• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/fs/cifs/
1/*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest.  This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
6 *
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
11 *
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to cifs_MD5_init, call cifs_MD5_update as
14 * needed on buffers full of bytes, and then call cifs_MD5_final, which
15 * will fill a supplied 16-byte array with the digest.
16 */
17
18/* This code slightly modified to fit into Samba by
19   abartlet@samba.org Jun 2001
20   and to fit the cifs vfs by
21   Steve French sfrench@us.ibm.com */
22
23#include <linux/string.h>
24#include "md5.h"
25
26static void MD5Transform(__u32 buf[4], __u32 const in[16]);
27
28/*
29 * Note: this code is harmless on little-endian machines.
30 */
31static void
32byteReverse(unsigned char *buf, unsigned longs)
33{
34	__u32 t;
35	do {
36		t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
37		    ((unsigned) buf[1] << 8 | buf[0]);
38		*(__u32 *) buf = t;
39		buf += 4;
40	} while (--longs);
41}
42
43/*
44 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
45 * initialization constants.
46 */
47void
48cifs_MD5_init(struct MD5Context *ctx)
49{
50	ctx->buf[0] = 0x67452301;
51	ctx->buf[1] = 0xefcdab89;
52	ctx->buf[2] = 0x98badcfe;
53	ctx->buf[3] = 0x10325476;
54
55	ctx->bits[0] = 0;
56	ctx->bits[1] = 0;
57}
58
59/*
60 * Update context to reflect the concatenation of another buffer full
61 * of bytes.
62 */
63void
64cifs_MD5_update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
65{
66	register __u32 t;
67
68	/* Update bitcount */
69
70	t = ctx->bits[0];
71	if ((ctx->bits[0] = t + ((__u32) len << 3)) < t)
72		ctx->bits[1]++;	/* Carry from low to high */
73	ctx->bits[1] += len >> 29;
74
75	t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
76
77	/* Handle any leading odd-sized chunks */
78
79	if (t) {
80		unsigned char *p = (unsigned char *) ctx->in + t;
81
82		t = 64 - t;
83		if (len < t) {
84			memmove(p, buf, len);
85			return;
86		}
87		memmove(p, buf, t);
88		byteReverse(ctx->in, 16);
89		MD5Transform(ctx->buf, (__u32 *) ctx->in);
90		buf += t;
91		len -= t;
92	}
93	/* Process data in 64-byte chunks */
94
95	while (len >= 64) {
96		memmove(ctx->in, buf, 64);
97		byteReverse(ctx->in, 16);
98		MD5Transform(ctx->buf, (__u32 *) ctx->in);
99		buf += 64;
100		len -= 64;
101	}
102
103	/* Handle any remaining bytes of data. */
104
105	memmove(ctx->in, buf, len);
106}
107
108/*
109 * Final wrapup - pad to 64-byte boundary with the bit pattern
110 * 1 0* (64-bit count of bits processed, MSB-first)
111 */
112void
113cifs_MD5_final(unsigned char digest[16], struct MD5Context *ctx)
114{
115	unsigned int count;
116	unsigned char *p;
117
118	/* Compute number of bytes mod 64 */
119	count = (ctx->bits[0] >> 3) & 0x3F;
120
121	/* Set the first char of padding to 0x80.  This is safe since there is
122	   always at least one byte free */
123	p = ctx->in + count;
124	*p++ = 0x80;
125
126	/* Bytes of padding needed to make 64 bytes */
127	count = 64 - 1 - count;
128
129	/* Pad out to 56 mod 64 */
130	if (count < 8) {
131		/* Two lots of padding:  Pad the first block to 64 bytes */
132		memset(p, 0, count);
133		byteReverse(ctx->in, 16);
134		MD5Transform(ctx->buf, (__u32 *) ctx->in);
135
136		/* Now fill the next block with 56 bytes */
137		memset(ctx->in, 0, 56);
138	} else {
139		/* Pad block to 56 bytes */
140		memset(p, 0, count - 8);
141	}
142	byteReverse(ctx->in, 14);
143
144	/* Append length in bits and transform */
145	((__u32 *) ctx->in)[14] = ctx->bits[0];
146	((__u32 *) ctx->in)[15] = ctx->bits[1];
147
148	MD5Transform(ctx->buf, (__u32 *) ctx->in);
149	byteReverse((unsigned char *) ctx->buf, 4);
150	memmove(digest, ctx->buf, 16);
151	memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
152}
153
154/* The four core functions - F1 is optimized somewhat */
155
156/* #define F1(x, y, z) (x & y | ~x & z) */
157#define F1(x, y, z) (z ^ (x & (y ^ z)))
158#define F2(x, y, z) F1(z, x, y)
159#define F3(x, y, z) (x ^ y ^ z)
160#define F4(x, y, z) (y ^ (x | ~z))
161
162/* This is the central step in the MD5 algorithm. */
163#define MD5STEP(f, w, x, y, z, data, s) \
164	(w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x)
165
166/*
167 * The core of the MD5 algorithm, this alters an existing MD5 hash to
168 * reflect the addition of 16 longwords of new data.  cifs_MD5_update blocks
169 * the data and converts bytes into longwords for this routine.
170 */
171static void
172MD5Transform(__u32 buf[4], __u32 const in[16])
173{
174	register __u32 a, b, c, d;
175
176	a = buf[0];
177	b = buf[1];
178	c = buf[2];
179	d = buf[3];
180
181	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
182	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
183	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
184	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
185	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
186	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
187	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
188	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
189	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
190	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
191	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
192	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
193	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
194	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
195	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
196	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
197
198	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
199	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
200	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
201	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
202	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
203	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
204	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
205	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
206	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
207	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
208	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
209	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
210	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
211	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
212	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
213	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
214
215	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
216	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
217	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
218	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
219	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
220	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
221	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
222	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
223	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
224	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
225	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
226	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
227	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
228	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
229	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
230	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
231
232	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
233	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
234	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
235	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
236	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
237	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
238	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
239	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
240	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
241	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
242	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
243	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
244	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
245	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
246	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
247	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
248
249	buf[0] += a;
250	buf[1] += b;
251	buf[2] += c;
252	buf[3] += d;
253}
254
255
256/***********************************************************************
257 the microsoft version of hmac_md5 initialisation.
258***********************************************************************/
259void
260hmac_md5_init_limK_to_64(const unsigned char *key, int key_len,
261			 struct HMACMD5Context *ctx)
262{
263	int i;
264
265	/* if key is longer than 64 bytes truncate it */
266	if (key_len > 64)
267		key_len = 64;
268
269	/* start out by storing key in pads */
270	memset(ctx->k_ipad, 0, sizeof(ctx->k_ipad));
271	memset(ctx->k_opad, 0, sizeof(ctx->k_opad));
272	memcpy(ctx->k_ipad, key, key_len);
273	memcpy(ctx->k_opad, key, key_len);
274
275	/* XOR key with ipad and opad values */
276	for (i = 0; i < 64; i++) {
277		ctx->k_ipad[i] ^= 0x36;
278		ctx->k_opad[i] ^= 0x5c;
279	}
280
281	cifs_MD5_init(&ctx->ctx);
282	cifs_MD5_update(&ctx->ctx, ctx->k_ipad, 64);
283}
284
285/***********************************************************************
286 update hmac_md5 "inner" buffer
287***********************************************************************/
288void
289hmac_md5_update(const unsigned char *text, int text_len,
290		struct HMACMD5Context *ctx)
291{
292	cifs_MD5_update(&ctx->ctx, text, text_len);	/* then text of datagram */
293}
294
295/***********************************************************************
296 finish off hmac_md5 "inner" buffer and generate outer one.
297***********************************************************************/
298void
299hmac_md5_final(unsigned char *digest, struct HMACMD5Context *ctx)
300{
301	struct MD5Context ctx_o;
302
303	cifs_MD5_final(digest, &ctx->ctx);
304
305	cifs_MD5_init(&ctx_o);
306	cifs_MD5_update(&ctx_o, ctx->k_opad, 64);
307	cifs_MD5_update(&ctx_o, digest, 16);
308	cifs_MD5_final(digest, &ctx_o);
309}
310
311/***********************************************************
312 single function to calculate an HMAC MD5 digest from data.
313 use the microsoft hmacmd5 init method because the key is 16 bytes.
314************************************************************/
315