1/*
2 *  linux/fs/exec.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19 * current->executable is only used by the procfs.  This allows a dispatch
20 * table to check for several different types  of binary formats.  We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/stat.h>
30#include <linux/fcntl.h>
31#include <linux/swap.h>
32#include <linux/string.h>
33#include <linux/init.h>
34#include <linux/pagemap.h>
35#include <linux/perf_event.h>
36#include <linux/highmem.h>
37#include <linux/spinlock.h>
38#include <linux/key.h>
39#include <linux/personality.h>
40#include <linux/binfmts.h>
41#include <linux/utsname.h>
42#include <linux/pid_namespace.h>
43#include <linux/module.h>
44#include <linux/namei.h>
45#include <linux/proc_fs.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57
58#include <asm/uaccess.h>
59#include <asm/mmu_context.h>
60#include <asm/tlb.h>
61#include "internal.h"
62
63int core_uses_pid;
64char core_pattern[CORENAME_MAX_SIZE] = "core";
65unsigned int core_pipe_limit;
66int suid_dumpable = 0;
67
68/* The maximal length of core_pattern is also specified in sysctl.c */
69
70static LIST_HEAD(formats);
71static DEFINE_RWLOCK(binfmt_lock);
72
73int __register_binfmt(struct linux_binfmt * fmt, int insert)
74{
75	if (!fmt)
76		return -EINVAL;
77	write_lock(&binfmt_lock);
78	insert ? list_add(&fmt->lh, &formats) :
79		 list_add_tail(&fmt->lh, &formats);
80	write_unlock(&binfmt_lock);
81	return 0;
82}
83
84EXPORT_SYMBOL(__register_binfmt);
85
86void unregister_binfmt(struct linux_binfmt * fmt)
87{
88	write_lock(&binfmt_lock);
89	list_del(&fmt->lh);
90	write_unlock(&binfmt_lock);
91}
92
93EXPORT_SYMBOL(unregister_binfmt);
94
95static inline void put_binfmt(struct linux_binfmt * fmt)
96{
97	module_put(fmt->module);
98}
99
100/*
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
103 *
104 * Also note that we take the address to load from from the file itself.
105 */
106SYSCALL_DEFINE1(uselib, const char __user *, library)
107{
108	struct file *file;
109	char *tmp = getname(library);
110	int error = PTR_ERR(tmp);
111
112	if (IS_ERR(tmp))
113		goto out;
114
115	file = do_filp_open(AT_FDCWD, tmp,
116				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117				MAY_READ | MAY_EXEC | MAY_OPEN);
118	putname(tmp);
119	error = PTR_ERR(file);
120	if (IS_ERR(file))
121		goto out;
122
123	error = -EINVAL;
124	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125		goto exit;
126
127	error = -EACCES;
128	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129		goto exit;
130
131	fsnotify_open(file);
132
133	error = -ENOEXEC;
134	if(file->f_op) {
135		struct linux_binfmt * fmt;
136
137		read_lock(&binfmt_lock);
138		list_for_each_entry(fmt, &formats, lh) {
139			if (!fmt->load_shlib)
140				continue;
141			if (!try_module_get(fmt->module))
142				continue;
143			read_unlock(&binfmt_lock);
144			error = fmt->load_shlib(file);
145			read_lock(&binfmt_lock);
146			put_binfmt(fmt);
147			if (error != -ENOEXEC)
148				break;
149		}
150		read_unlock(&binfmt_lock);
151	}
152exit:
153	fput(file);
154out:
155  	return error;
156}
157
158#ifdef CONFIG_MMU
159
160void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
161{
162	struct mm_struct *mm = current->mm;
163	long diff = (long)(pages - bprm->vma_pages);
164
165	if (!mm || !diff)
166		return;
167
168	bprm->vma_pages = pages;
169
170#ifdef SPLIT_RSS_COUNTING
171	add_mm_counter(mm, MM_ANONPAGES, diff);
172#else
173	spin_lock(&mm->page_table_lock);
174	add_mm_counter(mm, MM_ANONPAGES, diff);
175	spin_unlock(&mm->page_table_lock);
176#endif
177}
178
179struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180		int write)
181{
182	struct page *page;
183	int ret;
184
185#ifdef CONFIG_STACK_GROWSUP
186	if (write) {
187		ret = expand_stack_downwards(bprm->vma, pos);
188		if (ret < 0)
189			return NULL;
190	}
191#endif
192	ret = get_user_pages(current, bprm->mm, pos,
193			1, write, 1, &page, NULL);
194	if (ret <= 0)
195		return NULL;
196
197	if (write) {
198		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199		struct rlimit *rlim;
200
201		acct_arg_size(bprm, size / PAGE_SIZE);
202
203		/*
204		 * We've historically supported up to 32 pages (ARG_MAX)
205		 * of argument strings even with small stacks
206		 */
207		if (size <= ARG_MAX)
208			return page;
209
210		/*
211		 * Limit to 1/4-th the stack size for the argv+env strings.
212		 * This ensures that:
213		 *  - the remaining binfmt code will not run out of stack space,
214		 *  - the program will have a reasonable amount of stack left
215		 *    to work from.
216		 */
217		rlim = current->signal->rlim;
218		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219			put_page(page);
220			return NULL;
221		}
222	}
223
224	return page;
225}
226
227static void put_arg_page(struct page *page)
228{
229	put_page(page);
230}
231
232static void free_arg_page(struct linux_binprm *bprm, int i)
233{
234}
235
236static void free_arg_pages(struct linux_binprm *bprm)
237{
238}
239
240static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241		struct page *page)
242{
243	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244}
245
246static int __bprm_mm_init(struct linux_binprm *bprm)
247{
248	int err;
249	struct vm_area_struct *vma = NULL;
250	struct mm_struct *mm = bprm->mm;
251
252	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253	if (!vma)
254		return -ENOMEM;
255
256	down_write(&mm->mmap_sem);
257	vma->vm_mm = mm;
258
259	/*
260	 * Place the stack at the largest stack address the architecture
261	 * supports. Later, we'll move this to an appropriate place. We don't
262	 * use STACK_TOP because that can depend on attributes which aren't
263	 * configured yet.
264	 */
265	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266	vma->vm_end = STACK_TOP_MAX;
267	vma->vm_start = vma->vm_end - PAGE_SIZE;
268	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270	INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
273	if (err)
274		goto err;
275
276	err = insert_vm_struct(mm, vma);
277	if (err)
278		goto err;
279
280	mm->stack_vm = mm->total_vm = 1;
281	up_write(&mm->mmap_sem);
282	bprm->p = vma->vm_end - sizeof(void *);
283	return 0;
284err:
285	up_write(&mm->mmap_sem);
286	bprm->vma = NULL;
287	kmem_cache_free(vm_area_cachep, vma);
288	return err;
289}
290
291static bool valid_arg_len(struct linux_binprm *bprm, long len)
292{
293	return len <= MAX_ARG_STRLEN;
294}
295
296#else
297
298void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299{
300}
301
302struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303		int write)
304{
305	struct page *page;
306
307	page = bprm->page[pos / PAGE_SIZE];
308	if (!page && write) {
309		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310		if (!page)
311			return NULL;
312		bprm->page[pos / PAGE_SIZE] = page;
313	}
314
315	return page;
316}
317
318static void put_arg_page(struct page *page)
319{
320}
321
322static void free_arg_page(struct linux_binprm *bprm, int i)
323{
324	if (bprm->page[i]) {
325		__free_page(bprm->page[i]);
326		bprm->page[i] = NULL;
327	}
328}
329
330static void free_arg_pages(struct linux_binprm *bprm)
331{
332	int i;
333
334	for (i = 0; i < MAX_ARG_PAGES; i++)
335		free_arg_page(bprm, i);
336}
337
338static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339		struct page *page)
340{
341}
342
343static int __bprm_mm_init(struct linux_binprm *bprm)
344{
345	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346	return 0;
347}
348
349static bool valid_arg_len(struct linux_binprm *bprm, long len)
350{
351	return len <= bprm->p;
352}
353
354#endif /* CONFIG_MMU */
355
356/*
357 * Create a new mm_struct and populate it with a temporary stack
358 * vm_area_struct.  We don't have enough context at this point to set the stack
359 * flags, permissions, and offset, so we use temporary values.  We'll update
360 * them later in setup_arg_pages().
361 */
362int bprm_mm_init(struct linux_binprm *bprm)
363{
364	int err;
365	struct mm_struct *mm = NULL;
366
367	bprm->mm = mm = mm_alloc();
368	err = -ENOMEM;
369	if (!mm)
370		goto err;
371
372	err = init_new_context(current, mm);
373	if (err)
374		goto err;
375
376	err = __bprm_mm_init(bprm);
377	if (err)
378		goto err;
379
380	return 0;
381
382err:
383	if (mm) {
384		bprm->mm = NULL;
385		mmdrop(mm);
386	}
387
388	return err;
389}
390
391/*
392 * count() counts the number of strings in array ARGV.
393 */
394static int count(const char __user * const __user * argv, int max)
395{
396	int i = 0;
397
398	if (argv != NULL) {
399		for (;;) {
400			const char __user * p;
401
402			if (get_user(p, argv))
403				return -EFAULT;
404			if (!p)
405				break;
406			argv++;
407			if (i++ >= max)
408				return -E2BIG;
409
410			if (fatal_signal_pending(current))
411				return -ERESTARTNOHAND;
412			cond_resched();
413		}
414	}
415	return i;
416}
417
418/*
419 * 'copy_strings()' copies argument/environment strings from the old
420 * processes's memory to the new process's stack.  The call to get_user_pages()
421 * ensures the destination page is created and not swapped out.
422 */
423static int copy_strings(int argc, const char __user *const __user *argv,
424			struct linux_binprm *bprm)
425{
426	struct page *kmapped_page = NULL;
427	char *kaddr = NULL;
428	unsigned long kpos = 0;
429	int ret;
430
431	while (argc-- > 0) {
432		const char __user *str;
433		int len;
434		unsigned long pos;
435
436		if (get_user(str, argv+argc) ||
437				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
438			ret = -EFAULT;
439			goto out;
440		}
441
442		if (!valid_arg_len(bprm, len)) {
443			ret = -E2BIG;
444			goto out;
445		}
446
447		/* We're going to work our way backwords. */
448		pos = bprm->p;
449		str += len;
450		bprm->p -= len;
451
452		while (len > 0) {
453			int offset, bytes_to_copy;
454
455			if (fatal_signal_pending(current)) {
456				ret = -ERESTARTNOHAND;
457				goto out;
458			}
459			cond_resched();
460
461			offset = pos % PAGE_SIZE;
462			if (offset == 0)
463				offset = PAGE_SIZE;
464
465			bytes_to_copy = offset;
466			if (bytes_to_copy > len)
467				bytes_to_copy = len;
468
469			offset -= bytes_to_copy;
470			pos -= bytes_to_copy;
471			str -= bytes_to_copy;
472			len -= bytes_to_copy;
473
474			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
475				struct page *page;
476
477				page = get_arg_page(bprm, pos, 1);
478				if (!page) {
479					ret = -E2BIG;
480					goto out;
481				}
482
483				if (kmapped_page) {
484					flush_kernel_dcache_page(kmapped_page);
485					kunmap(kmapped_page);
486					put_arg_page(kmapped_page);
487				}
488				kmapped_page = page;
489				kaddr = kmap(kmapped_page);
490				kpos = pos & PAGE_MASK;
491				flush_arg_page(bprm, kpos, kmapped_page);
492			}
493			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
494				ret = -EFAULT;
495				goto out;
496			}
497		}
498	}
499	ret = 0;
500out:
501	if (kmapped_page) {
502		flush_kernel_dcache_page(kmapped_page);
503		kunmap(kmapped_page);
504		put_arg_page(kmapped_page);
505	}
506	return ret;
507}
508
509/*
510 * Like copy_strings, but get argv and its values from kernel memory.
511 */
512int copy_strings_kernel(int argc, const char *const *argv,
513			struct linux_binprm *bprm)
514{
515	int r;
516	mm_segment_t oldfs = get_fs();
517	set_fs(KERNEL_DS);
518	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
519	set_fs(oldfs);
520	return r;
521}
522EXPORT_SYMBOL(copy_strings_kernel);
523
524#ifdef CONFIG_MMU
525
526/*
527 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
528 * the binfmt code determines where the new stack should reside, we shift it to
529 * its final location.  The process proceeds as follows:
530 *
531 * 1) Use shift to calculate the new vma endpoints.
532 * 2) Extend vma to cover both the old and new ranges.  This ensures the
533 *    arguments passed to subsequent functions are consistent.
534 * 3) Move vma's page tables to the new range.
535 * 4) Free up any cleared pgd range.
536 * 5) Shrink the vma to cover only the new range.
537 */
538static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
539{
540	struct mm_struct *mm = vma->vm_mm;
541	unsigned long old_start = vma->vm_start;
542	unsigned long old_end = vma->vm_end;
543	unsigned long length = old_end - old_start;
544	unsigned long new_start = old_start - shift;
545	unsigned long new_end = old_end - shift;
546	struct mmu_gather *tlb;
547
548	BUG_ON(new_start > new_end);
549
550	/*
551	 * ensure there are no vmas between where we want to go
552	 * and where we are
553	 */
554	if (vma != find_vma(mm, new_start))
555		return -EFAULT;
556
557	/*
558	 * cover the whole range: [new_start, old_end)
559	 */
560	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
561		return -ENOMEM;
562
563	/*
564	 * move the page tables downwards, on failure we rely on
565	 * process cleanup to remove whatever mess we made.
566	 */
567	if (length != move_page_tables(vma, old_start,
568				       vma, new_start, length))
569		return -ENOMEM;
570
571	lru_add_drain();
572	tlb = tlb_gather_mmu(mm, 0);
573	if (new_end > old_start) {
574		/*
575		 * when the old and new regions overlap clear from new_end.
576		 */
577		free_pgd_range(tlb, new_end, old_end, new_end,
578			vma->vm_next ? vma->vm_next->vm_start : 0);
579	} else {
580		/*
581		 * otherwise, clean from old_start; this is done to not touch
582		 * the address space in [new_end, old_start) some architectures
583		 * have constraints on va-space that make this illegal (IA64) -
584		 * for the others its just a little faster.
585		 */
586		free_pgd_range(tlb, old_start, old_end, new_end,
587			vma->vm_next ? vma->vm_next->vm_start : 0);
588	}
589	tlb_finish_mmu(tlb, new_end, old_end);
590
591	/*
592	 * Shrink the vma to just the new range.  Always succeeds.
593	 */
594	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
595
596	return 0;
597}
598
599/*
600 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
601 * the stack is optionally relocated, and some extra space is added.
602 */
603int setup_arg_pages(struct linux_binprm *bprm,
604		    unsigned long stack_top,
605		    int executable_stack)
606{
607	unsigned long ret;
608	unsigned long stack_shift;
609	struct mm_struct *mm = current->mm;
610	struct vm_area_struct *vma = bprm->vma;
611	struct vm_area_struct *prev = NULL;
612	unsigned long vm_flags;
613	unsigned long stack_base;
614	unsigned long stack_size;
615	unsigned long stack_expand;
616	unsigned long rlim_stack;
617
618#ifdef CONFIG_STACK_GROWSUP
619	/* Limit stack size to 1GB */
620	stack_base = rlimit_max(RLIMIT_STACK);
621	if (stack_base > (1 << 30))
622		stack_base = 1 << 30;
623
624	/* Make sure we didn't let the argument array grow too large. */
625	if (vma->vm_end - vma->vm_start > stack_base)
626		return -ENOMEM;
627
628	stack_base = PAGE_ALIGN(stack_top - stack_base);
629
630	stack_shift = vma->vm_start - stack_base;
631	mm->arg_start = bprm->p - stack_shift;
632	bprm->p = vma->vm_end - stack_shift;
633#else
634	stack_top = arch_align_stack(stack_top);
635	stack_top = PAGE_ALIGN(stack_top);
636
637	if (unlikely(stack_top < mmap_min_addr) ||
638	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
639		return -ENOMEM;
640
641	stack_shift = vma->vm_end - stack_top;
642
643	bprm->p -= stack_shift;
644	mm->arg_start = bprm->p;
645#endif
646
647	if (bprm->loader)
648		bprm->loader -= stack_shift;
649	bprm->exec -= stack_shift;
650
651	down_write(&mm->mmap_sem);
652	vm_flags = VM_STACK_FLAGS;
653
654	/*
655	 * Adjust stack execute permissions; explicitly enable for
656	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
657	 * (arch default) otherwise.
658	 */
659	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
660		vm_flags |= VM_EXEC;
661	else if (executable_stack == EXSTACK_DISABLE_X)
662		vm_flags &= ~VM_EXEC;
663	vm_flags |= mm->def_flags;
664	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
665
666	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
667			vm_flags);
668	if (ret)
669		goto out_unlock;
670	BUG_ON(prev != vma);
671
672	/* Move stack pages down in memory. */
673	if (stack_shift) {
674		ret = shift_arg_pages(vma, stack_shift);
675		if (ret)
676			goto out_unlock;
677	}
678
679	/* mprotect_fixup is overkill to remove the temporary stack flags */
680	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
681
682	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
683	stack_size = vma->vm_end - vma->vm_start;
684	/*
685	 * Align this down to a page boundary as expand_stack
686	 * will align it up.
687	 */
688	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
689#ifdef CONFIG_STACK_GROWSUP
690	if (stack_size + stack_expand > rlim_stack)
691		stack_base = vma->vm_start + rlim_stack;
692	else
693		stack_base = vma->vm_end + stack_expand;
694#else
695	if (stack_size + stack_expand > rlim_stack)
696		stack_base = vma->vm_end - rlim_stack;
697	else
698		stack_base = vma->vm_start - stack_expand;
699#endif
700	current->mm->start_stack = bprm->p;
701	ret = expand_stack(vma, stack_base);
702	if (ret)
703		ret = -EFAULT;
704
705out_unlock:
706	up_write(&mm->mmap_sem);
707	return ret;
708}
709EXPORT_SYMBOL(setup_arg_pages);
710
711#endif /* CONFIG_MMU */
712
713struct file *open_exec(const char *name)
714{
715	struct file *file;
716	int err;
717
718	file = do_filp_open(AT_FDCWD, name,
719				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
720				MAY_EXEC | MAY_OPEN);
721	if (IS_ERR(file))
722		goto out;
723
724	err = -EACCES;
725	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
726		goto exit;
727
728	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
729		goto exit;
730
731	fsnotify_open(file);
732
733	err = deny_write_access(file);
734	if (err)
735		goto exit;
736
737out:
738	return file;
739
740exit:
741	fput(file);
742	return ERR_PTR(err);
743}
744EXPORT_SYMBOL(open_exec);
745
746int kernel_read(struct file *file, loff_t offset,
747		char *addr, unsigned long count)
748{
749	mm_segment_t old_fs;
750	loff_t pos = offset;
751	int result;
752
753	old_fs = get_fs();
754	set_fs(get_ds());
755	/* The cast to a user pointer is valid due to the set_fs() */
756	result = vfs_read(file, (void __user *)addr, count, &pos);
757	set_fs(old_fs);
758	return result;
759}
760
761EXPORT_SYMBOL(kernel_read);
762
763static int exec_mmap(struct mm_struct *mm)
764{
765	struct task_struct *tsk;
766	struct mm_struct * old_mm, *active_mm;
767
768	/* Notify parent that we're no longer interested in the old VM */
769	tsk = current;
770	old_mm = current->mm;
771	sync_mm_rss(tsk, old_mm);
772	mm_release(tsk, old_mm);
773
774	if (old_mm) {
775		/*
776		 * Make sure that if there is a core dump in progress
777		 * for the old mm, we get out and die instead of going
778		 * through with the exec.  We must hold mmap_sem around
779		 * checking core_state and changing tsk->mm.
780		 */
781		down_read(&old_mm->mmap_sem);
782		if (unlikely(old_mm->core_state)) {
783			up_read(&old_mm->mmap_sem);
784			return -EINTR;
785		}
786	}
787	task_lock(tsk);
788	active_mm = tsk->active_mm;
789	tsk->mm = mm;
790	tsk->active_mm = mm;
791	activate_mm(active_mm, mm);
792	task_unlock(tsk);
793	arch_pick_mmap_layout(mm);
794	if (old_mm) {
795		up_read(&old_mm->mmap_sem);
796		BUG_ON(active_mm != old_mm);
797		mm_update_next_owner(old_mm);
798		mmput(old_mm);
799		return 0;
800	}
801	mmdrop(active_mm);
802	return 0;
803}
804
805/*
806 * This function makes sure the current process has its own signal table,
807 * so that flush_signal_handlers can later reset the handlers without
808 * disturbing other processes.  (Other processes might share the signal
809 * table via the CLONE_SIGHAND option to clone().)
810 */
811static int de_thread(struct task_struct *tsk)
812{
813	struct signal_struct *sig = tsk->signal;
814	struct sighand_struct *oldsighand = tsk->sighand;
815	spinlock_t *lock = &oldsighand->siglock;
816
817	if (thread_group_empty(tsk))
818		goto no_thread_group;
819
820	/*
821	 * Kill all other threads in the thread group.
822	 */
823	spin_lock_irq(lock);
824	if (signal_group_exit(sig)) {
825		/*
826		 * Another group action in progress, just
827		 * return so that the signal is processed.
828		 */
829		spin_unlock_irq(lock);
830		return -EAGAIN;
831	}
832
833	sig->group_exit_task = tsk;
834	sig->notify_count = zap_other_threads(tsk);
835	if (!thread_group_leader(tsk))
836		sig->notify_count--;
837
838	while (sig->notify_count) {
839		__set_current_state(TASK_UNINTERRUPTIBLE);
840		spin_unlock_irq(lock);
841		schedule();
842		spin_lock_irq(lock);
843	}
844	spin_unlock_irq(lock);
845
846	/*
847	 * At this point all other threads have exited, all we have to
848	 * do is to wait for the thread group leader to become inactive,
849	 * and to assume its PID:
850	 */
851	if (!thread_group_leader(tsk)) {
852		struct task_struct *leader = tsk->group_leader;
853
854		sig->notify_count = -1;	/* for exit_notify() */
855		for (;;) {
856			write_lock_irq(&tasklist_lock);
857			if (likely(leader->exit_state))
858				break;
859			__set_current_state(TASK_UNINTERRUPTIBLE);
860			write_unlock_irq(&tasklist_lock);
861			schedule();
862		}
863
864		/*
865		 * The only record we have of the real-time age of a
866		 * process, regardless of execs it's done, is start_time.
867		 * All the past CPU time is accumulated in signal_struct
868		 * from sister threads now dead.  But in this non-leader
869		 * exec, nothing survives from the original leader thread,
870		 * whose birth marks the true age of this process now.
871		 * When we take on its identity by switching to its PID, we
872		 * also take its birthdate (always earlier than our own).
873		 */
874		tsk->start_time = leader->start_time;
875
876		BUG_ON(!same_thread_group(leader, tsk));
877		BUG_ON(has_group_leader_pid(tsk));
878		/*
879		 * An exec() starts a new thread group with the
880		 * TGID of the previous thread group. Rehash the
881		 * two threads with a switched PID, and release
882		 * the former thread group leader:
883		 */
884
885		/* Become a process group leader with the old leader's pid.
886		 * The old leader becomes a thread of the this thread group.
887		 * Note: The old leader also uses this pid until release_task
888		 *       is called.  Odd but simple and correct.
889		 */
890		detach_pid(tsk, PIDTYPE_PID);
891		tsk->pid = leader->pid;
892		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
893		transfer_pid(leader, tsk, PIDTYPE_PGID);
894		transfer_pid(leader, tsk, PIDTYPE_SID);
895
896		list_replace_rcu(&leader->tasks, &tsk->tasks);
897		list_replace_init(&leader->sibling, &tsk->sibling);
898
899		tsk->group_leader = tsk;
900		leader->group_leader = tsk;
901
902		tsk->exit_signal = SIGCHLD;
903
904		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
905		leader->exit_state = EXIT_DEAD;
906		write_unlock_irq(&tasklist_lock);
907
908		release_task(leader);
909	}
910
911	sig->group_exit_task = NULL;
912	sig->notify_count = 0;
913
914no_thread_group:
915	if (current->mm)
916		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
917
918	exit_itimers(sig);
919	flush_itimer_signals();
920
921	if (atomic_read(&oldsighand->count) != 1) {
922		struct sighand_struct *newsighand;
923		/*
924		 * This ->sighand is shared with the CLONE_SIGHAND
925		 * but not CLONE_THREAD task, switch to the new one.
926		 */
927		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
928		if (!newsighand)
929			return -ENOMEM;
930
931		atomic_set(&newsighand->count, 1);
932		memcpy(newsighand->action, oldsighand->action,
933		       sizeof(newsighand->action));
934
935		write_lock_irq(&tasklist_lock);
936		spin_lock(&oldsighand->siglock);
937		rcu_assign_pointer(tsk->sighand, newsighand);
938		spin_unlock(&oldsighand->siglock);
939		write_unlock_irq(&tasklist_lock);
940
941		__cleanup_sighand(oldsighand);
942	}
943
944	BUG_ON(!thread_group_leader(tsk));
945	return 0;
946}
947
948/*
949 * These functions flushes out all traces of the currently running executable
950 * so that a new one can be started
951 */
952static void flush_old_files(struct files_struct * files)
953{
954	long j = -1;
955	struct fdtable *fdt;
956
957	spin_lock(&files->file_lock);
958	for (;;) {
959		unsigned long set, i;
960
961		j++;
962		i = j * __NFDBITS;
963		fdt = files_fdtable(files);
964		if (i >= fdt->max_fds)
965			break;
966		set = fdt->close_on_exec->fds_bits[j];
967		if (!set)
968			continue;
969		fdt->close_on_exec->fds_bits[j] = 0;
970		spin_unlock(&files->file_lock);
971		for ( ; set ; i++,set >>= 1) {
972			if (set & 1) {
973				sys_close(i);
974			}
975		}
976		spin_lock(&files->file_lock);
977
978	}
979	spin_unlock(&files->file_lock);
980}
981
982char *get_task_comm(char *buf, struct task_struct *tsk)
983{
984	/* buf must be at least sizeof(tsk->comm) in size */
985	task_lock(tsk);
986	strncpy(buf, tsk->comm, sizeof(tsk->comm));
987	task_unlock(tsk);
988	return buf;
989}
990
991void set_task_comm(struct task_struct *tsk, char *buf)
992{
993	task_lock(tsk);
994
995	/*
996	 * Threads may access current->comm without holding
997	 * the task lock, so write the string carefully.
998	 * Readers without a lock may see incomplete new
999	 * names but are safe from non-terminating string reads.
1000	 */
1001	memset(tsk->comm, 0, TASK_COMM_LEN);
1002	wmb();
1003	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1004	task_unlock(tsk);
1005	perf_event_comm(tsk);
1006}
1007
1008int flush_old_exec(struct linux_binprm * bprm)
1009{
1010	int retval;
1011
1012	/*
1013	 * Make sure we have a private signal table and that
1014	 * we are unassociated from the previous thread group.
1015	 */
1016	retval = de_thread(current);
1017	if (retval)
1018		goto out;
1019
1020	set_mm_exe_file(bprm->mm, bprm->file);
1021
1022	/*
1023	 * Release all of the old mmap stuff
1024	 */
1025	acct_arg_size(bprm, 0);
1026	retval = exec_mmap(bprm->mm);
1027	if (retval)
1028		goto out;
1029
1030	bprm->mm = NULL;		/* We're using it now */
1031
1032	current->flags &= ~PF_RANDOMIZE;
1033	flush_thread();
1034	current->personality &= ~bprm->per_clear;
1035
1036	return 0;
1037
1038out:
1039	return retval;
1040}
1041EXPORT_SYMBOL(flush_old_exec);
1042
1043void setup_new_exec(struct linux_binprm * bprm)
1044{
1045	int i, ch;
1046	const char *name;
1047	char tcomm[sizeof(current->comm)];
1048
1049	arch_pick_mmap_layout(current->mm);
1050
1051	/* This is the point of no return */
1052	current->sas_ss_sp = current->sas_ss_size = 0;
1053
1054	if (current_euid() == current_uid() && current_egid() == current_gid())
1055		set_dumpable(current->mm, 1);
1056	else
1057		set_dumpable(current->mm, suid_dumpable);
1058
1059	name = bprm->filename;
1060
1061	/* Copies the binary name from after last slash */
1062	for (i=0; (ch = *(name++)) != '\0';) {
1063		if (ch == '/')
1064			i = 0; /* overwrite what we wrote */
1065		else
1066			if (i < (sizeof(tcomm) - 1))
1067				tcomm[i++] = ch;
1068	}
1069	tcomm[i] = '\0';
1070	set_task_comm(current, tcomm);
1071
1072	/* Set the new mm task size. We have to do that late because it may
1073	 * depend on TIF_32BIT which is only updated in flush_thread() on
1074	 * some architectures like powerpc
1075	 */
1076	current->mm->task_size = TASK_SIZE;
1077
1078	/* install the new credentials */
1079	if (bprm->cred->uid != current_euid() ||
1080	    bprm->cred->gid != current_egid()) {
1081		current->pdeath_signal = 0;
1082	} else if (file_permission(bprm->file, MAY_READ) ||
1083		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1084		set_dumpable(current->mm, suid_dumpable);
1085	}
1086
1087	/*
1088	 * Flush performance counters when crossing a
1089	 * security domain:
1090	 */
1091	if (!get_dumpable(current->mm))
1092		perf_event_exit_task(current);
1093
1094	/* An exec changes our domain. We are no longer part of the thread
1095	   group */
1096
1097	current->self_exec_id++;
1098
1099	flush_signal_handlers(current, 0);
1100	flush_old_files(current->files);
1101}
1102EXPORT_SYMBOL(setup_new_exec);
1103
1104/*
1105 * Prepare credentials and lock ->cred_guard_mutex.
1106 * install_exec_creds() commits the new creds and drops the lock.
1107 * Or, if exec fails before, free_bprm() should release ->cred and
1108 * and unlock.
1109 */
1110int prepare_bprm_creds(struct linux_binprm *bprm)
1111{
1112	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1113		return -ERESTARTNOINTR;
1114
1115	bprm->cred = prepare_exec_creds();
1116	if (likely(bprm->cred))
1117		return 0;
1118
1119	mutex_unlock(&current->cred_guard_mutex);
1120	return -ENOMEM;
1121}
1122
1123void free_bprm(struct linux_binprm *bprm)
1124{
1125	free_arg_pages(bprm);
1126	if (bprm->cred) {
1127		mutex_unlock(&current->cred_guard_mutex);
1128		abort_creds(bprm->cred);
1129	}
1130	kfree(bprm);
1131}
1132
1133/*
1134 * install the new credentials for this executable
1135 */
1136void install_exec_creds(struct linux_binprm *bprm)
1137{
1138	security_bprm_committing_creds(bprm);
1139
1140	commit_creds(bprm->cred);
1141	bprm->cred = NULL;
1142	/*
1143	 * cred_guard_mutex must be held at least to this point to prevent
1144	 * ptrace_attach() from altering our determination of the task's
1145	 * credentials; any time after this it may be unlocked.
1146	 */
1147	security_bprm_committed_creds(bprm);
1148	mutex_unlock(&current->cred_guard_mutex);
1149}
1150EXPORT_SYMBOL(install_exec_creds);
1151
1152/*
1153 * determine how safe it is to execute the proposed program
1154 * - the caller must hold current->cred_guard_mutex to protect against
1155 *   PTRACE_ATTACH
1156 */
1157int check_unsafe_exec(struct linux_binprm *bprm)
1158{
1159	struct task_struct *p = current, *t;
1160	unsigned n_fs;
1161	int res = 0;
1162
1163	bprm->unsafe = tracehook_unsafe_exec(p);
1164
1165	n_fs = 1;
1166	spin_lock(&p->fs->lock);
1167	rcu_read_lock();
1168	for (t = next_thread(p); t != p; t = next_thread(t)) {
1169		if (t->fs == p->fs)
1170			n_fs++;
1171	}
1172	rcu_read_unlock();
1173
1174	if (p->fs->users > n_fs) {
1175		bprm->unsafe |= LSM_UNSAFE_SHARE;
1176	} else {
1177		res = -EAGAIN;
1178		if (!p->fs->in_exec) {
1179			p->fs->in_exec = 1;
1180			res = 1;
1181		}
1182	}
1183	spin_unlock(&p->fs->lock);
1184
1185	return res;
1186}
1187
1188/*
1189 * Fill the binprm structure from the inode.
1190 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1191 *
1192 * This may be called multiple times for binary chains (scripts for example).
1193 */
1194int prepare_binprm(struct linux_binprm *bprm)
1195{
1196	umode_t mode;
1197	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1198	int retval;
1199
1200	mode = inode->i_mode;
1201	if (bprm->file->f_op == NULL)
1202		return -EACCES;
1203
1204	/* clear any previous set[ug]id data from a previous binary */
1205	bprm->cred->euid = current_euid();
1206	bprm->cred->egid = current_egid();
1207
1208	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1209		/* Set-uid? */
1210		if (mode & S_ISUID) {
1211			bprm->per_clear |= PER_CLEAR_ON_SETID;
1212			bprm->cred->euid = inode->i_uid;
1213		}
1214
1215		/* Set-gid? */
1216		/*
1217		 * If setgid is set but no group execute bit then this
1218		 * is a candidate for mandatory locking, not a setgid
1219		 * executable.
1220		 */
1221		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1222			bprm->per_clear |= PER_CLEAR_ON_SETID;
1223			bprm->cred->egid = inode->i_gid;
1224		}
1225	}
1226
1227	/* fill in binprm security blob */
1228	retval = security_bprm_set_creds(bprm);
1229	if (retval)
1230		return retval;
1231	bprm->cred_prepared = 1;
1232
1233	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1234	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1235}
1236
1237EXPORT_SYMBOL(prepare_binprm);
1238
1239/*
1240 * Arguments are '\0' separated strings found at the location bprm->p
1241 * points to; chop off the first by relocating brpm->p to right after
1242 * the first '\0' encountered.
1243 */
1244int remove_arg_zero(struct linux_binprm *bprm)
1245{
1246	int ret = 0;
1247	unsigned long offset;
1248	char *kaddr;
1249	struct page *page;
1250
1251	if (!bprm->argc)
1252		return 0;
1253
1254	do {
1255		offset = bprm->p & ~PAGE_MASK;
1256		page = get_arg_page(bprm, bprm->p, 0);
1257		if (!page) {
1258			ret = -EFAULT;
1259			goto out;
1260		}
1261		kaddr = kmap_atomic(page, KM_USER0);
1262
1263		for (; offset < PAGE_SIZE && kaddr[offset];
1264				offset++, bprm->p++)
1265			;
1266
1267		kunmap_atomic(kaddr, KM_USER0);
1268		put_arg_page(page);
1269
1270		if (offset == PAGE_SIZE)
1271			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1272	} while (offset == PAGE_SIZE);
1273
1274	bprm->p++;
1275	bprm->argc--;
1276	ret = 0;
1277
1278out:
1279	return ret;
1280}
1281EXPORT_SYMBOL(remove_arg_zero);
1282
1283/*
1284 * cycle the list of binary formats handler, until one recognizes the image
1285 */
1286int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1287{
1288	unsigned int depth = bprm->recursion_depth;
1289	int try,retval;
1290	struct linux_binfmt *fmt;
1291
1292	retval = security_bprm_check(bprm);
1293	if (retval)
1294		return retval;
1295
1296	/* kernel module loader fixup */
1297	/* so we don't try to load run modprobe in kernel space. */
1298	set_fs(USER_DS);
1299
1300	retval = audit_bprm(bprm);
1301	if (retval)
1302		return retval;
1303
1304	retval = -ENOENT;
1305	for (try=0; try<2; try++) {
1306		read_lock(&binfmt_lock);
1307		list_for_each_entry(fmt, &formats, lh) {
1308			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1309			if (!fn)
1310				continue;
1311			if (!try_module_get(fmt->module))
1312				continue;
1313			read_unlock(&binfmt_lock);
1314			retval = fn(bprm, regs);
1315			/*
1316			 * Restore the depth counter to its starting value
1317			 * in this call, so we don't have to rely on every
1318			 * load_binary function to restore it on return.
1319			 */
1320			bprm->recursion_depth = depth;
1321			if (retval >= 0) {
1322				if (depth == 0)
1323					tracehook_report_exec(fmt, bprm, regs);
1324				put_binfmt(fmt);
1325				allow_write_access(bprm->file);
1326				if (bprm->file)
1327					fput(bprm->file);
1328				bprm->file = NULL;
1329				current->did_exec = 1;
1330				proc_exec_connector(current);
1331				return retval;
1332			}
1333			read_lock(&binfmt_lock);
1334			put_binfmt(fmt);
1335			if (retval != -ENOEXEC || bprm->mm == NULL)
1336				break;
1337			if (!bprm->file) {
1338				read_unlock(&binfmt_lock);
1339				return retval;
1340			}
1341		}
1342		read_unlock(&binfmt_lock);
1343		if (retval != -ENOEXEC || bprm->mm == NULL) {
1344			break;
1345#ifdef CONFIG_MODULES
1346		} else {
1347#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1348			if (printable(bprm->buf[0]) &&
1349			    printable(bprm->buf[1]) &&
1350			    printable(bprm->buf[2]) &&
1351			    printable(bprm->buf[3]))
1352				break; /* -ENOEXEC */
1353			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1354#endif
1355		}
1356	}
1357	return retval;
1358}
1359
1360EXPORT_SYMBOL(search_binary_handler);
1361
1362/*
1363 * sys_execve() executes a new program.
1364 */
1365int do_execve(const char * filename,
1366	const char __user *const __user *argv,
1367	const char __user *const __user *envp,
1368	struct pt_regs * regs)
1369{
1370	struct linux_binprm *bprm;
1371	struct file *file;
1372	struct files_struct *displaced;
1373	bool clear_in_exec;
1374	int retval;
1375
1376	retval = unshare_files(&displaced);
1377	if (retval)
1378		goto out_ret;
1379
1380	retval = -ENOMEM;
1381	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1382	if (!bprm)
1383		goto out_files;
1384
1385	retval = prepare_bprm_creds(bprm);
1386	if (retval)
1387		goto out_free;
1388
1389	retval = check_unsafe_exec(bprm);
1390	if (retval < 0)
1391		goto out_free;
1392	clear_in_exec = retval;
1393	current->in_execve = 1;
1394
1395	file = open_exec(filename);
1396	retval = PTR_ERR(file);
1397	if (IS_ERR(file))
1398		goto out_unmark;
1399
1400	sched_exec();
1401
1402	bprm->file = file;
1403	bprm->filename = filename;
1404	bprm->interp = filename;
1405
1406	retval = bprm_mm_init(bprm);
1407	if (retval)
1408		goto out_file;
1409
1410	bprm->argc = count(argv, MAX_ARG_STRINGS);
1411	if ((retval = bprm->argc) < 0)
1412		goto out;
1413
1414	bprm->envc = count(envp, MAX_ARG_STRINGS);
1415	if ((retval = bprm->envc) < 0)
1416		goto out;
1417
1418	retval = prepare_binprm(bprm);
1419	if (retval < 0)
1420		goto out;
1421
1422	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1423	if (retval < 0)
1424		goto out;
1425
1426	bprm->exec = bprm->p;
1427	retval = copy_strings(bprm->envc, envp, bprm);
1428	if (retval < 0)
1429		goto out;
1430
1431	retval = copy_strings(bprm->argc, argv, bprm);
1432	if (retval < 0)
1433		goto out;
1434
1435	current->flags &= ~PF_KTHREAD;
1436	retval = search_binary_handler(bprm,regs);
1437	if (retval < 0)
1438		goto out;
1439
1440	/* execve succeeded */
1441	current->fs->in_exec = 0;
1442	current->in_execve = 0;
1443	acct_update_integrals(current);
1444	free_bprm(bprm);
1445	if (displaced)
1446		put_files_struct(displaced);
1447	return retval;
1448
1449out:
1450	if (bprm->mm) {
1451		acct_arg_size(bprm, 0);
1452		mmput(bprm->mm);
1453	}
1454
1455out_file:
1456	if (bprm->file) {
1457		allow_write_access(bprm->file);
1458		fput(bprm->file);
1459	}
1460
1461out_unmark:
1462	if (clear_in_exec)
1463		current->fs->in_exec = 0;
1464	current->in_execve = 0;
1465
1466out_free:
1467	free_bprm(bprm);
1468
1469out_files:
1470	if (displaced)
1471		reset_files_struct(displaced);
1472out_ret:
1473	return retval;
1474}
1475
1476void set_binfmt(struct linux_binfmt *new)
1477{
1478	struct mm_struct *mm = current->mm;
1479
1480	if (mm->binfmt)
1481		module_put(mm->binfmt->module);
1482
1483	mm->binfmt = new;
1484	if (new)
1485		__module_get(new->module);
1486}
1487
1488EXPORT_SYMBOL(set_binfmt);
1489
1490/* format_corename will inspect the pattern parameter, and output a
1491 * name into corename, which must have space for at least
1492 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1493 */
1494static int format_corename(char *corename, long signr)
1495{
1496	const struct cred *cred = current_cred();
1497	const char *pat_ptr = core_pattern;
1498	int ispipe = (*pat_ptr == '|');
1499	char *out_ptr = corename;
1500	char *const out_end = corename + CORENAME_MAX_SIZE;
1501	int rc;
1502	int pid_in_pattern = 0;
1503
1504	/* Repeat as long as we have more pattern to process and more output
1505	   space */
1506	while (*pat_ptr) {
1507		if (*pat_ptr != '%') {
1508			if (out_ptr == out_end)
1509				goto out;
1510			*out_ptr++ = *pat_ptr++;
1511		} else {
1512			switch (*++pat_ptr) {
1513			case 0:
1514				goto out;
1515			/* Double percent, output one percent */
1516			case '%':
1517				if (out_ptr == out_end)
1518					goto out;
1519				*out_ptr++ = '%';
1520				break;
1521			/* pid */
1522			case 'p':
1523				pid_in_pattern = 1;
1524				rc = snprintf(out_ptr, out_end - out_ptr,
1525					      "%d", task_tgid_vnr(current));
1526				if (rc > out_end - out_ptr)
1527					goto out;
1528				out_ptr += rc;
1529				break;
1530			/* uid */
1531			case 'u':
1532				rc = snprintf(out_ptr, out_end - out_ptr,
1533					      "%d", cred->uid);
1534				if (rc > out_end - out_ptr)
1535					goto out;
1536				out_ptr += rc;
1537				break;
1538			/* gid */
1539			case 'g':
1540				rc = snprintf(out_ptr, out_end - out_ptr,
1541					      "%d", cred->gid);
1542				if (rc > out_end - out_ptr)
1543					goto out;
1544				out_ptr += rc;
1545				break;
1546			/* signal that caused the coredump */
1547			case 's':
1548				rc = snprintf(out_ptr, out_end - out_ptr,
1549					      "%ld", signr);
1550				if (rc > out_end - out_ptr)
1551					goto out;
1552				out_ptr += rc;
1553				break;
1554			/* UNIX time of coredump */
1555			case 't': {
1556				struct timeval tv;
1557				do_gettimeofday(&tv);
1558				rc = snprintf(out_ptr, out_end - out_ptr,
1559					      "%lu", tv.tv_sec);
1560				if (rc > out_end - out_ptr)
1561					goto out;
1562				out_ptr += rc;
1563				break;
1564			}
1565			/* hostname */
1566			case 'h':
1567				down_read(&uts_sem);
1568				rc = snprintf(out_ptr, out_end - out_ptr,
1569					      "%s", utsname()->nodename);
1570				up_read(&uts_sem);
1571				if (rc > out_end - out_ptr)
1572					goto out;
1573				out_ptr += rc;
1574				break;
1575			/* executable */
1576			case 'e':
1577				rc = snprintf(out_ptr, out_end - out_ptr,
1578					      "%s", current->comm);
1579				if (rc > out_end - out_ptr)
1580					goto out;
1581				out_ptr += rc;
1582				break;
1583			/* core limit size */
1584			case 'c':
1585				rc = snprintf(out_ptr, out_end - out_ptr,
1586					      "%lu", rlimit(RLIMIT_CORE));
1587				if (rc > out_end - out_ptr)
1588					goto out;
1589				out_ptr += rc;
1590				break;
1591			default:
1592				break;
1593			}
1594			++pat_ptr;
1595		}
1596	}
1597	/* Backward compatibility with core_uses_pid:
1598	 *
1599	 * If core_pattern does not include a %p (as is the default)
1600	 * and core_uses_pid is set, then .%pid will be appended to
1601	 * the filename. Do not do this for piped commands. */
1602	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1603		rc = snprintf(out_ptr, out_end - out_ptr,
1604			      ".%d", task_tgid_vnr(current));
1605		if (rc > out_end - out_ptr)
1606			goto out;
1607		out_ptr += rc;
1608	}
1609out:
1610	*out_ptr = 0;
1611	return ispipe;
1612}
1613
1614static int zap_process(struct task_struct *start, int exit_code)
1615{
1616	struct task_struct *t;
1617	int nr = 0;
1618
1619	start->signal->flags = SIGNAL_GROUP_EXIT;
1620	start->signal->group_exit_code = exit_code;
1621	start->signal->group_stop_count = 0;
1622
1623	t = start;
1624	do {
1625		if (t != current && t->mm) {
1626			sigaddset(&t->pending.signal, SIGKILL);
1627			signal_wake_up(t, 1);
1628			nr++;
1629		}
1630	} while_each_thread(start, t);
1631
1632	return nr;
1633}
1634
1635static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1636				struct core_state *core_state, int exit_code)
1637{
1638	struct task_struct *g, *p;
1639	unsigned long flags;
1640	int nr = -EAGAIN;
1641
1642	spin_lock_irq(&tsk->sighand->siglock);
1643	if (!signal_group_exit(tsk->signal)) {
1644		mm->core_state = core_state;
1645		nr = zap_process(tsk, exit_code);
1646	}
1647	spin_unlock_irq(&tsk->sighand->siglock);
1648	if (unlikely(nr < 0))
1649		return nr;
1650
1651	if (atomic_read(&mm->mm_users) == nr + 1)
1652		goto done;
1653	/*
1654	 * We should find and kill all tasks which use this mm, and we should
1655	 * count them correctly into ->nr_threads. We don't take tasklist
1656	 * lock, but this is safe wrt:
1657	 *
1658	 * fork:
1659	 *	None of sub-threads can fork after zap_process(leader). All
1660	 *	processes which were created before this point should be
1661	 *	visible to zap_threads() because copy_process() adds the new
1662	 *	process to the tail of init_task.tasks list, and lock/unlock
1663	 *	of ->siglock provides a memory barrier.
1664	 *
1665	 * do_exit:
1666	 *	The caller holds mm->mmap_sem. This means that the task which
1667	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1668	 *	its ->mm.
1669	 *
1670	 * de_thread:
1671	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1672	 *	we must see either old or new leader, this does not matter.
1673	 *	However, it can change p->sighand, so lock_task_sighand(p)
1674	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1675	 *	it can't fail.
1676	 *
1677	 *	Note also that "g" can be the old leader with ->mm == NULL
1678	 *	and already unhashed and thus removed from ->thread_group.
1679	 *	This is OK, __unhash_process()->list_del_rcu() does not
1680	 *	clear the ->next pointer, we will find the new leader via
1681	 *	next_thread().
1682	 */
1683	rcu_read_lock();
1684	for_each_process(g) {
1685		if (g == tsk->group_leader)
1686			continue;
1687		if (g->flags & PF_KTHREAD)
1688			continue;
1689		p = g;
1690		do {
1691			if (p->mm) {
1692				if (unlikely(p->mm == mm)) {
1693					lock_task_sighand(p, &flags);
1694					nr += zap_process(p, exit_code);
1695					unlock_task_sighand(p, &flags);
1696				}
1697				break;
1698			}
1699		} while_each_thread(g, p);
1700	}
1701	rcu_read_unlock();
1702done:
1703	atomic_set(&core_state->nr_threads, nr);
1704	return nr;
1705}
1706
1707static int coredump_wait(int exit_code, struct core_state *core_state)
1708{
1709	struct task_struct *tsk = current;
1710	struct mm_struct *mm = tsk->mm;
1711	struct completion *vfork_done;
1712	int core_waiters = -EBUSY;
1713
1714	init_completion(&core_state->startup);
1715	core_state->dumper.task = tsk;
1716	core_state->dumper.next = NULL;
1717
1718	down_write(&mm->mmap_sem);
1719	if (!mm->core_state)
1720		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1721	up_write(&mm->mmap_sem);
1722
1723	if (unlikely(core_waiters < 0))
1724		goto fail;
1725
1726	/*
1727	 * Make sure nobody is waiting for us to release the VM,
1728	 * otherwise we can deadlock when we wait on each other
1729	 */
1730	vfork_done = tsk->vfork_done;
1731	if (vfork_done) {
1732		tsk->vfork_done = NULL;
1733		complete(vfork_done);
1734	}
1735
1736	if (core_waiters)
1737		wait_for_completion(&core_state->startup);
1738fail:
1739	return core_waiters;
1740}
1741
1742static void coredump_finish(struct mm_struct *mm)
1743{
1744	struct core_thread *curr, *next;
1745	struct task_struct *task;
1746
1747	next = mm->core_state->dumper.next;
1748	while ((curr = next) != NULL) {
1749		next = curr->next;
1750		task = curr->task;
1751		/*
1752		 * see exit_mm(), curr->task must not see
1753		 * ->task == NULL before we read ->next.
1754		 */
1755		smp_mb();
1756		curr->task = NULL;
1757		wake_up_process(task);
1758	}
1759
1760	mm->core_state = NULL;
1761}
1762
1763/*
1764 * set_dumpable converts traditional three-value dumpable to two flags and
1765 * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1766 * these bits are not changed atomically.  So get_dumpable can observe the
1767 * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1768 * return either old dumpable or new one by paying attention to the order of
1769 * modifying the bits.
1770 *
1771 * dumpable |   mm->flags (binary)
1772 * old  new | initial interim  final
1773 * ---------+-----------------------
1774 *  0    1  |   00      01      01
1775 *  0    2  |   00      10(*)   11
1776 *  1    0  |   01      00      00
1777 *  1    2  |   01      11      11
1778 *  2    0  |   11      10(*)   00
1779 *  2    1  |   11      11      01
1780 *
1781 * (*) get_dumpable regards interim value of 10 as 11.
1782 */
1783void set_dumpable(struct mm_struct *mm, int value)
1784{
1785	switch (value) {
1786	case 0:
1787		clear_bit(MMF_DUMPABLE, &mm->flags);
1788		smp_wmb();
1789		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1790		break;
1791	case 1:
1792		set_bit(MMF_DUMPABLE, &mm->flags);
1793		smp_wmb();
1794		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1795		break;
1796	case 2:
1797		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1798		smp_wmb();
1799		set_bit(MMF_DUMPABLE, &mm->flags);
1800		break;
1801	}
1802}
1803
1804static int __get_dumpable(unsigned long mm_flags)
1805{
1806	int ret;
1807
1808	ret = mm_flags & MMF_DUMPABLE_MASK;
1809	return (ret >= 2) ? 2 : ret;
1810}
1811
1812int get_dumpable(struct mm_struct *mm)
1813{
1814	return __get_dumpable(mm->flags);
1815}
1816
1817static void wait_for_dump_helpers(struct file *file)
1818{
1819	struct pipe_inode_info *pipe;
1820
1821	pipe = file->f_path.dentry->d_inode->i_pipe;
1822
1823	pipe_lock(pipe);
1824	pipe->readers++;
1825	pipe->writers--;
1826
1827	while ((pipe->readers > 1) && (!signal_pending(current))) {
1828		wake_up_interruptible_sync(&pipe->wait);
1829		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1830		pipe_wait(pipe);
1831	}
1832
1833	pipe->readers--;
1834	pipe->writers++;
1835	pipe_unlock(pipe);
1836
1837}
1838
1839
1840/*
1841 * uhm_pipe_setup
1842 * helper function to customize the process used
1843 * to collect the core in userspace.  Specifically
1844 * it sets up a pipe and installs it as fd 0 (stdin)
1845 * for the process.  Returns 0 on success, or
1846 * PTR_ERR on failure.
1847 * Note that it also sets the core limit to 1.  This
1848 * is a special value that we use to trap recursive
1849 * core dumps
1850 */
1851static int umh_pipe_setup(struct subprocess_info *info)
1852{
1853	struct file *rp, *wp;
1854	struct fdtable *fdt;
1855	struct coredump_params *cp = (struct coredump_params *)info->data;
1856	struct files_struct *cf = current->files;
1857
1858	wp = create_write_pipe(0);
1859	if (IS_ERR(wp))
1860		return PTR_ERR(wp);
1861
1862	rp = create_read_pipe(wp, 0);
1863	if (IS_ERR(rp)) {
1864		free_write_pipe(wp);
1865		return PTR_ERR(rp);
1866	}
1867
1868	cp->file = wp;
1869
1870	sys_close(0);
1871	fd_install(0, rp);
1872	spin_lock(&cf->file_lock);
1873	fdt = files_fdtable(cf);
1874	FD_SET(0, fdt->open_fds);
1875	FD_CLR(0, fdt->close_on_exec);
1876	spin_unlock(&cf->file_lock);
1877
1878	/* and disallow core files too */
1879	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1880
1881	return 0;
1882}
1883
1884void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1885{
1886	struct core_state core_state;
1887	char corename[CORENAME_MAX_SIZE + 1];
1888	struct mm_struct *mm = current->mm;
1889	struct linux_binfmt * binfmt;
1890	const struct cred *old_cred;
1891	struct cred *cred;
1892	int retval = 0;
1893	int flag = 0;
1894	int ispipe;
1895	static atomic_t core_dump_count = ATOMIC_INIT(0);
1896	struct coredump_params cprm = {
1897		.signr = signr,
1898		.regs = regs,
1899		.limit = rlimit(RLIMIT_CORE),
1900		/*
1901		 * We must use the same mm->flags while dumping core to avoid
1902		 * inconsistency of bit flags, since this flag is not protected
1903		 * by any locks.
1904		 */
1905		.mm_flags = mm->flags,
1906	};
1907
1908	audit_core_dumps(signr);
1909
1910	binfmt = mm->binfmt;
1911	if (!binfmt || !binfmt->core_dump)
1912		goto fail;
1913	if (!__get_dumpable(cprm.mm_flags))
1914		goto fail;
1915
1916	cred = prepare_creds();
1917	if (!cred)
1918		goto fail;
1919	/*
1920	 *	We cannot trust fsuid as being the "true" uid of the
1921	 *	process nor do we know its entire history. We only know it
1922	 *	was tainted so we dump it as root in mode 2.
1923	 */
1924	if (__get_dumpable(cprm.mm_flags) == 2) {
1925		/* Setuid core dump mode */
1926		flag = O_EXCL;		/* Stop rewrite attacks */
1927		cred->fsuid = 0;	/* Dump root private */
1928	}
1929
1930	retval = coredump_wait(exit_code, &core_state);
1931	if (retval < 0)
1932		goto fail_creds;
1933
1934	old_cred = override_creds(cred);
1935
1936	/*
1937	 * Clear any false indication of pending signals that might
1938	 * be seen by the filesystem code called to write the core file.
1939	 */
1940	clear_thread_flag(TIF_SIGPENDING);
1941
1942	ispipe = format_corename(corename, signr);
1943
1944 	if (ispipe) {
1945		int dump_count;
1946		char **helper_argv;
1947
1948		if (cprm.limit == 1) {
1949			/*
1950			 * Normally core limits are irrelevant to pipes, since
1951			 * we're not writing to the file system, but we use
1952			 * cprm.limit of 1 here as a speacial value. Any
1953			 * non-1 limit gets set to RLIM_INFINITY below, but
1954			 * a limit of 0 skips the dump.  This is a consistent
1955			 * way to catch recursive crashes.  We can still crash
1956			 * if the core_pattern binary sets RLIM_CORE =  !1
1957			 * but it runs as root, and can do lots of stupid things
1958			 * Note that we use task_tgid_vnr here to grab the pid
1959			 * of the process group leader.  That way we get the
1960			 * right pid if a thread in a multi-threaded
1961			 * core_pattern process dies.
1962			 */
1963			printk(KERN_WARNING
1964				"Process %d(%s) has RLIMIT_CORE set to 1\n",
1965				task_tgid_vnr(current), current->comm);
1966			printk(KERN_WARNING "Aborting core\n");
1967			goto fail_unlock;
1968		}
1969		cprm.limit = RLIM_INFINITY;
1970
1971		dump_count = atomic_inc_return(&core_dump_count);
1972		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1973			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1974			       task_tgid_vnr(current), current->comm);
1975			printk(KERN_WARNING "Skipping core dump\n");
1976			goto fail_dropcount;
1977		}
1978
1979		helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1980		if (!helper_argv) {
1981			printk(KERN_WARNING "%s failed to allocate memory\n",
1982			       __func__);
1983			goto fail_dropcount;
1984		}
1985
1986		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1987					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1988					NULL, &cprm);
1989		argv_free(helper_argv);
1990		if (retval) {
1991 			printk(KERN_INFO "Core dump to %s pipe failed\n",
1992			       corename);
1993			goto close_fail;
1994 		}
1995	} else {
1996		struct inode *inode;
1997
1998		if (cprm.limit < binfmt->min_coredump)
1999			goto fail_unlock;
2000
2001		cprm.file = filp_open(corename,
2002				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2003				 0600);
2004		if (IS_ERR(cprm.file))
2005			goto fail_unlock;
2006
2007		inode = cprm.file->f_path.dentry->d_inode;
2008		if (inode->i_nlink > 1)
2009			goto close_fail;
2010		if (d_unhashed(cprm.file->f_path.dentry))
2011			goto close_fail;
2012		/*
2013		 * AK: actually i see no reason to not allow this for named
2014		 * pipes etc, but keep the previous behaviour for now.
2015		 */
2016		if (!S_ISREG(inode->i_mode))
2017			goto close_fail;
2018		/*
2019		 * Dont allow local users get cute and trick others to coredump
2020		 * into their pre-created files.
2021		 */
2022		if (inode->i_uid != current_fsuid())
2023			goto close_fail;
2024		if (!cprm.file->f_op || !cprm.file->f_op->write)
2025			goto close_fail;
2026		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2027			goto close_fail;
2028	}
2029
2030	retval = binfmt->core_dump(&cprm);
2031	if (retval)
2032		current->signal->group_exit_code |= 0x80;
2033
2034	if (ispipe && core_pipe_limit)
2035		wait_for_dump_helpers(cprm.file);
2036close_fail:
2037	if (cprm.file)
2038		filp_close(cprm.file, NULL);
2039fail_dropcount:
2040	if (ispipe)
2041		atomic_dec(&core_dump_count);
2042fail_unlock:
2043	coredump_finish(mm);
2044	revert_creds(old_cred);
2045fail_creds:
2046	put_cred(cred);
2047fail:
2048	return;
2049}
2050
2051/*
2052 * Core dumping helper functions.  These are the only things you should
2053 * do on a core-file: use only these functions to write out all the
2054 * necessary info.
2055 */
2056int dump_write(struct file *file, const void *addr, int nr)
2057{
2058	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2059}
2060EXPORT_SYMBOL(dump_write);
2061
2062int dump_seek(struct file *file, loff_t off)
2063{
2064	int ret = 1;
2065
2066	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2067		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2068			return 0;
2069	} else {
2070		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2071
2072		if (!buf)
2073			return 0;
2074		while (off > 0) {
2075			unsigned long n = off;
2076
2077			if (n > PAGE_SIZE)
2078				n = PAGE_SIZE;
2079			if (!dump_write(file, buf, n)) {
2080				ret = 0;
2081				break;
2082			}
2083			off -= n;
2084		}
2085		free_page((unsigned long)buf);
2086	}
2087	return ret;
2088}
2089EXPORT_SYMBOL(dump_seek);
2090