the inode_lock held, so can't sleep.
961 */
962struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
963		int (*test)(struct inode *, void *), void *data)
964{
965	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
966
967	return ifind(sb, head, test, data, 1);
968}
969EXPORT_SYMBOL(ilookup5);
970
971/**
972 * ilookup - search for an inode in the inode cache
973 * @sb:		super block of file system to search
974 * @ino:	inode number to search for
975 *
976 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
977 * This is for file systems where the inode number is sufficient for unique
978 * identification of an inode.
979 *
980 * If the inode is in the cache, the inode is returned with an incremented
981 * reference count.
982 *
983 * Otherwise NULL is returned.
984 */
985struct inode *ilookup(struct super_block *sb, unsigned long ino)
986{
987	struct hlist_head *head = inode_hashtable + hash(sb, ino);
988
989	return ifind_fast(sb, head, ino);
990}
991EXPORT_SYMBOL(ilookup);
992
993/**
994 * iget5_locked - obtain an inode from a mounted file system
995 * @sb:		super block of file system
996 * @hashval:	hash value (usually inode number) to get
997 * @test:	callback used for comparisons between inodes
998 * @set:	callback used to initialize a new struct inode
999 * @data:	opaque data pointer to pass to @test and @set
1000 *
1001 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1002 * and @data in the inode cache and if present it is returned with an increased
1003 * reference count. This is a generalized version of iget_locked() for file
1004 * systems where the inode number is not sufficient for unique identification
1005 * of an inode.
1006 *
1007 * If the inode is not in cache, get_new_inode() is called to allocate a new
1008 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1009 * file system gets to fill it in before unlocking it via unlock_new_inode().
1010 *
1011 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1012 */
1013struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1014		int (*test)(struct inode *, void *),
1015		int (*set)(struct inode *, void *), void *data)
1016{
1017	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1018	struct inode *inode;
1019
1020	inode = ifind(sb, head, test, data, 1);
1021	if (inode)
1022		return inode;
1023	/*
1024	 * get_new_inode() will do the right thing, re-trying the search
1025	 * in case it had to block at any point.
1026	 */
1027	return get_new_inode(sb, head, test, set, data);
1028}
1029EXPORT_SYMBOL(iget5_locked);
1030
1031/**
1032 * iget_locked - obtain an inode from a mounted file system
1033 * @sb:		super block of file system
1034 * @ino:	inode number to get
1035 *
1036 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1037 * the inode cache and if present it is returned with an increased reference
1038 * count. This is for file systems where the inode number is sufficient for
1039 * unique identification of an inode.
1040 *
1041 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1042 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1043 * The file system gets to fill it in before unlocking it via
1044 * unlock_new_inode().
1045 */
1046struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1047{
1048	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1049	struct inode *inode;
1050
1051	inode = ifind_fast(sb, head, ino);
1052	if (inode)
1053		return inode;
1054	/*
1055	 * get_new_inode_fast() will do the right thing, re-trying the search
1056	 * in case it had to block at any point.
1057	 */
1058	return get_new_inode_fast(sb, head, ino);
1059}
1060EXPORT_SYMBOL(iget_locked);
1061
1062int insert_inode_locked(struct inode *inode)
1063{
1064	struct super_block *sb = inode->i_sb;
1065	ino_t ino = inode->i_ino;
1066	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1067
1068	inode->i_state |= I_NEW;
1069	while (1) {
1070		struct hlist_node *node;
1071		struct inode *old = NULL;
1072		spin_lock(&inode_lock);
1073		hlist_for_each_entry(old, node, head, i_hash) {
1074			if (old->i_ino != ino)
1075				continue;
1076			if (old->i_sb != sb)
1077				continue;
1078			if (old->i_state & (I_FREEING|I_WILL_FREE))
1079				continue;
1080			break;
1081		}
1082		if (likely(!node)) {
1083			hlist_add_head(&inode->i_hash, head);
1084			spin_unlock(&inode_lock);
1085			return 0;
1086		}
1087		__iget(old);
1088		spin_unlock(&inode_lock);
1089		wait_on_inode(old);
1090		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1091			iput(old);
1092			return -EBUSY;
1093		}
1094		iput(old);
1095	}
1096}
1097EXPORT_SYMBOL(insert_inode_locked);
1098
1099int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1100		int (*test)(struct inode *, void *), void *data)
1101{
1102	struct super_block *sb = inode->i_sb;
1103	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1104
1105	inode->i_state |= I_NEW;
1106
1107	while (1) {
1108		struct hlist_node *node;
1109		struct inode *old = NULL;
1110
1111		spin_lock(&inode_lock);
1112		hlist_for_each_entry(old, node, head, i_hash) {
1113			if (old->i_sb != sb)
1114				continue;
1115			if (!test(old, data))
1116				continue;
1117			if (old->i_state & (I_FREEING|I_WILL_FREE))
1118				continue;
1119			break;
1120		}
1121		if (likely(!node)) {
1122			hlist_add_head(&inode->i_hash, head);
1123			spin_unlock(&inode_lock);
1124			return 0;
1125		}
1126		__iget(old);
1127		spin_unlock(&inode_lock);
1128		wait_on_inode(old);
1129		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1130			iput(old);
1131			return -EBUSY;
1132		}
1133		iput(old);
1134	}
1135}
1136EXPORT_SYMBOL(insert_inode_locked4);
1137
1138/**
1139 *	__insert_inode_hash - hash an inode
1140 *	@inode: unhashed inode
1141 *	@hashval: unsigned long value used to locate this object in the
1142 *		inode_hashtable.
1143 *
1144 *	Add an inode to the inode hash for this superblock.
1145 */
1146void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1147{
1148	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1149	spin_lock(&inode_lock);
1150	hlist_add_head(&inode->i_hash, head);
1151	spin_unlock(&inode_lock);
1152}
1153EXPORT_SYMBOL(__insert_inode_hash);
1154
1155/**
1156 *	remove_inode_hash - remove an inode from the hash
1157 *	@inode: inode to unhash
1158 *
1159 *	Remove an inode from the superblock.
1160 */
1161void remove_inode_hash(struct inode *inode)
1162{
1163	spin_lock(&inode_lock);
1164	hlist_del_init(&inode->i_hash);
1165	spin_unlock(&inode_lock);
1166}
1167EXPORT_SYMBOL(remove_inode_hash);
1168
1169int generic_delete_inode(struct inode *inode)
1170{
1171	return 1;
1172}
1173EXPORT_SYMBOL(generic_delete_inode);
1174
1175/*
1176 * Normal UNIX filesystem behaviour: delete the
1177 * inode when the usage count drops to zero, and
1178 * i_nlink is zero.
1179 */
1180int generic_drop_inode(struct inode *inode)
1181{
1182	return !inode->i_nlink || hlist_unhashed(&inode->i_hash);
1183}
1184EXPORT_SYMBOL_GPL(generic_drop_inode);
1185
1186/*
1187 * Called when we're dropping the last reference
1188 * to an inode.
1189 *
1190 * Call the FS "drop_inode()" function, defaulting to
1191 * the legacy UNIX filesystem behaviour.  If it tells
1192 * us to evict inode, do so.  Otherwise, retain inode
1193 * in cache if fs is alive, sync and evict if fs is
1194 * shutting down.
1195 */
1196static void iput_final(struct inode *inode)
1197{
1198	struct super_block *sb = inode->i_sb;
1199	const struct super_operations *op = inode->i_sb->s_op;
1200	int drop;
1201
1202	if (op && op->drop_inode)
1203		drop = op->drop_inode(inode);
1204	else
1205		drop = generic_drop_inode(inode);
1206
1207	if (!drop) {
1208		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1209			list_move(&inode->i_list, &inode_unused);
1210		inodes_stat.nr_unused++;
1211		if (sb->s_flags & MS_ACTIVE) {
1212			spin_unlock(&inode_lock);
1213			return;
1214		}
1215		WARN_ON(inode->i_state & I_NEW);
1216		inode->i_state |= I_WILL_FREE;
1217		spin_unlock(&inode_lock);
1218		write_inode_now(inode, 1);
1219		spin_lock(&inode_lock);
1220		WARN_ON(inode->i_state & I_NEW);
1221		inode->i_state &= ~I_WILL_FREE;
1222		inodes_stat.nr_unused--;
1223		hlist_del_init(&inode->i_hash);
1224	}
1225	list_del_init(&inode->i_list);
1226	list_del_init(&inode->i_sb_list);
1227	WARN_ON(inode->i_state & I_NEW);
1228	inode->i_state |= I_FREEING;
1229	inodes_stat.nr_inodes--;
1230	spin_unlock(&inode_lock);
1231	evict(inode);
1232	spin_lock(&inode_lock);
1233	hlist_del_init(&inode->i_hash);
1234	spin_unlock(&inode_lock);
1235	wake_up_inode(inode);
1236	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1237	destroy_inode(inode);
1238}
1239
1240/**
1241 *	iput	- put an inode
1242 *	@inode: inode to put
1243 *
1244 *	Puts an inode, dropping its usage count. If the inode use count hits
1245 *	zero, the inode is then freed and may also be destroyed.
1246 *
1247 *	Consequently, iput() can sleep.
1248 */
1249void iput(struct inode *inode)
1250{
1251	if (inode) {
1252		BUG_ON(inode->i_state & I_CLEAR);
1253
1254		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1255			iput_final(inode);
1256	}
1257}
1258EXPORT_SYMBOL(iput);
1259
1260/**
1261 *	bmap	- find a block number in a file
1262 *	@inode: inode of file
1263 *	@block: block to find
1264 *
1265 *	Returns the block number on the device holding the inode that
1266 *	is the disk block number for the block of the file requested.
1267 *	That is, asked for block 4 of inode 1 the function will return the
1268 *	disk block relative to the disk start that holds that block of the
1269 *	file.
1270 */
1271sector_t bmap(struct inode *inode, sector_t block)
1272{
1273	sector_t res = 0;
1274	if (inode->i_mapping->a_ops->bmap)
1275		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1276	return res;
1277}
1278EXPORT_SYMBOL(bmap);
1279
1280/*
1281 * With relative atime, only update atime if the previous atime is
1282 * earlier than either the ctime or mtime or if at least a day has
1283 * passed since the last atime update.
1284 */
1285static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1286			     struct timespec now)
1287{
1288
1289	if (!(mnt->mnt_flags & MNT_RELATIME))
1290		return 1;
1291	/*
1292	 * Is mtime younger than atime? If yes, update atime:
1293	 */
1294	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1295		return 1;
1296	/*
1297	 * Is ctime younger than atime? If yes, update atime:
1298	 */
1299	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1300		return 1;
1301
1302	/*
1303	 * Is the previous atime value older than a day? If yes,
1304	 * update atime:
1305	 */
1306	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1307		return 1;
1308	/*
1309	 * Good, we can skip the atime update:
1310	 */
1311	return 0;
1312}
1313
1314/**
1315 *	touch_atime	-	update the access time
1316 *	@mnt: mount the inode is accessed on
1317 *	@dentry: dentry accessed
1318 *
1319 *	Update the accessed time on an inode and mark it for writeback.
1320 *	This function automatically handles read only file systems and media,
1321 *	as well as the "noatime" flag and inode specific "noatime" markers.
1322 */
1323void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1324{
1325	struct inode *inode = dentry->d_inode;
1326	struct timespec now;
1327
1328	if (inode->i_flags & S_NOATIME)
1329		return;
1330	if (IS_NOATIME(inode))
1331		return;
1332	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1333		return;
1334
1335	if (mnt->mnt_flags & MNT_NOATIME)
1336		return;
1337	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1338		return;
1339
1340	now = current_fs_time(inode->i_sb);
1341
1342	if (!relatime_need_update(mnt, inode, now))
1343		return;
1344
1345	if (timespec_equal(&inode->i_atime, &now))
1346		return;
1347
1348	if (mnt_want_write(mnt))
1349		return;
1350
1351	inode->i_atime = now;
1352	mark_inode_dirty_sync(inode);
1353	mnt_drop_write(mnt);
1354}
1355EXPORT_SYMBOL(touch_atime);
1356
1357/**
1358 *	file_update_time	-	update mtime and ctime time
1359 *	@file: file accessed
1360 *
1361 *	Update the mtime and ctime members of an inode and mark the inode
1362 *	for writeback.  Note that this function is meant exclusively for
1363 *	usage in the file write path of filesystems, and filesystems may
1364 *	choose to explicitly ignore update via this function with the
1365 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1366 *	timestamps are handled by the server.
1367 */
1368
1369void file_update_time(struct file *file)
1370{
1371	struct inode *inode = file->f_path.dentry->d_inode;
1372	struct timespec now;
1373	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1374
1375	/* First try to exhaust all avenues to not sync */
1376	if (IS_NOCMTIME(inode))
1377		return;
1378
1379	now = current_fs_time(inode->i_sb);
1380	if (!timespec_equal(&inode->i_mtime, &now))
1381		sync_it = S_MTIME;
1382
1383	if (!timespec_equal(&inode->i_ctime, &now))
1384		sync_it |= S_CTIME;
1385
1386	if (IS_I_VERSION(inode))
1387		sync_it |= S_VERSION;
1388
1389	if (!sync_it)
1390		return;
1391
1392	/* Finally allowed to write? Takes lock. */
1393	if (mnt_want_write_file(file))
1394		return;
1395
1396	/* Only change inode inside the lock region */
1397	if (sync_it & S_VERSION)
1398		inode_inc_iversion(inode);
1399	if (sync_it & S_CTIME)
1400		inode->i_ctime = now;
1401	if (sync_it & S_MTIME)
1402		inode->i_mtime = now;
1403	mark_inode_dirty_sync(inode);
1404	mnt_drop_write(file->f_path.mnt);
1405}
1406EXPORT_SYMBOL(file_update_time);
1407
1408int inode_needs_sync(struct inode *inode)
1409{
1410	if (IS_SYNC(inode))
1411		return 1;
1412	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1413		return 1;
1414	return 0;
1415}
1416EXPORT_SYMBOL(inode_needs_sync);
1417
1418int inode_wait(void *word)
1419{
1420	schedule();
1421	return 0;
1422}
1423EXPORT_SYMBOL(inode_wait);
1424
1425/*
1426 * If we try to find an inode in the inode hash while it is being
1427 * deleted, we have to wait until the filesystem completes its
1428 * deletion before reporting that it isn't found.  This function waits
1429 * until the deletion _might_ have completed.  Callers are responsible
1430 * to recheck inode state.
1431 *
1432 * It doesn't matter if I_NEW is not set initially, a call to
1433 * wake_up_inode() after removing from the hash list will DTRT.
1434 *
1435 * This is called with inode_lock held.
1436 */
1437static void __wait_on_freeing_inode(struct inode *inode)
1438{
1439	wait_queue_head_t *wq;
1440	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1441	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1442	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1443	spin_unlock(&inode_lock);
1444	schedule();
1445	finish_wait(wq, &wait.wait);
1446	spin_lock(&inode_lock);
1447}
1448
1449static __initdata unsigned long ihash_entries;
1450static int __init set_ihash_entries(char *str)
1451{
1452	if (!str)
1453		return 0;
1454	ihash_entries = simple_strtoul(str, &str, 0);
1455	return 1;
1456}
1457__setup("ihash_entries=", set_ihash_entries);
1458
1459/*
1460 * Initialize the waitqueues and inode hash table.
1461 */
1462void __init inode_init_early(void)
1463{
1464	int loop;
1465
1466	/* If hashes are distributed across NUMA nodes, defer
1467	 * hash allocation until vmalloc space is available.
1468	 */
1469	if (hashdist)
1470		return;
1471
1472	inode_hashtable =
1473		alloc_large_system_hash("Inode-cache",
1474					sizeof(struct hlist_head),
1475					ihash_entries,
1476					14,
1477					HASH_EARLY,
1478					&i_hash_shift,
1479					&i_hash_mask,
1480					0);
1481
1482	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1483		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1484}
1485
1486void __init inode_init(void)
1487{
1488	int loop;
1489
1490	/* inode slab cache */
1491	inode_cachep = kmem_cache_create("inode_cache",
1492					 sizeof(struct inode),
1493					 0,
1494					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1495					 SLAB_MEM_SPREAD),
1496					 init_once);
1497	register_shrinker(&icache_shrinker);
1498
1499	/* Hash may have been set up in inode_init_early */
1500	if (!hashdist)
1501		return;
1502
1503	inode_hashtable =
1504		alloc_large_system_hash("Inode-cache",
1505					sizeof(struct hlist_head),
1506					ihash_entries,
1507					14,
1508					0,
1509					&i_hash_shift,
1510					&i_hash_mask,
1511					0);
1512
1513	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1514		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1515}
1516
1517void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1518{
1519	inode->i_mode = mode;
1520	if (S_ISCHR(mode)) {
1521		inode->i_fop = &def_chr_fops;
1522		inode->i_rdev = rdev;
1523	} else if (S_ISBLK(mode)) {
1524		inode->i_fop = &def_blk_fops;
1525		inode->i_rdev = rdev;
1526	} else if (S_ISFIFO(mode))
1527		inode->i_fop = &def_fifo_fops;
1528	else if (S_ISSOCK(mode))
1529		inode->i_fop = &bad_sock_fops;
1530	else
1531		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1532				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1533				  inode->i_ino);
1534}
1535EXPORT_SYMBOL(init_special_inode);
1536
1537/**
1538 * Init uid,gid,mode for new inode according to posix standards
1539 * @inode: New inode
1540 * @dir: Directory inode
1541 * @mode: mode of the new inode
1542 */
1543void inode_init_owner(struct inode *inode, const struct inode *dir,
1544			mode_t mode)
1545{
1546	inode->i_uid = current_fsuid();
1547	if (dir && dir->i_mode & S_ISGID) {
1548		inode->i_gid = dir->i_gid;
1549		if (S_ISDIR(mode))
1550			mode |= S_ISGID;
1551	} else
1552		inode->i_gid = current_fsgid();
1553	inode->i_mode = mode;
1554}
1555EXPORT_SYMBOL(inode_init_owner);
1556