1/*
2 *  fs/eventpoll.c (Efficient event retrieval implementation)
3 *  Copyright (C) 2001,...,2009	 Davide Libenzi
4 *
5 *  This program is free software; you can redistribute it and/or modify
6 *  it under the terms of the GNU General Public License as published by
7 *  the Free Software Foundation; either version 2 of the License, or
8 *  (at your option) any later version.
9 *
10 *  Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/file.h>
19#include <linux/signal.h>
20#include <linux/errno.h>
21#include <linux/mm.h>
22#include <linux/slab.h>
23#include <linux/poll.h>
24#include <linux/string.h>
25#include <linux/list.h>
26#include <linux/hash.h>
27#include <linux/spinlock.h>
28#include <linux/syscalls.h>
29#include <linux/rbtree.h>
30#include <linux/wait.h>
31#include <linux/eventpoll.h>
32#include <linux/mount.h>
33#include <linux/bitops.h>
34#include <linux/mutex.h>
35#include <linux/anon_inodes.h>
36#include <asm/uaccess.h>
37#include <asm/system.h>
38#include <asm/io.h>
39#include <asm/mman.h>
40#include <asm/atomic.h>
41
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is possible to drop the "ep->mtx" and to use the global
67 * mutex "epmutex" (together with "ep->lock") to have it working,
68 * but having "ep->mtx" will make the interface more scalable.
69 * Events that require holding "epmutex" are very rare, while for
70 * normal operations the epoll private "ep->mtx" will guarantee
71 * a better scalability.
72 */
73
74/* Epoll private bits inside the event mask */
75#define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76
77/* Maximum number of nesting allowed inside epoll sets */
78#define EP_MAX_NESTS 4
79
80/* Maximum msec timeout value storeable in a long int */
81#define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
82
83#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
84
85#define EP_UNACTIVE_PTR ((void *) -1L)
86
87#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
88
89struct epoll_filefd {
90	struct file *file;
91	int fd;
92};
93
94/*
95 * Structure used to track possible nested calls, for too deep recursions
96 * and loop cycles.
97 */
98struct nested_call_node {
99	struct list_head llink;
100	void *cookie;
101	void *ctx;
102};
103
104/*
105 * This structure is used as collector for nested calls, to check for
106 * maximum recursion dept and loop cycles.
107 */
108struct nested_calls {
109	struct list_head tasks_call_list;
110	spinlock_t lock;
111};
112
113/*
114 * Each file descriptor added to the eventpoll interface will
115 * have an entry of this type linked to the "rbr" RB tree.
116 */
117struct epitem {
118	/* RB tree node used to link this structure to the eventpoll RB tree */
119	struct rb_node rbn;
120
121	/* List header used to link this structure to the eventpoll ready list */
122	struct list_head rdllink;
123
124	/*
125	 * Works together "struct eventpoll"->ovflist in keeping the
126	 * single linked chain of items.
127	 */
128	struct epitem *next;
129
130	/* The file descriptor information this item refers to */
131	struct epoll_filefd ffd;
132
133	/* Number of active wait queue attached to poll operations */
134	int nwait;
135
136	/* List containing poll wait queues */
137	struct list_head pwqlist;
138
139	/* The "container" of this item */
140	struct eventpoll *ep;
141
142	/* List header used to link this item to the "struct file" items list */
143	struct list_head fllink;
144
145	/* The structure that describe the interested events and the source fd */
146	struct epoll_event event;
147};
148
149/*
150 * This structure is stored inside the "private_data" member of the file
151 * structure and rapresent the main data sructure for the eventpoll
152 * interface.
153 */
154struct eventpoll {
155	/* Protect the this structure access */
156	spinlock_t lock;
157
158	/*
159	 * This mutex is used to ensure that files are not removed
160	 * while epoll is using them. This is held during the event
161	 * collection loop, the file cleanup path, the epoll file exit
162	 * code and the ctl operations.
163	 */
164	struct mutex mtx;
165
166	/* Wait queue used by sys_epoll_wait() */
167	wait_queue_head_t wq;
168
169	/* Wait queue used by file->poll() */
170	wait_queue_head_t poll_wait;
171
172	/* List of ready file descriptors */
173	struct list_head rdllist;
174
175	/* RB tree root used to store monitored fd structs */
176	struct rb_root rbr;
177
178	/*
179	 * This is a single linked list that chains all the "struct epitem" that
180	 * happened while transfering ready events to userspace w/out
181	 * holding ->lock.
182	 */
183	struct epitem *ovflist;
184
185	/* The user that created the eventpoll descriptor */
186	struct user_struct *user;
187};
188
189/* Wait structure used by the poll hooks */
190struct eppoll_entry {
191	/* List header used to link this structure to the "struct epitem" */
192	struct list_head llink;
193
194	/* The "base" pointer is set to the container "struct epitem" */
195	struct epitem *base;
196
197	/*
198	 * Wait queue item that will be linked to the target file wait
199	 * queue head.
200	 */
201	wait_queue_t wait;
202
203	/* The wait queue head that linked the "wait" wait queue item */
204	wait_queue_head_t *whead;
205};
206
207/* Wrapper struct used by poll queueing */
208struct ep_pqueue {
209	poll_table pt;
210	struct epitem *epi;
211};
212
213/* Used by the ep_send_events() function as callback private data */
214struct ep_send_events_data {
215	int maxevents;
216	struct epoll_event __user *events;
217};
218
219/*
220 * Configuration options available inside /proc/sys/fs/epoll/
221 */
222/* Maximum number of epoll watched descriptors, per user */
223static int max_user_watches __read_mostly;
224
225/*
226 * This mutex is used to serialize ep_free() and eventpoll_release_file().
227 */
228static DEFINE_MUTEX(epmutex);
229
230/* Used for safe wake up implementation */
231static struct nested_calls poll_safewake_ncalls;
232
233/* Used to call file's f_op->poll() under the nested calls boundaries */
234static struct nested_calls poll_readywalk_ncalls;
235
236/* Slab cache used to allocate "struct epitem" */
237static struct kmem_cache *epi_cache __read_mostly;
238
239/* Slab cache used to allocate "struct eppoll_entry" */
240static struct kmem_cache *pwq_cache __read_mostly;
241
242#ifdef CONFIG_SYSCTL
243
244#include <linux/sysctl.h>
245
246static int zero;
247
248ctl_table epoll_table[] = {
249	{
250		.procname	= "max_user_watches",
251		.data		= &max_user_watches,
252		.maxlen		= sizeof(int),
253		.mode		= 0644,
254		.proc_handler	= proc_dointvec_minmax,
255		.extra1		= &zero,
256	},
257	{ }
258};
259#endif /* CONFIG_SYSCTL */
260
261
262/* Setup the structure that is used as key for the RB tree */
263static inline void ep_set_ffd(struct epoll_filefd *ffd,
264			      struct file *file, int fd)
265{
266	ffd->file = file;
267	ffd->fd = fd;
268}
269
270/* Compare RB tree keys */
271static inline int ep_cmp_ffd(struct epoll_filefd *p1,
272			     struct epoll_filefd *p2)
273{
274	return (p1->file > p2->file ? +1:
275	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
276}
277
278/* Tells us if the item is currently linked */
279static inline int ep_is_linked(struct list_head *p)
280{
281	return !list_empty(p);
282}
283
284/* Get the "struct epitem" from a wait queue pointer */
285static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
286{
287	return container_of(p, struct eppoll_entry, wait)->base;
288}
289
290/* Get the "struct epitem" from an epoll queue wrapper */
291static inline struct epitem *ep_item_from_epqueue(poll_table *p)
292{
293	return container_of(p, struct ep_pqueue, pt)->epi;
294}
295
296/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
297static inline int ep_op_has_event(int op)
298{
299	return op != EPOLL_CTL_DEL;
300}
301
302/* Initialize the poll safe wake up structure */
303static void ep_nested_calls_init(struct nested_calls *ncalls)
304{
305	INIT_LIST_HEAD(&ncalls->tasks_call_list);
306	spin_lock_init(&ncalls->lock);
307}
308
309/**
310 * ep_call_nested - Perform a bound (possibly) nested call, by checking
311 *                  that the recursion limit is not exceeded, and that
312 *                  the same nested call (by the meaning of same cookie) is
313 *                  no re-entered.
314 *
315 * @ncalls: Pointer to the nested_calls structure to be used for this call.
316 * @max_nests: Maximum number of allowed nesting calls.
317 * @nproc: Nested call core function pointer.
318 * @priv: Opaque data to be passed to the @nproc callback.
319 * @cookie: Cookie to be used to identify this nested call.
320 * @ctx: This instance context.
321 *
322 * Returns: Returns the code returned by the @nproc callback, or -1 if
323 *          the maximum recursion limit has been exceeded.
324 */
325static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
326			  int (*nproc)(void *, void *, int), void *priv,
327			  void *cookie, void *ctx)
328{
329	int error, call_nests = 0;
330	unsigned long flags;
331	struct list_head *lsthead = &ncalls->tasks_call_list;
332	struct nested_call_node *tncur;
333	struct nested_call_node tnode;
334
335	spin_lock_irqsave(&ncalls->lock, flags);
336
337	/*
338	 * Try to see if the current task is already inside this wakeup call.
339	 * We use a list here, since the population inside this set is always
340	 * very much limited.
341	 */
342	list_for_each_entry(tncur, lsthead, llink) {
343		if (tncur->ctx == ctx &&
344		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
345			/*
346			 * Ops ... loop detected or maximum nest level reached.
347			 * We abort this wake by breaking the cycle itself.
348			 */
349			error = -1;
350			goto out_unlock;
351		}
352	}
353
354	/* Add the current task and cookie to the list */
355	tnode.ctx = ctx;
356	tnode.cookie = cookie;
357	list_add(&tnode.llink, lsthead);
358
359	spin_unlock_irqrestore(&ncalls->lock, flags);
360
361	/* Call the nested function */
362	error = (*nproc)(priv, cookie, call_nests);
363
364	/* Remove the current task from the list */
365	spin_lock_irqsave(&ncalls->lock, flags);
366	list_del(&tnode.llink);
367out_unlock:
368	spin_unlock_irqrestore(&ncalls->lock, flags);
369
370	return error;
371}
372
373#ifdef CONFIG_DEBUG_LOCK_ALLOC
374static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
375				     unsigned long events, int subclass)
376{
377	unsigned long flags;
378
379	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
380	wake_up_locked_poll(wqueue, events);
381	spin_unlock_irqrestore(&wqueue->lock, flags);
382}
383#else
384static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
385				     unsigned long events, int subclass)
386{
387	wake_up_poll(wqueue, events);
388}
389#endif
390
391static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
392{
393	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
394			  1 + call_nests);
395	return 0;
396}
397
398/*
399 * Perform a safe wake up of the poll wait list. The problem is that
400 * with the new callback'd wake up system, it is possible that the
401 * poll callback is reentered from inside the call to wake_up() done
402 * on the poll wait queue head. The rule is that we cannot reenter the
403 * wake up code from the same task more than EP_MAX_NESTS times,
404 * and we cannot reenter the same wait queue head at all. This will
405 * enable to have a hierarchy of epoll file descriptor of no more than
406 * EP_MAX_NESTS deep.
407 */
408static void ep_poll_safewake(wait_queue_head_t *wq)
409{
410	int this_cpu = get_cpu();
411
412	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
413		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
414
415	put_cpu();
416}
417
418/*
419 * This function unregisters poll callbacks from the associated file
420 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
421 * ep_free).
422 */
423static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
424{
425	struct list_head *lsthead = &epi->pwqlist;
426	struct eppoll_entry *pwq;
427
428	while (!list_empty(lsthead)) {
429		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
430
431		list_del(&pwq->llink);
432		remove_wait_queue(pwq->whead, &pwq->wait);
433		kmem_cache_free(pwq_cache, pwq);
434	}
435}
436
437/**
438 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
439 *                      the scan code, to call f_op->poll(). Also allows for
440 *                      O(NumReady) performance.
441 *
442 * @ep: Pointer to the epoll private data structure.
443 * @sproc: Pointer to the scan callback.
444 * @priv: Private opaque data passed to the @sproc callback.
445 *
446 * Returns: The same integer error code returned by the @sproc callback.
447 */
448static int ep_scan_ready_list(struct eventpoll *ep,
449			      int (*sproc)(struct eventpoll *,
450					   struct list_head *, void *),
451			      void *priv)
452{
453	int error, pwake = 0;
454	unsigned long flags;
455	struct epitem *epi, *nepi;
456	LIST_HEAD(txlist);
457
458	/*
459	 * We need to lock this because we could be hit by
460	 * eventpoll_release_file() and epoll_ctl().
461	 */
462	mutex_lock(&ep->mtx);
463
464	/*
465	 * Steal the ready list, and re-init the original one to the
466	 * empty list. Also, set ep->ovflist to NULL so that events
467	 * happening while looping w/out locks, are not lost. We cannot
468	 * have the poll callback to queue directly on ep->rdllist,
469	 * because we want the "sproc" callback to be able to do it
470	 * in a lockless way.
471	 */
472	spin_lock_irqsave(&ep->lock, flags);
473	list_splice_init(&ep->rdllist, &txlist);
474	ep->ovflist = NULL;
475	spin_unlock_irqrestore(&ep->lock, flags);
476
477	/*
478	 * Now call the callback function.
479	 */
480	error = (*sproc)(ep, &txlist, priv);
481
482	spin_lock_irqsave(&ep->lock, flags);
483	/*
484	 * During the time we spent inside the "sproc" callback, some
485	 * other events might have been queued by the poll callback.
486	 * We re-insert them inside the main ready-list here.
487	 */
488	for (nepi = ep->ovflist; (epi = nepi) != NULL;
489	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
490		/*
491		 * We need to check if the item is already in the list.
492		 * During the "sproc" callback execution time, items are
493		 * queued into ->ovflist but the "txlist" might already
494		 * contain them, and the list_splice() below takes care of them.
495		 */
496		if (!ep_is_linked(&epi->rdllink))
497			list_add_tail(&epi->rdllink, &ep->rdllist);
498	}
499	/*
500	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
501	 * releasing the lock, events will be queued in the normal way inside
502	 * ep->rdllist.
503	 */
504	ep->ovflist = EP_UNACTIVE_PTR;
505
506	/*
507	 * Quickly re-inject items left on "txlist".
508	 */
509	list_splice(&txlist, &ep->rdllist);
510
511	if (!list_empty(&ep->rdllist)) {
512		/*
513		 * Wake up (if active) both the eventpoll wait list and
514		 * the ->poll() wait list (delayed after we release the lock).
515		 */
516		if (waitqueue_active(&ep->wq))
517			wake_up_locked(&ep->wq);
518		if (waitqueue_active(&ep->poll_wait))
519			pwake++;
520	}
521	spin_unlock_irqrestore(&ep->lock, flags);
522
523	mutex_unlock(&ep->mtx);
524
525	/* We have to call this outside the lock */
526	if (pwake)
527		ep_poll_safewake(&ep->poll_wait);
528
529	return error;
530}
531
532/*
533 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
534 * all the associated resources. Must be called with "mtx" held.
535 */
536static int ep_remove(struct eventpoll *ep, struct epitem *epi)
537{
538	unsigned long flags;
539	struct file *file = epi->ffd.file;
540
541	/*
542	 * Removes poll wait queue hooks. We _have_ to do this without holding
543	 * the "ep->lock" otherwise a deadlock might occur. This because of the
544	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
545	 * queue head lock when unregistering the wait queue. The wakeup callback
546	 * will run by holding the wait queue head lock and will call our callback
547	 * that will try to get "ep->lock".
548	 */
549	ep_unregister_pollwait(ep, epi);
550
551	/* Remove the current item from the list of epoll hooks */
552	spin_lock(&file->f_lock);
553	if (ep_is_linked(&epi->fllink))
554		list_del_init(&epi->fllink);
555	spin_unlock(&file->f_lock);
556
557	rb_erase(&epi->rbn, &ep->rbr);
558
559	spin_lock_irqsave(&ep->lock, flags);
560	if (ep_is_linked(&epi->rdllink))
561		list_del_init(&epi->rdllink);
562	spin_unlock_irqrestore(&ep->lock, flags);
563
564	/* At this point it is safe to free the eventpoll item */
565	kmem_cache_free(epi_cache, epi);
566
567	atomic_dec(&ep->user->epoll_watches);
568
569	return 0;
570}
571
572static void ep_free(struct eventpoll *ep)
573{
574	struct rb_node *rbp;
575	struct epitem *epi;
576
577	/* We need to release all tasks waiting for these file */
578	if (waitqueue_active(&ep->poll_wait))
579		ep_poll_safewake(&ep->poll_wait);
580
581	/*
582	 * We need to lock this because we could be hit by
583	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
584	 * We do not need to hold "ep->mtx" here because the epoll file
585	 * is on the way to be removed and no one has references to it
586	 * anymore. The only hit might come from eventpoll_release_file() but
587	 * holding "epmutex" is sufficent here.
588	 */
589	mutex_lock(&epmutex);
590
591	/*
592	 * Walks through the whole tree by unregistering poll callbacks.
593	 */
594	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
595		epi = rb_entry(rbp, struct epitem, rbn);
596
597		ep_unregister_pollwait(ep, epi);
598	}
599
600	/*
601	 * Walks through the whole tree by freeing each "struct epitem". At this
602	 * point we are sure no poll callbacks will be lingering around, and also by
603	 * holding "epmutex" we can be sure that no file cleanup code will hit
604	 * us during this operation. So we can avoid the lock on "ep->lock".
605	 */
606	while ((rbp = rb_first(&ep->rbr)) != NULL) {
607		epi = rb_entry(rbp, struct epitem, rbn);
608		ep_remove(ep, epi);
609	}
610
611	mutex_unlock(&epmutex);
612	mutex_destroy(&ep->mtx);
613	free_uid(ep->user);
614	kfree(ep);
615}
616
617static int ep_eventpoll_release(struct inode *inode, struct file *file)
618{
619	struct eventpoll *ep = file->private_data;
620
621	if (ep)
622		ep_free(ep);
623
624	return 0;
625}
626
627static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
628			       void *priv)
629{
630	struct epitem *epi, *tmp;
631
632	list_for_each_entry_safe(epi, tmp, head, rdllink) {
633		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
634		    epi->event.events)
635			return POLLIN | POLLRDNORM;
636		else {
637			/*
638			 * Item has been dropped into the ready list by the poll
639			 * callback, but it's not actually ready, as far as
640			 * caller requested events goes. We can remove it here.
641			 */
642			list_del_init(&epi->rdllink);
643		}
644	}
645
646	return 0;
647}
648
649static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
650{
651	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
652}
653
654static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
655{
656	int pollflags;
657	struct eventpoll *ep = file->private_data;
658
659	/* Insert inside our poll wait queue */
660	poll_wait(file, &ep->poll_wait, wait);
661
662	/*
663	 * Proceed to find out if wanted events are really available inside
664	 * the ready list. This need to be done under ep_call_nested()
665	 * supervision, since the call to f_op->poll() done on listed files
666	 * could re-enter here.
667	 */
668	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
669				   ep_poll_readyevents_proc, ep, ep, current);
670
671	return pollflags != -1 ? pollflags : 0;
672}
673
674/* File callbacks that implement the eventpoll file behaviour */
675static const struct file_operations eventpoll_fops = {
676	.release	= ep_eventpoll_release,
677	.poll		= ep_eventpoll_poll
678};
679
680/* Fast test to see if the file is an evenpoll file */
681static inline int is_file_epoll(struct file *f)
682{
683	return f->f_op == &eventpoll_fops;
684}
685
686/*
687 * This is called from eventpoll_release() to unlink files from the eventpoll
688 * interface. We need to have this facility to cleanup correctly files that are
689 * closed without being removed from the eventpoll interface.
690 */
691void eventpoll_release_file(struct file *file)
692{
693	struct list_head *lsthead = &file->f_ep_links;
694	struct eventpoll *ep;
695	struct epitem *epi;
696
697	/*
698	 * We don't want to get "file->f_lock" because it is not
699	 * necessary. It is not necessary because we're in the "struct file"
700	 * cleanup path, and this means that noone is using this file anymore.
701	 * So, for example, epoll_ctl() cannot hit here since if we reach this
702	 * point, the file counter already went to zero and fget() would fail.
703	 * The only hit might come from ep_free() but by holding the mutex
704	 * will correctly serialize the operation. We do need to acquire
705	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
706	 * from anywhere but ep_free().
707	 *
708	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
709	 */
710	mutex_lock(&epmutex);
711
712	while (!list_empty(lsthead)) {
713		epi = list_first_entry(lsthead, struct epitem, fllink);
714
715		ep = epi->ep;
716		list_del_init(&epi->fllink);
717		mutex_lock(&ep->mtx);
718		ep_remove(ep, epi);
719		mutex_unlock(&ep->mtx);
720	}
721
722	mutex_unlock(&epmutex);
723}
724
725static int ep_alloc(struct eventpoll **pep)
726{
727	int error;
728	struct user_struct *user;
729	struct eventpoll *ep;
730
731	user = get_current_user();
732	error = -ENOMEM;
733	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
734	if (unlikely(!ep))
735		goto free_uid;
736
737	spin_lock_init(&ep->lock);
738	mutex_init(&ep->mtx);
739	init_waitqueue_head(&ep->wq);
740	init_waitqueue_head(&ep->poll_wait);
741	INIT_LIST_HEAD(&ep->rdllist);
742	ep->rbr = RB_ROOT;
743	ep->ovflist = EP_UNACTIVE_PTR;
744	ep->user = user;
745
746	*pep = ep;
747
748	return 0;
749
750free_uid:
751	free_uid(user);
752	return error;
753}
754
755/*
756 * Search the file inside the eventpoll tree. The RB tree operations
757 * are protected by the "mtx" mutex, and ep_find() must be called with
758 * "mtx" held.
759 */
760static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
761{
762	int kcmp;
763	struct rb_node *rbp;
764	struct epitem *epi, *epir = NULL;
765	struct epoll_filefd ffd;
766
767	ep_set_ffd(&ffd, file, fd);
768	for (rbp = ep->rbr.rb_node; rbp; ) {
769		epi = rb_entry(rbp, struct epitem, rbn);
770		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
771		if (kcmp > 0)
772			rbp = rbp->rb_right;
773		else if (kcmp < 0)
774			rbp = rbp->rb_left;
775		else {
776			epir = epi;
777			break;
778		}
779	}
780
781	return epir;
782}
783
784/*
785 * This is the callback that is passed to the wait queue wakeup
786 * machanism. It is called by the stored file descriptors when they
787 * have events to report.
788 */
789static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
790{
791	int pwake = 0;
792	unsigned long flags;
793	struct epitem *epi = ep_item_from_wait(wait);
794	struct eventpoll *ep = epi->ep;
795
796	spin_lock_irqsave(&ep->lock, flags);
797
798	/*
799	 * If the event mask does not contain any poll(2) event, we consider the
800	 * descriptor to be disabled. This condition is likely the effect of the
801	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
802	 * until the next EPOLL_CTL_MOD will be issued.
803	 */
804	if (!(epi->event.events & ~EP_PRIVATE_BITS))
805		goto out_unlock;
806
807	/*
808	 * Check the events coming with the callback. At this stage, not
809	 * every device reports the events in the "key" parameter of the
810	 * callback. We need to be able to handle both cases here, hence the
811	 * test for "key" != NULL before the event match test.
812	 */
813	if (key && !((unsigned long) key & epi->event.events))
814		goto out_unlock;
815
816	/*
817	 * If we are trasfering events to userspace, we can hold no locks
818	 * (because we're accessing user memory, and because of linux f_op->poll()
819	 * semantics). All the events that happens during that period of time are
820	 * chained in ep->ovflist and requeued later on.
821	 */
822	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
823		if (epi->next == EP_UNACTIVE_PTR) {
824			epi->next = ep->ovflist;
825			ep->ovflist = epi;
826		}
827		goto out_unlock;
828	}
829
830	/* If this file is already in the ready list we exit soon */
831	if (!ep_is_linked(&epi->rdllink))
832		list_add_tail(&epi->rdllink, &ep->rdllist);
833
834	/*
835	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
836	 * wait list.
837	 */
838	if (waitqueue_active(&ep->wq))
839		wake_up_locked(&ep->wq);
840	if (waitqueue_active(&ep->poll_wait))
841		pwake++;
842
843out_unlock:
844	spin_unlock_irqrestore(&ep->lock, flags);
845
846	/* We have to call this outside the lock */
847	if (pwake)
848		ep_poll_safewake(&ep->poll_wait);
849
850	return 1;
851}
852
853/*
854 * This is the callback that is used to add our wait queue to the
855 * target file wakeup lists.
856 */
857static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
858				 poll_table *pt)
859{
860	struct epitem *epi = ep_item_from_epqueue(pt);
861	struct eppoll_entry *pwq;
862
863	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
864		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
865		pwq->whead = whead;
866		pwq->base = epi;
867		add_wait_queue(whead, &pwq->wait);
868		list_add_tail(&pwq->llink, &epi->pwqlist);
869		epi->nwait++;
870	} else {
871		/* We have to signal that an error occurred */
872		epi->nwait = -1;
873	}
874}
875
876static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
877{
878	int kcmp;
879	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
880	struct epitem *epic;
881
882	while (*p) {
883		parent = *p;
884		epic = rb_entry(parent, struct epitem, rbn);
885		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
886		if (kcmp > 0)
887			p = &parent->rb_right;
888		else
889			p = &parent->rb_left;
890	}
891	rb_link_node(&epi->rbn, parent, p);
892	rb_insert_color(&epi->rbn, &ep->rbr);
893}
894
895/*
896 * Must be called with "mtx" held.
897 */
898static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
899		     struct file *tfile, int fd)
900{
901	int error, revents, pwake = 0;
902	unsigned long flags;
903	struct epitem *epi;
904	struct ep_pqueue epq;
905
906	if (unlikely(atomic_read(&ep->user->epoll_watches) >=
907		     max_user_watches))
908		return -ENOSPC;
909	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
910		return -ENOMEM;
911
912	/* Item initialization follow here ... */
913	INIT_LIST_HEAD(&epi->rdllink);
914	INIT_LIST_HEAD(&epi->fllink);
915	INIT_LIST_HEAD(&epi->pwqlist);
916	epi->ep = ep;
917	ep_set_ffd(&epi->ffd, tfile, fd);
918	epi->event = *event;
919	epi->nwait = 0;
920	epi->next = EP_UNACTIVE_PTR;
921
922	/* Initialize the poll table using the queue callback */
923	epq.epi = epi;
924	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
925
926	/*
927	 * Attach the item to the poll hooks and get current event bits.
928	 * We can safely use the file* here because its usage count has
929	 * been increased by the caller of this function. Note that after
930	 * this operation completes, the poll callback can start hitting
931	 * the new item.
932	 */
933	revents = tfile->f_op->poll(tfile, &epq.pt);
934
935	/*
936	 * We have to check if something went wrong during the poll wait queue
937	 * install process. Namely an allocation for a wait queue failed due
938	 * high memory pressure.
939	 */
940	error = -ENOMEM;
941	if (epi->nwait < 0)
942		goto error_unregister;
943
944	/* Add the current item to the list of active epoll hook for this file */
945	spin_lock(&tfile->f_lock);
946	list_add_tail(&epi->fllink, &tfile->f_ep_links);
947	spin_unlock(&tfile->f_lock);
948
949	/*
950	 * Add the current item to the RB tree. All RB tree operations are
951	 * protected by "mtx", and ep_insert() is called with "mtx" held.
952	 */
953	ep_rbtree_insert(ep, epi);
954
955	/* We have to drop the new item inside our item list to keep track of it */
956	spin_lock_irqsave(&ep->lock, flags);
957
958	/* If the file is already "ready" we drop it inside the ready list */
959	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
960		list_add_tail(&epi->rdllink, &ep->rdllist);
961
962		/* Notify waiting tasks that events are available */
963		if (waitqueue_active(&ep->wq))
964			wake_up_locked(&ep->wq);
965		if (waitqueue_active(&ep->poll_wait))
966			pwake++;
967	}
968
969	spin_unlock_irqrestore(&ep->lock, flags);
970
971	atomic_inc(&ep->user->epoll_watches);
972
973	/* We have to call this outside the lock */
974	if (pwake)
975		ep_poll_safewake(&ep->poll_wait);
976
977	return 0;
978
979error_unregister:
980	ep_unregister_pollwait(ep, epi);
981
982	/*
983	 * We need to do this because an event could have been arrived on some
984	 * allocated wait queue. Note that we don't care about the ep->ovflist
985	 * list, since that is used/cleaned only inside a section bound by "mtx".
986	 * And ep_insert() is called with "mtx" held.
987	 */
988	spin_lock_irqsave(&ep->lock, flags);
989	if (ep_is_linked(&epi->rdllink))
990		list_del_init(&epi->rdllink);
991	spin_unlock_irqrestore(&ep->lock, flags);
992
993	kmem_cache_free(epi_cache, epi);
994
995	return error;
996}
997
998/*
999 * Modify the interest event mask by dropping an event if the new mask
1000 * has a match in the current file status. Must be called with "mtx" held.
1001 */
1002static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1003{
1004	int pwake = 0;
1005	unsigned int revents;
1006
1007	/*
1008	 * Set the new event interest mask before calling f_op->poll();
1009	 * otherwise we might miss an event that happens between the
1010	 * f_op->poll() call and the new event set registering.
1011	 */
1012	epi->event.events = event->events;
1013	epi->event.data = event->data; /* protected by mtx */
1014
1015	/*
1016	 * Get current event bits. We can safely use the file* here because
1017	 * its usage count has been increased by the caller of this function.
1018	 */
1019	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1020
1021	/*
1022	 * If the item is "hot" and it is not registered inside the ready
1023	 * list, push it inside.
1024	 */
1025	if (revents & event->events) {
1026		spin_lock_irq(&ep->lock);
1027		if (!ep_is_linked(&epi->rdllink)) {
1028			list_add_tail(&epi->rdllink, &ep->rdllist);
1029
1030			/* Notify waiting tasks that events are available */
1031			if (waitqueue_active(&ep->wq))
1032				wake_up_locked(&ep->wq);
1033			if (waitqueue_active(&ep->poll_wait))
1034				pwake++;
1035		}
1036		spin_unlock_irq(&ep->lock);
1037	}
1038
1039	/* We have to call this outside the lock */
1040	if (pwake)
1041		ep_poll_safewake(&ep->poll_wait);
1042
1043	return 0;
1044}
1045
1046static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1047			       void *priv)
1048{
1049	struct ep_send_events_data *esed = priv;
1050	int eventcnt;
1051	unsigned int revents;
1052	struct epitem *epi;
1053	struct epoll_event __user *uevent;
1054
1055	/*
1056	 * We can loop without lock because we are passed a task private list.
1057	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1058	 * holding "mtx" during this call.
1059	 */
1060	for (eventcnt = 0, uevent = esed->events;
1061	     !list_empty(head) && eventcnt < esed->maxevents;) {
1062		epi = list_first_entry(head, struct epitem, rdllink);
1063
1064		list_del_init(&epi->rdllink);
1065
1066		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1067			epi->event.events;
1068
1069		/*
1070		 * If the event mask intersect the caller-requested one,
1071		 * deliver the event to userspace. Again, ep_scan_ready_list()
1072		 * is holding "mtx", so no operations coming from userspace
1073		 * can change the item.
1074		 */
1075		if (revents) {
1076			if (__put_user(revents, &uevent->events) ||
1077			    __put_user(epi->event.data, &uevent->data)) {
1078				list_add(&epi->rdllink, head);
1079				return eventcnt ? eventcnt : -EFAULT;
1080			}
1081			eventcnt++;
1082			uevent++;
1083			if (epi->event.events & EPOLLONESHOT)
1084				epi->event.events &= EP_PRIVATE_BITS;
1085			else if (!(epi->event.events & EPOLLET)) {
1086				/*
1087				 * If this file has been added with Level
1088				 * Trigger mode, we need to insert back inside
1089				 * the ready list, so that the next call to
1090				 * epoll_wait() will check again the events
1091				 * availability. At this point, noone can insert
1092				 * into ep->rdllist besides us. The epoll_ctl()
1093				 * callers are locked out by
1094				 * ep_scan_ready_list() holding "mtx" and the
1095				 * poll callback will queue them in ep->ovflist.
1096				 */
1097				list_add_tail(&epi->rdllink, &ep->rdllist);
1098			}
1099		}
1100	}
1101
1102	return eventcnt;
1103}
1104
1105static int ep_send_events(struct eventpoll *ep,
1106			  struct epoll_event __user *events, int maxevents)
1107{
1108	struct ep_send_events_data esed;
1109
1110	esed.maxevents = maxevents;
1111	esed.events = events;
1112
1113	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1114}
1115
1116static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1117		   int maxevents, long timeout)
1118{
1119	int res, eavail;
1120	unsigned long flags;
1121	long jtimeout;
1122	wait_queue_t wait;
1123
1124	/*
1125	 * Calculate the timeout by checking for the "infinite" value (-1)
1126	 * and the overflow condition. The passed timeout is in milliseconds,
1127	 * that why (t * HZ) / 1000.
1128	 */
1129	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1130		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1131
1132retry:
1133	spin_lock_irqsave(&ep->lock, flags);
1134
1135	res = 0;
1136	if (list_empty(&ep->rdllist)) {
1137		/*
1138		 * We don't have any available event to return to the caller.
1139		 * We need to sleep here, and we will be wake up by
1140		 * ep_poll_callback() when events will become available.
1141		 */
1142		init_waitqueue_entry(&wait, current);
1143		__add_wait_queue_exclusive(&ep->wq, &wait);
1144
1145		for (;;) {
1146			/*
1147			 * We don't want to sleep if the ep_poll_callback() sends us
1148			 * a wakeup in between. That's why we set the task state
1149			 * to TASK_INTERRUPTIBLE before doing the checks.
1150			 */
1151			set_current_state(TASK_INTERRUPTIBLE);
1152			if (!list_empty(&ep->rdllist) || !jtimeout)
1153				break;
1154			if (signal_pending(current)) {
1155				res = -EINTR;
1156				break;
1157			}
1158
1159			spin_unlock_irqrestore(&ep->lock, flags);
1160			jtimeout = schedule_timeout(jtimeout);
1161			spin_lock_irqsave(&ep->lock, flags);
1162		}
1163		__remove_wait_queue(&ep->wq, &wait);
1164
1165		set_current_state(TASK_RUNNING);
1166	}
1167	/* Is it worth to try to dig for events ? */
1168	eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1169
1170	spin_unlock_irqrestore(&ep->lock, flags);
1171
1172	/*
1173	 * Try to transfer events to user space. In case we get 0 events and
1174	 * there's still timeout left over, we go trying again in search of
1175	 * more luck.
1176	 */
1177	if (!res && eavail &&
1178	    !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1179		goto retry;
1180
1181	return res;
1182}
1183
1184/*
1185 * Open an eventpoll file descriptor.
1186 */
1187SYSCALL_DEFINE1(epoll_create1, int, flags)
1188{
1189	int error;
1190	struct eventpoll *ep = NULL;
1191
1192	/* Check the EPOLL_* constant for consistency.  */
1193	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1194
1195	if (flags & ~EPOLL_CLOEXEC)
1196		return -EINVAL;
1197	/*
1198	 * Create the internal data structure ("struct eventpoll").
1199	 */
1200	error = ep_alloc(&ep);
1201	if (error < 0)
1202		return error;
1203	/*
1204	 * Creates all the items needed to setup an eventpoll file. That is,
1205	 * a file structure and a free file descriptor.
1206	 */
1207	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1208				 O_RDWR | (flags & O_CLOEXEC));
1209	if (error < 0)
1210		ep_free(ep);
1211
1212	return error;
1213}
1214
1215SYSCALL_DEFINE1(epoll_create, int, size)
1216{
1217	if (size <= 0)
1218		return -EINVAL;
1219
1220	return sys_epoll_create1(0);
1221}
1222
1223/*
1224 * The following function implements the controller interface for
1225 * the eventpoll file that enables the insertion/removal/change of
1226 * file descriptors inside the interest set.
1227 */
1228SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1229		struct epoll_event __user *, event)
1230{
1231	int error;
1232	struct file *file, *tfile;
1233	struct eventpoll *ep;
1234	struct epitem *epi;
1235	struct epoll_event epds;
1236
1237	error = -EFAULT;
1238	if (ep_op_has_event(op) &&
1239	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1240		goto error_return;
1241
1242	/* Get the "struct file *" for the eventpoll file */
1243	error = -EBADF;
1244	file = fget(epfd);
1245	if (!file)
1246		goto error_return;
1247
1248	/* Get the "struct file *" for the target file */
1249	tfile = fget(fd);
1250	if (!tfile)
1251		goto error_fput;
1252
1253	/* The target file descriptor must support poll */
1254	error = -EPERM;
1255	if (!tfile->f_op || !tfile->f_op->poll)
1256		goto error_tgt_fput;
1257
1258	/*
1259	 * We have to check that the file structure underneath the file descriptor
1260	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1261	 * adding an epoll file descriptor inside itself.
1262	 */
1263	error = -EINVAL;
1264	if (file == tfile || !is_file_epoll(file))
1265		goto error_tgt_fput;
1266
1267	/*
1268	 * At this point it is safe to assume that the "private_data" contains
1269	 * our own data structure.
1270	 */
1271	ep = file->private_data;
1272
1273	mutex_lock(&ep->mtx);
1274
1275	/*
1276	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1277	 * above, we can be sure to be able to use the item looked up by
1278	 * ep_find() till we release the mutex.
1279	 */
1280	epi = ep_find(ep, tfile, fd);
1281
1282	error = -EINVAL;
1283	switch (op) {
1284	case EPOLL_CTL_ADD:
1285		if (!epi) {
1286			epds.events |= POLLERR | POLLHUP;
1287			error = ep_insert(ep, &epds, tfile, fd);
1288		} else
1289			error = -EEXIST;
1290		break;
1291	case EPOLL_CTL_DEL:
1292		if (epi)
1293			error = ep_remove(ep, epi);
1294		else
1295			error = -ENOENT;
1296		break;
1297	case EPOLL_CTL_MOD:
1298		if (epi) {
1299			epds.events |= POLLERR | POLLHUP;
1300			error = ep_modify(ep, epi, &epds);
1301		} else
1302			error = -ENOENT;
1303		break;
1304	}
1305	mutex_unlock(&ep->mtx);
1306
1307error_tgt_fput:
1308	fput(tfile);
1309error_fput:
1310	fput(file);
1311error_return:
1312
1313	return error;
1314}
1315
1316/*
1317 * Implement the event wait interface for the eventpoll file. It is the kernel
1318 * part of the user space epoll_wait(2).
1319 */
1320SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1321		int, maxevents, int, timeout)
1322{
1323	int error;
1324	struct file *file;
1325	struct eventpoll *ep;
1326
1327	/* The maximum number of event must be greater than zero */
1328	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1329		return -EINVAL;
1330
1331	/* Verify that the area passed by the user is writeable */
1332	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1333		error = -EFAULT;
1334		goto error_return;
1335	}
1336
1337	/* Get the "struct file *" for the eventpoll file */
1338	error = -EBADF;
1339	file = fget(epfd);
1340	if (!file)
1341		goto error_return;
1342
1343	/*
1344	 * We have to check that the file structure underneath the fd
1345	 * the user passed to us _is_ an eventpoll file.
1346	 */
1347	error = -EINVAL;
1348	if (!is_file_epoll(file))
1349		goto error_fput;
1350
1351	/*
1352	 * At this point it is safe to assume that the "private_data" contains
1353	 * our own data structure.
1354	 */
1355	ep = file->private_data;
1356
1357	/* Time to fish for events ... */
1358	error = ep_poll(ep, events, maxevents, timeout);
1359
1360error_fput:
1361	fput(file);
1362error_return:
1363
1364	return error;
1365}
1366
1367#ifdef HAVE_SET_RESTORE_SIGMASK
1368
1369/*
1370 * Implement the event wait interface for the eventpoll file. It is the kernel
1371 * part of the user space epoll_pwait(2).
1372 */
1373SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1374		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1375		size_t, sigsetsize)
1376{
1377	int error;
1378	sigset_t ksigmask, sigsaved;
1379
1380	/*
1381	 * If the caller wants a certain signal mask to be set during the wait,
1382	 * we apply it here.
1383	 */
1384	if (sigmask) {
1385		if (sigsetsize != sizeof(sigset_t))
1386			return -EINVAL;
1387		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1388			return -EFAULT;
1389		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1390		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1391	}
1392
1393	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1394
1395	/*
1396	 * If we changed the signal mask, we need to restore the original one.
1397	 * In case we've got a signal while waiting, we do not restore the
1398	 * signal mask yet, and we allow do_signal() to deliver the signal on
1399	 * the way back to userspace, before the signal mask is restored.
1400	 */
1401	if (sigmask) {
1402		if (error == -EINTR) {
1403			memcpy(&current->saved_sigmask, &sigsaved,
1404			       sizeof(sigsaved));
1405			set_restore_sigmask();
1406		} else
1407			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1408	}
1409
1410	return error;
1411}
1412
1413#endif /* HAVE_SET_RESTORE_SIGMASK */
1414
1415static int __init eventpoll_init(void)
1416{
1417	struct sysinfo si;
1418
1419	si_meminfo(&si);
1420	/*
1421	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1422	 */
1423	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1424		EP_ITEM_COST;
1425
1426	/* Initialize the structure used to perform safe poll wait head wake ups */
1427	ep_nested_calls_init(&poll_safewake_ncalls);
1428
1429	/* Initialize the structure used to perform file's f_op->poll() calls */
1430	ep_nested_calls_init(&poll_readywalk_ncalls);
1431
1432	/* Allocates slab cache used to allocate "struct epitem" items */
1433	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1434			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1435
1436	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1437	pwq_cache = kmem_cache_create("eventpoll_pwq",
1438			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1439
1440	return 0;
1441}
1442fs_initcall(eventpoll_init);
1443