• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/fs/ceph/
1#include "ceph_debug.h"
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/slab.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#include <net/tcp.h>
13
14#include "super.h"
15#include "messenger.h"
16#include "decode.h"
17#include "pagelist.h"
18
19/*
20 * Ceph uses the messenger to exchange ceph_msg messages with other
21 * hosts in the system.  The messenger provides ordered and reliable
22 * delivery.  We tolerate TCP disconnects by reconnecting (with
23 * exponential backoff) in the case of a fault (disconnection, bad
24 * crc, protocol error).  Acks allow sent messages to be discarded by
25 * the sender.
26 */
27
28/* static tag bytes (protocol control messages) */
29static char tag_msg = CEPH_MSGR_TAG_MSG;
30static char tag_ack = CEPH_MSGR_TAG_ACK;
31static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
32
33#ifdef CONFIG_LOCKDEP
34static struct lock_class_key socket_class;
35#endif
36
37
38static void queue_con(struct ceph_connection *con);
39static void con_work(struct work_struct *);
40static void ceph_fault(struct ceph_connection *con);
41
42/*
43 * nicely render a sockaddr as a string.
44 */
45#define MAX_ADDR_STR 20
46#define MAX_ADDR_STR_LEN 60
47static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
48static DEFINE_SPINLOCK(addr_str_lock);
49static int last_addr_str;
50
51const char *pr_addr(const struct sockaddr_storage *ss)
52{
53	int i;
54	char *s;
55	struct sockaddr_in *in4 = (void *)ss;
56	struct sockaddr_in6 *in6 = (void *)ss;
57
58	spin_lock(&addr_str_lock);
59	i = last_addr_str++;
60	if (last_addr_str == MAX_ADDR_STR)
61		last_addr_str = 0;
62	spin_unlock(&addr_str_lock);
63	s = addr_str[i];
64
65	switch (ss->ss_family) {
66	case AF_INET:
67		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
68			 (unsigned int)ntohs(in4->sin_port));
69		break;
70
71	case AF_INET6:
72		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
73			 (unsigned int)ntohs(in6->sin6_port));
74		break;
75
76	default:
77		sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
78	}
79
80	return s;
81}
82
83static void encode_my_addr(struct ceph_messenger *msgr)
84{
85	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
86	ceph_encode_addr(&msgr->my_enc_addr);
87}
88
89/*
90 * work queue for all reading and writing to/from the socket.
91 */
92struct workqueue_struct *ceph_msgr_wq;
93
94int __init ceph_msgr_init(void)
95{
96	ceph_msgr_wq = create_workqueue("ceph-msgr");
97	if (IS_ERR(ceph_msgr_wq)) {
98		int ret = PTR_ERR(ceph_msgr_wq);
99		pr_err("msgr_init failed to create workqueue: %d\n", ret);
100		ceph_msgr_wq = NULL;
101		return ret;
102	}
103	return 0;
104}
105
106void ceph_msgr_exit(void)
107{
108	destroy_workqueue(ceph_msgr_wq);
109}
110
111void ceph_msgr_flush(void)
112{
113	flush_workqueue(ceph_msgr_wq);
114}
115
116
117/*
118 * socket callback functions
119 */
120
121/* data available on socket, or listen socket received a connect */
122static void ceph_data_ready(struct sock *sk, int count_unused)
123{
124	struct ceph_connection *con =
125		(struct ceph_connection *)sk->sk_user_data;
126	if (sk->sk_state != TCP_CLOSE_WAIT) {
127		dout("ceph_data_ready on %p state = %lu, queueing work\n",
128		     con, con->state);
129		queue_con(con);
130	}
131}
132
133/* socket has buffer space for writing */
134static void ceph_write_space(struct sock *sk)
135{
136	struct ceph_connection *con =
137		(struct ceph_connection *)sk->sk_user_data;
138
139	/* only queue to workqueue if there is data we want to write. */
140	if (test_bit(WRITE_PENDING, &con->state)) {
141		dout("ceph_write_space %p queueing write work\n", con);
142		queue_con(con);
143	} else {
144		dout("ceph_write_space %p nothing to write\n", con);
145	}
146
147	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
148	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
149}
150
151/* socket's state has changed */
152static void ceph_state_change(struct sock *sk)
153{
154	struct ceph_connection *con =
155		(struct ceph_connection *)sk->sk_user_data;
156
157	dout("ceph_state_change %p state = %lu sk_state = %u\n",
158	     con, con->state, sk->sk_state);
159
160	if (test_bit(CLOSED, &con->state))
161		return;
162
163	switch (sk->sk_state) {
164	case TCP_CLOSE:
165		dout("ceph_state_change TCP_CLOSE\n");
166	case TCP_CLOSE_WAIT:
167		dout("ceph_state_change TCP_CLOSE_WAIT\n");
168		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
169			if (test_bit(CONNECTING, &con->state))
170				con->error_msg = "connection failed";
171			else
172				con->error_msg = "socket closed";
173			queue_con(con);
174		}
175		break;
176	case TCP_ESTABLISHED:
177		dout("ceph_state_change TCP_ESTABLISHED\n");
178		queue_con(con);
179		break;
180	}
181}
182
183/*
184 * set up socket callbacks
185 */
186static void set_sock_callbacks(struct socket *sock,
187			       struct ceph_connection *con)
188{
189	struct sock *sk = sock->sk;
190	sk->sk_user_data = (void *)con;
191	sk->sk_data_ready = ceph_data_ready;
192	sk->sk_write_space = ceph_write_space;
193	sk->sk_state_change = ceph_state_change;
194}
195
196
197/*
198 * socket helpers
199 */
200
201/*
202 * initiate connection to a remote socket.
203 */
204static struct socket *ceph_tcp_connect(struct ceph_connection *con)
205{
206	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
207	struct socket *sock;
208	int ret;
209
210	BUG_ON(con->sock);
211	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
212			       IPPROTO_TCP, &sock);
213	if (ret)
214		return ERR_PTR(ret);
215	con->sock = sock;
216	sock->sk->sk_allocation = GFP_NOFS;
217
218#ifdef CONFIG_LOCKDEP
219	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
220#endif
221
222	set_sock_callbacks(sock, con);
223
224	dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
225
226	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
227				 O_NONBLOCK);
228	if (ret == -EINPROGRESS) {
229		dout("connect %s EINPROGRESS sk_state = %u\n",
230		     pr_addr(&con->peer_addr.in_addr),
231		     sock->sk->sk_state);
232		ret = 0;
233	}
234	if (ret < 0) {
235		pr_err("connect %s error %d\n",
236		       pr_addr(&con->peer_addr.in_addr), ret);
237		sock_release(sock);
238		con->sock = NULL;
239		con->error_msg = "connect error";
240	}
241
242	if (ret < 0)
243		return ERR_PTR(ret);
244	return sock;
245}
246
247static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
248{
249	struct kvec iov = {buf, len};
250	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
251
252	return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
253}
254
255/*
256 * write something.  @more is true if caller will be sending more data
257 * shortly.
258 */
259static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
260		     size_t kvlen, size_t len, int more)
261{
262	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
263
264	if (more)
265		msg.msg_flags |= MSG_MORE;
266	else
267		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
268
269	return kernel_sendmsg(sock, &msg, iov, kvlen, len);
270}
271
272
273/*
274 * Shutdown/close the socket for the given connection.
275 */
276static int con_close_socket(struct ceph_connection *con)
277{
278	int rc;
279
280	dout("con_close_socket on %p sock %p\n", con, con->sock);
281	if (!con->sock)
282		return 0;
283	set_bit(SOCK_CLOSED, &con->state);
284	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
285	sock_release(con->sock);
286	con->sock = NULL;
287	clear_bit(SOCK_CLOSED, &con->state);
288	return rc;
289}
290
291/*
292 * Reset a connection.  Discard all incoming and outgoing messages
293 * and clear *_seq state.
294 */
295static void ceph_msg_remove(struct ceph_msg *msg)
296{
297	list_del_init(&msg->list_head);
298	ceph_msg_put(msg);
299}
300static void ceph_msg_remove_list(struct list_head *head)
301{
302	while (!list_empty(head)) {
303		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
304							list_head);
305		ceph_msg_remove(msg);
306	}
307}
308
309static void reset_connection(struct ceph_connection *con)
310{
311	/* reset connection, out_queue, msg_ and connect_seq */
312	/* discard existing out_queue and msg_seq */
313	ceph_msg_remove_list(&con->out_queue);
314	ceph_msg_remove_list(&con->out_sent);
315
316	if (con->in_msg) {
317		ceph_msg_put(con->in_msg);
318		con->in_msg = NULL;
319	}
320
321	con->connect_seq = 0;
322	con->out_seq = 0;
323	if (con->out_msg) {
324		ceph_msg_put(con->out_msg);
325		con->out_msg = NULL;
326	}
327	con->out_keepalive_pending = false;
328	con->in_seq = 0;
329	con->in_seq_acked = 0;
330}
331
332/*
333 * mark a peer down.  drop any open connections.
334 */
335void ceph_con_close(struct ceph_connection *con)
336{
337	dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
338	set_bit(CLOSED, &con->state);  /* in case there's queued work */
339	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
340	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
341	clear_bit(KEEPALIVE_PENDING, &con->state);
342	clear_bit(WRITE_PENDING, &con->state);
343	mutex_lock(&con->mutex);
344	reset_connection(con);
345	con->peer_global_seq = 0;
346	cancel_delayed_work(&con->work);
347	mutex_unlock(&con->mutex);
348	queue_con(con);
349}
350
351/*
352 * Reopen a closed connection, with a new peer address.
353 */
354void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
355{
356	dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
357	set_bit(OPENING, &con->state);
358	clear_bit(CLOSED, &con->state);
359	memcpy(&con->peer_addr, addr, sizeof(*addr));
360	con->delay = 0;      /* reset backoff memory */
361	queue_con(con);
362}
363
364/*
365 * return true if this connection ever successfully opened
366 */
367bool ceph_con_opened(struct ceph_connection *con)
368{
369	return con->connect_seq > 0;
370}
371
372/*
373 * generic get/put
374 */
375struct ceph_connection *ceph_con_get(struct ceph_connection *con)
376{
377	dout("con_get %p nref = %d -> %d\n", con,
378	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
379	if (atomic_inc_not_zero(&con->nref))
380		return con;
381	return NULL;
382}
383
384void ceph_con_put(struct ceph_connection *con)
385{
386	dout("con_put %p nref = %d -> %d\n", con,
387	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
388	BUG_ON(atomic_read(&con->nref) == 0);
389	if (atomic_dec_and_test(&con->nref)) {
390		BUG_ON(con->sock);
391		kfree(con);
392	}
393}
394
395/*
396 * initialize a new connection.
397 */
398void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
399{
400	dout("con_init %p\n", con);
401	memset(con, 0, sizeof(*con));
402	atomic_set(&con->nref, 1);
403	con->msgr = msgr;
404	mutex_init(&con->mutex);
405	INIT_LIST_HEAD(&con->out_queue);
406	INIT_LIST_HEAD(&con->out_sent);
407	INIT_DELAYED_WORK(&con->work, con_work);
408}
409
410
411/*
412 * We maintain a global counter to order connection attempts.  Get
413 * a unique seq greater than @gt.
414 */
415static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
416{
417	u32 ret;
418
419	spin_lock(&msgr->global_seq_lock);
420	if (msgr->global_seq < gt)
421		msgr->global_seq = gt;
422	ret = ++msgr->global_seq;
423	spin_unlock(&msgr->global_seq_lock);
424	return ret;
425}
426
427
428/*
429 * Prepare footer for currently outgoing message, and finish things
430 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
431 */
432static void prepare_write_message_footer(struct ceph_connection *con, int v)
433{
434	struct ceph_msg *m = con->out_msg;
435
436	dout("prepare_write_message_footer %p\n", con);
437	con->out_kvec_is_msg = true;
438	con->out_kvec[v].iov_base = &m->footer;
439	con->out_kvec[v].iov_len = sizeof(m->footer);
440	con->out_kvec_bytes += sizeof(m->footer);
441	con->out_kvec_left++;
442	con->out_more = m->more_to_follow;
443	con->out_msg_done = true;
444}
445
446/*
447 * Prepare headers for the next outgoing message.
448 */
449static void prepare_write_message(struct ceph_connection *con)
450{
451	struct ceph_msg *m;
452	int v = 0;
453
454	con->out_kvec_bytes = 0;
455	con->out_kvec_is_msg = true;
456	con->out_msg_done = false;
457
458	/* Sneak an ack in there first?  If we can get it into the same
459	 * TCP packet that's a good thing. */
460	if (con->in_seq > con->in_seq_acked) {
461		con->in_seq_acked = con->in_seq;
462		con->out_kvec[v].iov_base = &tag_ack;
463		con->out_kvec[v++].iov_len = 1;
464		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
465		con->out_kvec[v].iov_base = &con->out_temp_ack;
466		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
467		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
468	}
469
470	m = list_first_entry(&con->out_queue,
471		       struct ceph_msg, list_head);
472	con->out_msg = m;
473	if (test_bit(LOSSYTX, &con->state)) {
474		list_del_init(&m->list_head);
475	} else {
476		/* put message on sent list */
477		ceph_msg_get(m);
478		list_move_tail(&m->list_head, &con->out_sent);
479	}
480
481	/*
482	 * only assign outgoing seq # if we haven't sent this message
483	 * yet.  if it is requeued, resend with it's original seq.
484	 */
485	if (m->needs_out_seq) {
486		m->hdr.seq = cpu_to_le64(++con->out_seq);
487		m->needs_out_seq = false;
488	}
489
490	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
491	     m, con->out_seq, le16_to_cpu(m->hdr.type),
492	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
493	     le32_to_cpu(m->hdr.data_len),
494	     m->nr_pages);
495	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
496
497	/* tag + hdr + front + middle */
498	con->out_kvec[v].iov_base = &tag_msg;
499	con->out_kvec[v++].iov_len = 1;
500	con->out_kvec[v].iov_base = &m->hdr;
501	con->out_kvec[v++].iov_len = sizeof(m->hdr);
502	con->out_kvec[v++] = m->front;
503	if (m->middle)
504		con->out_kvec[v++] = m->middle->vec;
505	con->out_kvec_left = v;
506	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
507		(m->middle ? m->middle->vec.iov_len : 0);
508	con->out_kvec_cur = con->out_kvec;
509
510	/* fill in crc (except data pages), footer */
511	con->out_msg->hdr.crc =
512		cpu_to_le32(crc32c(0, (void *)&m->hdr,
513				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
514	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
515	con->out_msg->footer.front_crc =
516		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
517	if (m->middle)
518		con->out_msg->footer.middle_crc =
519			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
520					   m->middle->vec.iov_len));
521	else
522		con->out_msg->footer.middle_crc = 0;
523	con->out_msg->footer.data_crc = 0;
524	dout("prepare_write_message front_crc %u data_crc %u\n",
525	     le32_to_cpu(con->out_msg->footer.front_crc),
526	     le32_to_cpu(con->out_msg->footer.middle_crc));
527
528	/* is there a data payload? */
529	if (le32_to_cpu(m->hdr.data_len) > 0) {
530		/* initialize page iterator */
531		con->out_msg_pos.page = 0;
532		con->out_msg_pos.page_pos =
533			le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
534		con->out_msg_pos.data_pos = 0;
535		con->out_msg_pos.did_page_crc = 0;
536		con->out_more = 1;  /* data + footer will follow */
537	} else {
538		/* no, queue up footer too and be done */
539		prepare_write_message_footer(con, v);
540	}
541
542	set_bit(WRITE_PENDING, &con->state);
543}
544
545/*
546 * Prepare an ack.
547 */
548static void prepare_write_ack(struct ceph_connection *con)
549{
550	dout("prepare_write_ack %p %llu -> %llu\n", con,
551	     con->in_seq_acked, con->in_seq);
552	con->in_seq_acked = con->in_seq;
553
554	con->out_kvec[0].iov_base = &tag_ack;
555	con->out_kvec[0].iov_len = 1;
556	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
557	con->out_kvec[1].iov_base = &con->out_temp_ack;
558	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
559	con->out_kvec_left = 2;
560	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
561	con->out_kvec_cur = con->out_kvec;
562	con->out_more = 1;  /* more will follow.. eventually.. */
563	set_bit(WRITE_PENDING, &con->state);
564}
565
566/*
567 * Prepare to write keepalive byte.
568 */
569static void prepare_write_keepalive(struct ceph_connection *con)
570{
571	dout("prepare_write_keepalive %p\n", con);
572	con->out_kvec[0].iov_base = &tag_keepalive;
573	con->out_kvec[0].iov_len = 1;
574	con->out_kvec_left = 1;
575	con->out_kvec_bytes = 1;
576	con->out_kvec_cur = con->out_kvec;
577	set_bit(WRITE_PENDING, &con->state);
578}
579
580/*
581 * Connection negotiation.
582 */
583
584static void prepare_connect_authorizer(struct ceph_connection *con)
585{
586	void *auth_buf;
587	int auth_len = 0;
588	int auth_protocol = 0;
589
590	mutex_unlock(&con->mutex);
591	if (con->ops->get_authorizer)
592		con->ops->get_authorizer(con, &auth_buf, &auth_len,
593					 &auth_protocol, &con->auth_reply_buf,
594					 &con->auth_reply_buf_len,
595					 con->auth_retry);
596	mutex_lock(&con->mutex);
597
598	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
599	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
600
601	con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
602	con->out_kvec[con->out_kvec_left].iov_len = auth_len;
603	con->out_kvec_left++;
604	con->out_kvec_bytes += auth_len;
605}
606
607/*
608 * We connected to a peer and are saying hello.
609 */
610static void prepare_write_banner(struct ceph_messenger *msgr,
611				 struct ceph_connection *con)
612{
613	int len = strlen(CEPH_BANNER);
614
615	con->out_kvec[0].iov_base = CEPH_BANNER;
616	con->out_kvec[0].iov_len = len;
617	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
618	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
619	con->out_kvec_left = 2;
620	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
621	con->out_kvec_cur = con->out_kvec;
622	con->out_more = 0;
623	set_bit(WRITE_PENDING, &con->state);
624}
625
626static void prepare_write_connect(struct ceph_messenger *msgr,
627				  struct ceph_connection *con,
628				  int after_banner)
629{
630	unsigned global_seq = get_global_seq(con->msgr, 0);
631	int proto;
632
633	switch (con->peer_name.type) {
634	case CEPH_ENTITY_TYPE_MON:
635		proto = CEPH_MONC_PROTOCOL;
636		break;
637	case CEPH_ENTITY_TYPE_OSD:
638		proto = CEPH_OSDC_PROTOCOL;
639		break;
640	case CEPH_ENTITY_TYPE_MDS:
641		proto = CEPH_MDSC_PROTOCOL;
642		break;
643	default:
644		BUG();
645	}
646
647	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
648	     con->connect_seq, global_seq, proto);
649
650	con->out_connect.features = cpu_to_le64(CEPH_FEATURE_SUPPORTED);
651	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
652	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
653	con->out_connect.global_seq = cpu_to_le32(global_seq);
654	con->out_connect.protocol_version = cpu_to_le32(proto);
655	con->out_connect.flags = 0;
656
657	if (!after_banner) {
658		con->out_kvec_left = 0;
659		con->out_kvec_bytes = 0;
660	}
661	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
662	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
663	con->out_kvec_left++;
664	con->out_kvec_bytes += sizeof(con->out_connect);
665	con->out_kvec_cur = con->out_kvec;
666	con->out_more = 0;
667	set_bit(WRITE_PENDING, &con->state);
668
669	prepare_connect_authorizer(con);
670}
671
672
673/*
674 * write as much of pending kvecs to the socket as we can.
675 *  1 -> done
676 *  0 -> socket full, but more to do
677 * <0 -> error
678 */
679static int write_partial_kvec(struct ceph_connection *con)
680{
681	int ret;
682
683	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
684	while (con->out_kvec_bytes > 0) {
685		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
686				       con->out_kvec_left, con->out_kvec_bytes,
687				       con->out_more);
688		if (ret <= 0)
689			goto out;
690		con->out_kvec_bytes -= ret;
691		if (con->out_kvec_bytes == 0)
692			break;            /* done */
693		while (ret > 0) {
694			if (ret >= con->out_kvec_cur->iov_len) {
695				ret -= con->out_kvec_cur->iov_len;
696				con->out_kvec_cur++;
697				con->out_kvec_left--;
698			} else {
699				con->out_kvec_cur->iov_len -= ret;
700				con->out_kvec_cur->iov_base += ret;
701				ret = 0;
702				break;
703			}
704		}
705	}
706	con->out_kvec_left = 0;
707	con->out_kvec_is_msg = false;
708	ret = 1;
709out:
710	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
711	     con->out_kvec_bytes, con->out_kvec_left, ret);
712	return ret;  /* done! */
713}
714
715/*
716 * Write as much message data payload as we can.  If we finish, queue
717 * up the footer.
718 *  1 -> done, footer is now queued in out_kvec[].
719 *  0 -> socket full, but more to do
720 * <0 -> error
721 */
722static int write_partial_msg_pages(struct ceph_connection *con)
723{
724	struct ceph_msg *msg = con->out_msg;
725	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
726	size_t len;
727	int crc = con->msgr->nocrc;
728	int ret;
729
730	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
731	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
732	     con->out_msg_pos.page_pos);
733
734	while (con->out_msg_pos.page < con->out_msg->nr_pages) {
735		struct page *page = NULL;
736		void *kaddr = NULL;
737
738		/*
739		 * if we are calculating the data crc (the default), we need
740		 * to map the page.  if our pages[] has been revoked, use the
741		 * zero page.
742		 */
743		if (msg->pages) {
744			page = msg->pages[con->out_msg_pos.page];
745			if (crc)
746				kaddr = kmap(page);
747		} else if (msg->pagelist) {
748			page = list_first_entry(&msg->pagelist->head,
749						struct page, lru);
750			if (crc)
751				kaddr = kmap(page);
752		} else {
753			page = con->msgr->zero_page;
754			if (crc)
755				kaddr = page_address(con->msgr->zero_page);
756		}
757		len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
758			  (int)(data_len - con->out_msg_pos.data_pos));
759		if (crc && !con->out_msg_pos.did_page_crc) {
760			void *base = kaddr + con->out_msg_pos.page_pos;
761			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
762
763			BUG_ON(kaddr == NULL);
764			con->out_msg->footer.data_crc =
765				cpu_to_le32(crc32c(tmpcrc, base, len));
766			con->out_msg_pos.did_page_crc = 1;
767		}
768
769		ret = kernel_sendpage(con->sock, page,
770				      con->out_msg_pos.page_pos, len,
771				      MSG_DONTWAIT | MSG_NOSIGNAL |
772				      MSG_MORE);
773
774		if (crc && (msg->pages || msg->pagelist))
775			kunmap(page);
776
777		if (ret <= 0)
778			goto out;
779
780		con->out_msg_pos.data_pos += ret;
781		con->out_msg_pos.page_pos += ret;
782		if (ret == len) {
783			con->out_msg_pos.page_pos = 0;
784			con->out_msg_pos.page++;
785			con->out_msg_pos.did_page_crc = 0;
786			if (msg->pagelist)
787				list_move_tail(&page->lru,
788					       &msg->pagelist->head);
789		}
790	}
791
792	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
793
794	/* prepare and queue up footer, too */
795	if (!crc)
796		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
797	con->out_kvec_bytes = 0;
798	con->out_kvec_left = 0;
799	con->out_kvec_cur = con->out_kvec;
800	prepare_write_message_footer(con, 0);
801	ret = 1;
802out:
803	return ret;
804}
805
806/*
807 * write some zeros
808 */
809static int write_partial_skip(struct ceph_connection *con)
810{
811	int ret;
812
813	while (con->out_skip > 0) {
814		struct kvec iov = {
815			.iov_base = page_address(con->msgr->zero_page),
816			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
817		};
818
819		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
820		if (ret <= 0)
821			goto out;
822		con->out_skip -= ret;
823	}
824	ret = 1;
825out:
826	return ret;
827}
828
829/*
830 * Prepare to read connection handshake, or an ack.
831 */
832static void prepare_read_banner(struct ceph_connection *con)
833{
834	dout("prepare_read_banner %p\n", con);
835	con->in_base_pos = 0;
836}
837
838static void prepare_read_connect(struct ceph_connection *con)
839{
840	dout("prepare_read_connect %p\n", con);
841	con->in_base_pos = 0;
842}
843
844static void prepare_read_ack(struct ceph_connection *con)
845{
846	dout("prepare_read_ack %p\n", con);
847	con->in_base_pos = 0;
848}
849
850static void prepare_read_tag(struct ceph_connection *con)
851{
852	dout("prepare_read_tag %p\n", con);
853	con->in_base_pos = 0;
854	con->in_tag = CEPH_MSGR_TAG_READY;
855}
856
857/*
858 * Prepare to read a message.
859 */
860static int prepare_read_message(struct ceph_connection *con)
861{
862	dout("prepare_read_message %p\n", con);
863	BUG_ON(con->in_msg != NULL);
864	con->in_base_pos = 0;
865	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
866	return 0;
867}
868
869
870static int read_partial(struct ceph_connection *con,
871			int *to, int size, void *object)
872{
873	*to += size;
874	while (con->in_base_pos < *to) {
875		int left = *to - con->in_base_pos;
876		int have = size - left;
877		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
878		if (ret <= 0)
879			return ret;
880		con->in_base_pos += ret;
881	}
882	return 1;
883}
884
885
886/*
887 * Read all or part of the connect-side handshake on a new connection
888 */
889static int read_partial_banner(struct ceph_connection *con)
890{
891	int ret, to = 0;
892
893	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
894
895	/* peer's banner */
896	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
897	if (ret <= 0)
898		goto out;
899	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
900			   &con->actual_peer_addr);
901	if (ret <= 0)
902		goto out;
903	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
904			   &con->peer_addr_for_me);
905	if (ret <= 0)
906		goto out;
907out:
908	return ret;
909}
910
911static int read_partial_connect(struct ceph_connection *con)
912{
913	int ret, to = 0;
914
915	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
916
917	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
918	if (ret <= 0)
919		goto out;
920	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
921			   con->auth_reply_buf);
922	if (ret <= 0)
923		goto out;
924
925	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
926	     con, (int)con->in_reply.tag,
927	     le32_to_cpu(con->in_reply.connect_seq),
928	     le32_to_cpu(con->in_reply.global_seq));
929out:
930	return ret;
931
932}
933
934/*
935 * Verify the hello banner looks okay.
936 */
937static int verify_hello(struct ceph_connection *con)
938{
939	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
940		pr_err("connect to %s got bad banner\n",
941		       pr_addr(&con->peer_addr.in_addr));
942		con->error_msg = "protocol error, bad banner";
943		return -1;
944	}
945	return 0;
946}
947
948static bool addr_is_blank(struct sockaddr_storage *ss)
949{
950	switch (ss->ss_family) {
951	case AF_INET:
952		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
953	case AF_INET6:
954		return
955		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
956		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
957		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
958		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
959	}
960	return false;
961}
962
963static int addr_port(struct sockaddr_storage *ss)
964{
965	switch (ss->ss_family) {
966	case AF_INET:
967		return ntohs(((struct sockaddr_in *)ss)->sin_port);
968	case AF_INET6:
969		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
970	}
971	return 0;
972}
973
974static void addr_set_port(struct sockaddr_storage *ss, int p)
975{
976	switch (ss->ss_family) {
977	case AF_INET:
978		((struct sockaddr_in *)ss)->sin_port = htons(p);
979	case AF_INET6:
980		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
981	}
982}
983
984/*
985 * Parse an ip[:port] list into an addr array.  Use the default
986 * monitor port if a port isn't specified.
987 */
988int ceph_parse_ips(const char *c, const char *end,
989		   struct ceph_entity_addr *addr,
990		   int max_count, int *count)
991{
992	int i;
993	const char *p = c;
994
995	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
996	for (i = 0; i < max_count; i++) {
997		const char *ipend;
998		struct sockaddr_storage *ss = &addr[i].in_addr;
999		struct sockaddr_in *in4 = (void *)ss;
1000		struct sockaddr_in6 *in6 = (void *)ss;
1001		int port;
1002		char delim = ',';
1003
1004		if (*p == '[') {
1005			delim = ']';
1006			p++;
1007		}
1008
1009		memset(ss, 0, sizeof(*ss));
1010		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1011			     delim, &ipend))
1012			ss->ss_family = AF_INET;
1013		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1014				  delim, &ipend))
1015			ss->ss_family = AF_INET6;
1016		else
1017			goto bad;
1018		p = ipend;
1019
1020		if (delim == ']') {
1021			if (*p != ']') {
1022				dout("missing matching ']'\n");
1023				goto bad;
1024			}
1025			p++;
1026		}
1027
1028		/* port? */
1029		if (p < end && *p == ':') {
1030			port = 0;
1031			p++;
1032			while (p < end && *p >= '0' && *p <= '9') {
1033				port = (port * 10) + (*p - '0');
1034				p++;
1035			}
1036			if (port > 65535 || port == 0)
1037				goto bad;
1038		} else {
1039			port = CEPH_MON_PORT;
1040		}
1041
1042		addr_set_port(ss, port);
1043
1044		dout("parse_ips got %s\n", pr_addr(ss));
1045
1046		if (p == end)
1047			break;
1048		if (*p != ',')
1049			goto bad;
1050		p++;
1051	}
1052
1053	if (p != end)
1054		goto bad;
1055
1056	if (count)
1057		*count = i + 1;
1058	return 0;
1059
1060bad:
1061	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1062	return -EINVAL;
1063}
1064
1065static int process_banner(struct ceph_connection *con)
1066{
1067	dout("process_banner on %p\n", con);
1068
1069	if (verify_hello(con) < 0)
1070		return -1;
1071
1072	ceph_decode_addr(&con->actual_peer_addr);
1073	ceph_decode_addr(&con->peer_addr_for_me);
1074
1075	/*
1076	 * Make sure the other end is who we wanted.  note that the other
1077	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1078	 * them the benefit of the doubt.
1079	 */
1080	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1081		   sizeof(con->peer_addr)) != 0 &&
1082	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1083	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1084		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1085			   pr_addr(&con->peer_addr.in_addr),
1086			   (int)le32_to_cpu(con->peer_addr.nonce),
1087			   pr_addr(&con->actual_peer_addr.in_addr),
1088			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1089		con->error_msg = "wrong peer at address";
1090		return -1;
1091	}
1092
1093	/*
1094	 * did we learn our address?
1095	 */
1096	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1097		int port = addr_port(&con->msgr->inst.addr.in_addr);
1098
1099		memcpy(&con->msgr->inst.addr.in_addr,
1100		       &con->peer_addr_for_me.in_addr,
1101		       sizeof(con->peer_addr_for_me.in_addr));
1102		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1103		encode_my_addr(con->msgr);
1104		dout("process_banner learned my addr is %s\n",
1105		     pr_addr(&con->msgr->inst.addr.in_addr));
1106	}
1107
1108	set_bit(NEGOTIATING, &con->state);
1109	prepare_read_connect(con);
1110	return 0;
1111}
1112
1113static void fail_protocol(struct ceph_connection *con)
1114{
1115	reset_connection(con);
1116	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1117
1118	mutex_unlock(&con->mutex);
1119	if (con->ops->bad_proto)
1120		con->ops->bad_proto(con);
1121	mutex_lock(&con->mutex);
1122}
1123
1124static int process_connect(struct ceph_connection *con)
1125{
1126	u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1127	u64 req_feat = CEPH_FEATURE_REQUIRED;
1128	u64 server_feat = le64_to_cpu(con->in_reply.features);
1129
1130	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1131
1132	switch (con->in_reply.tag) {
1133	case CEPH_MSGR_TAG_FEATURES:
1134		pr_err("%s%lld %s feature set mismatch,"
1135		       " my %llx < server's %llx, missing %llx\n",
1136		       ENTITY_NAME(con->peer_name),
1137		       pr_addr(&con->peer_addr.in_addr),
1138		       sup_feat, server_feat, server_feat & ~sup_feat);
1139		con->error_msg = "missing required protocol features";
1140		fail_protocol(con);
1141		return -1;
1142
1143	case CEPH_MSGR_TAG_BADPROTOVER:
1144		pr_err("%s%lld %s protocol version mismatch,"
1145		       " my %d != server's %d\n",
1146		       ENTITY_NAME(con->peer_name),
1147		       pr_addr(&con->peer_addr.in_addr),
1148		       le32_to_cpu(con->out_connect.protocol_version),
1149		       le32_to_cpu(con->in_reply.protocol_version));
1150		con->error_msg = "protocol version mismatch";
1151		fail_protocol(con);
1152		return -1;
1153
1154	case CEPH_MSGR_TAG_BADAUTHORIZER:
1155		con->auth_retry++;
1156		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1157		     con->auth_retry);
1158		if (con->auth_retry == 2) {
1159			con->error_msg = "connect authorization failure";
1160			reset_connection(con);
1161			set_bit(CLOSED, &con->state);
1162			return -1;
1163		}
1164		con->auth_retry = 1;
1165		prepare_write_connect(con->msgr, con, 0);
1166		prepare_read_connect(con);
1167		break;
1168
1169	case CEPH_MSGR_TAG_RESETSESSION:
1170		/*
1171		 * If we connected with a large connect_seq but the peer
1172		 * has no record of a session with us (no connection, or
1173		 * connect_seq == 0), they will send RESETSESION to indicate
1174		 * that they must have reset their session, and may have
1175		 * dropped messages.
1176		 */
1177		dout("process_connect got RESET peer seq %u\n",
1178		     le32_to_cpu(con->in_connect.connect_seq));
1179		pr_err("%s%lld %s connection reset\n",
1180		       ENTITY_NAME(con->peer_name),
1181		       pr_addr(&con->peer_addr.in_addr));
1182		reset_connection(con);
1183		prepare_write_connect(con->msgr, con, 0);
1184		prepare_read_connect(con);
1185
1186		/* Tell ceph about it. */
1187		mutex_unlock(&con->mutex);
1188		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1189		if (con->ops->peer_reset)
1190			con->ops->peer_reset(con);
1191		mutex_lock(&con->mutex);
1192		break;
1193
1194	case CEPH_MSGR_TAG_RETRY_SESSION:
1195		/*
1196		 * If we sent a smaller connect_seq than the peer has, try
1197		 * again with a larger value.
1198		 */
1199		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1200		     le32_to_cpu(con->out_connect.connect_seq),
1201		     le32_to_cpu(con->in_connect.connect_seq));
1202		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1203		prepare_write_connect(con->msgr, con, 0);
1204		prepare_read_connect(con);
1205		break;
1206
1207	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1208		/*
1209		 * If we sent a smaller global_seq than the peer has, try
1210		 * again with a larger value.
1211		 */
1212		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1213		     con->peer_global_seq,
1214		     le32_to_cpu(con->in_connect.global_seq));
1215		get_global_seq(con->msgr,
1216			       le32_to_cpu(con->in_connect.global_seq));
1217		prepare_write_connect(con->msgr, con, 0);
1218		prepare_read_connect(con);
1219		break;
1220
1221	case CEPH_MSGR_TAG_READY:
1222		if (req_feat & ~server_feat) {
1223			pr_err("%s%lld %s protocol feature mismatch,"
1224			       " my required %llx > server's %llx, need %llx\n",
1225			       ENTITY_NAME(con->peer_name),
1226			       pr_addr(&con->peer_addr.in_addr),
1227			       req_feat, server_feat, req_feat & ~server_feat);
1228			con->error_msg = "missing required protocol features";
1229			fail_protocol(con);
1230			return -1;
1231		}
1232		clear_bit(CONNECTING, &con->state);
1233		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1234		con->connect_seq++;
1235		con->peer_features = server_feat;
1236		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1237		     con->peer_global_seq,
1238		     le32_to_cpu(con->in_reply.connect_seq),
1239		     con->connect_seq);
1240		WARN_ON(con->connect_seq !=
1241			le32_to_cpu(con->in_reply.connect_seq));
1242
1243		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1244			set_bit(LOSSYTX, &con->state);
1245
1246		prepare_read_tag(con);
1247		break;
1248
1249	case CEPH_MSGR_TAG_WAIT:
1250		/*
1251		 * If there is a connection race (we are opening
1252		 * connections to each other), one of us may just have
1253		 * to WAIT.  This shouldn't happen if we are the
1254		 * client.
1255		 */
1256		pr_err("process_connect peer connecting WAIT\n");
1257
1258	default:
1259		pr_err("connect protocol error, will retry\n");
1260		con->error_msg = "protocol error, garbage tag during connect";
1261		return -1;
1262	}
1263	return 0;
1264}
1265
1266
1267/*
1268 * read (part of) an ack
1269 */
1270static int read_partial_ack(struct ceph_connection *con)
1271{
1272	int to = 0;
1273
1274	return read_partial(con, &to, sizeof(con->in_temp_ack),
1275			    &con->in_temp_ack);
1276}
1277
1278
1279/*
1280 * We can finally discard anything that's been acked.
1281 */
1282static void process_ack(struct ceph_connection *con)
1283{
1284	struct ceph_msg *m;
1285	u64 ack = le64_to_cpu(con->in_temp_ack);
1286	u64 seq;
1287
1288	while (!list_empty(&con->out_sent)) {
1289		m = list_first_entry(&con->out_sent, struct ceph_msg,
1290				     list_head);
1291		seq = le64_to_cpu(m->hdr.seq);
1292		if (seq > ack)
1293			break;
1294		dout("got ack for seq %llu type %d at %p\n", seq,
1295		     le16_to_cpu(m->hdr.type), m);
1296		ceph_msg_remove(m);
1297	}
1298	prepare_read_tag(con);
1299}
1300
1301
1302
1303
1304static int read_partial_message_section(struct ceph_connection *con,
1305					struct kvec *section,
1306					unsigned int sec_len, u32 *crc)
1307{
1308	int left;
1309	int ret;
1310
1311	BUG_ON(!section);
1312
1313	while (section->iov_len < sec_len) {
1314		BUG_ON(section->iov_base == NULL);
1315		left = sec_len - section->iov_len;
1316		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1317				       section->iov_len, left);
1318		if (ret <= 0)
1319			return ret;
1320		section->iov_len += ret;
1321		if (section->iov_len == sec_len)
1322			*crc = crc32c(0, section->iov_base,
1323				      section->iov_len);
1324	}
1325
1326	return 1;
1327}
1328
1329static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1330				struct ceph_msg_header *hdr,
1331				int *skip);
1332/*
1333 * read (part of) a message.
1334 */
1335static int read_partial_message(struct ceph_connection *con)
1336{
1337	struct ceph_msg *m = con->in_msg;
1338	void *p;
1339	int ret;
1340	int to, left;
1341	unsigned front_len, middle_len, data_len, data_off;
1342	int datacrc = con->msgr->nocrc;
1343	int skip;
1344	u64 seq;
1345
1346	dout("read_partial_message con %p msg %p\n", con, m);
1347
1348	/* header */
1349	while (con->in_base_pos < sizeof(con->in_hdr)) {
1350		left = sizeof(con->in_hdr) - con->in_base_pos;
1351		ret = ceph_tcp_recvmsg(con->sock,
1352				       (char *)&con->in_hdr + con->in_base_pos,
1353				       left);
1354		if (ret <= 0)
1355			return ret;
1356		con->in_base_pos += ret;
1357		if (con->in_base_pos == sizeof(con->in_hdr)) {
1358			u32 crc = crc32c(0, (void *)&con->in_hdr,
1359				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1360			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1361				pr_err("read_partial_message bad hdr "
1362				       " crc %u != expected %u\n",
1363				       crc, con->in_hdr.crc);
1364				return -EBADMSG;
1365			}
1366		}
1367	}
1368	front_len = le32_to_cpu(con->in_hdr.front_len);
1369	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1370		return -EIO;
1371	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1372	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1373		return -EIO;
1374	data_len = le32_to_cpu(con->in_hdr.data_len);
1375	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1376		return -EIO;
1377	data_off = le16_to_cpu(con->in_hdr.data_off);
1378
1379	/* verify seq# */
1380	seq = le64_to_cpu(con->in_hdr.seq);
1381	if ((s64)seq - (s64)con->in_seq < 1) {
1382		pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
1383			ENTITY_NAME(con->peer_name),
1384			pr_addr(&con->peer_addr.in_addr),
1385			seq, con->in_seq + 1);
1386		con->in_base_pos = -front_len - middle_len - data_len -
1387			sizeof(m->footer);
1388		con->in_tag = CEPH_MSGR_TAG_READY;
1389		con->in_seq++;
1390		return 0;
1391	} else if ((s64)seq - (s64)con->in_seq > 1) {
1392		pr_err("read_partial_message bad seq %lld expected %lld\n",
1393		       seq, con->in_seq + 1);
1394		con->error_msg = "bad message sequence # for incoming message";
1395		return -EBADMSG;
1396	}
1397
1398	/* allocate message? */
1399	if (!con->in_msg) {
1400		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1401		     con->in_hdr.front_len, con->in_hdr.data_len);
1402		skip = 0;
1403		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1404		if (skip) {
1405			/* skip this message */
1406			dout("alloc_msg said skip message\n");
1407			BUG_ON(con->in_msg);
1408			con->in_base_pos = -front_len - middle_len - data_len -
1409				sizeof(m->footer);
1410			con->in_tag = CEPH_MSGR_TAG_READY;
1411			con->in_seq++;
1412			return 0;
1413		}
1414		if (!con->in_msg) {
1415			con->error_msg =
1416				"error allocating memory for incoming message";
1417			return -ENOMEM;
1418		}
1419		m = con->in_msg;
1420		m->front.iov_len = 0;    /* haven't read it yet */
1421		if (m->middle)
1422			m->middle->vec.iov_len = 0;
1423
1424		con->in_msg_pos.page = 0;
1425		con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1426		con->in_msg_pos.data_pos = 0;
1427	}
1428
1429	/* front */
1430	ret = read_partial_message_section(con, &m->front, front_len,
1431					   &con->in_front_crc);
1432	if (ret <= 0)
1433		return ret;
1434
1435	/* middle */
1436	if (m->middle) {
1437		ret = read_partial_message_section(con, &m->middle->vec,
1438						   middle_len,
1439						   &con->in_middle_crc);
1440		if (ret <= 0)
1441			return ret;
1442	}
1443
1444	/* (page) data */
1445	while (con->in_msg_pos.data_pos < data_len) {
1446		left = min((int)(data_len - con->in_msg_pos.data_pos),
1447			   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1448		BUG_ON(m->pages == NULL);
1449		p = kmap(m->pages[con->in_msg_pos.page]);
1450		ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1451				       left);
1452		if (ret > 0 && datacrc)
1453			con->in_data_crc =
1454				crc32c(con->in_data_crc,
1455					  p + con->in_msg_pos.page_pos, ret);
1456		kunmap(m->pages[con->in_msg_pos.page]);
1457		if (ret <= 0)
1458			return ret;
1459		con->in_msg_pos.data_pos += ret;
1460		con->in_msg_pos.page_pos += ret;
1461		if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1462			con->in_msg_pos.page_pos = 0;
1463			con->in_msg_pos.page++;
1464		}
1465	}
1466
1467	/* footer */
1468	to = sizeof(m->hdr) + sizeof(m->footer);
1469	while (con->in_base_pos < to) {
1470		left = to - con->in_base_pos;
1471		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1472				       (con->in_base_pos - sizeof(m->hdr)),
1473				       left);
1474		if (ret <= 0)
1475			return ret;
1476		con->in_base_pos += ret;
1477	}
1478	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1479	     m, front_len, m->footer.front_crc, middle_len,
1480	     m->footer.middle_crc, data_len, m->footer.data_crc);
1481
1482	/* crc ok? */
1483	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1484		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1485		       m, con->in_front_crc, m->footer.front_crc);
1486		return -EBADMSG;
1487	}
1488	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1489		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1490		       m, con->in_middle_crc, m->footer.middle_crc);
1491		return -EBADMSG;
1492	}
1493	if (datacrc &&
1494	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1495	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1496		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1497		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1498		return -EBADMSG;
1499	}
1500
1501	return 1; /* done! */
1502}
1503
1504/*
1505 * Process message.  This happens in the worker thread.  The callback should
1506 * be careful not to do anything that waits on other incoming messages or it
1507 * may deadlock.
1508 */
1509static void process_message(struct ceph_connection *con)
1510{
1511	struct ceph_msg *msg;
1512
1513	msg = con->in_msg;
1514	con->in_msg = NULL;
1515
1516	/* if first message, set peer_name */
1517	if (con->peer_name.type == 0)
1518		con->peer_name = msg->hdr.src;
1519
1520	con->in_seq++;
1521	mutex_unlock(&con->mutex);
1522
1523	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1524	     msg, le64_to_cpu(msg->hdr.seq),
1525	     ENTITY_NAME(msg->hdr.src),
1526	     le16_to_cpu(msg->hdr.type),
1527	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1528	     le32_to_cpu(msg->hdr.front_len),
1529	     le32_to_cpu(msg->hdr.data_len),
1530	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1531	con->ops->dispatch(con, msg);
1532
1533	mutex_lock(&con->mutex);
1534	prepare_read_tag(con);
1535}
1536
1537
1538/*
1539 * Write something to the socket.  Called in a worker thread when the
1540 * socket appears to be writeable and we have something ready to send.
1541 */
1542static int try_write(struct ceph_connection *con)
1543{
1544	struct ceph_messenger *msgr = con->msgr;
1545	int ret = 1;
1546
1547	dout("try_write start %p state %lu nref %d\n", con, con->state,
1548	     atomic_read(&con->nref));
1549
1550more:
1551	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1552
1553	/* open the socket first? */
1554	if (con->sock == NULL) {
1555		/*
1556		 * if we were STANDBY and are reconnecting _this_
1557		 * connection, bump connect_seq now.  Always bump
1558		 * global_seq.
1559		 */
1560		if (test_and_clear_bit(STANDBY, &con->state))
1561			con->connect_seq++;
1562
1563		prepare_write_banner(msgr, con);
1564		prepare_write_connect(msgr, con, 1);
1565		prepare_read_banner(con);
1566		set_bit(CONNECTING, &con->state);
1567		clear_bit(NEGOTIATING, &con->state);
1568
1569		BUG_ON(con->in_msg);
1570		con->in_tag = CEPH_MSGR_TAG_READY;
1571		dout("try_write initiating connect on %p new state %lu\n",
1572		     con, con->state);
1573		con->sock = ceph_tcp_connect(con);
1574		if (IS_ERR(con->sock)) {
1575			con->sock = NULL;
1576			con->error_msg = "connect error";
1577			ret = -1;
1578			goto out;
1579		}
1580	}
1581
1582more_kvec:
1583	/* kvec data queued? */
1584	if (con->out_skip) {
1585		ret = write_partial_skip(con);
1586		if (ret <= 0)
1587			goto done;
1588		if (ret < 0) {
1589			dout("try_write write_partial_skip err %d\n", ret);
1590			goto done;
1591		}
1592	}
1593	if (con->out_kvec_left) {
1594		ret = write_partial_kvec(con);
1595		if (ret <= 0)
1596			goto done;
1597	}
1598
1599	/* msg pages? */
1600	if (con->out_msg) {
1601		if (con->out_msg_done) {
1602			ceph_msg_put(con->out_msg);
1603			con->out_msg = NULL;   /* we're done with this one */
1604			goto do_next;
1605		}
1606
1607		ret = write_partial_msg_pages(con);
1608		if (ret == 1)
1609			goto more_kvec;  /* we need to send the footer, too! */
1610		if (ret == 0)
1611			goto done;
1612		if (ret < 0) {
1613			dout("try_write write_partial_msg_pages err %d\n",
1614			     ret);
1615			goto done;
1616		}
1617	}
1618
1619do_next:
1620	if (!test_bit(CONNECTING, &con->state)) {
1621		/* is anything else pending? */
1622		if (!list_empty(&con->out_queue)) {
1623			prepare_write_message(con);
1624			goto more;
1625		}
1626		if (con->in_seq > con->in_seq_acked) {
1627			prepare_write_ack(con);
1628			goto more;
1629		}
1630		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1631			prepare_write_keepalive(con);
1632			goto more;
1633		}
1634	}
1635
1636	/* Nothing to do! */
1637	clear_bit(WRITE_PENDING, &con->state);
1638	dout("try_write nothing else to write.\n");
1639done:
1640	ret = 0;
1641out:
1642	dout("try_write done on %p\n", con);
1643	return ret;
1644}
1645
1646
1647
1648/*
1649 * Read what we can from the socket.
1650 */
1651static int try_read(struct ceph_connection *con)
1652{
1653	int ret = -1;
1654
1655	if (!con->sock)
1656		return 0;
1657
1658	if (test_bit(STANDBY, &con->state))
1659		return 0;
1660
1661	dout("try_read start on %p\n", con);
1662
1663more:
1664	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1665	     con->in_base_pos);
1666	if (test_bit(CONNECTING, &con->state)) {
1667		if (!test_bit(NEGOTIATING, &con->state)) {
1668			dout("try_read connecting\n");
1669			ret = read_partial_banner(con);
1670			if (ret <= 0)
1671				goto done;
1672			if (process_banner(con) < 0) {
1673				ret = -1;
1674				goto out;
1675			}
1676		}
1677		ret = read_partial_connect(con);
1678		if (ret <= 0)
1679			goto done;
1680		if (process_connect(con) < 0) {
1681			ret = -1;
1682			goto out;
1683		}
1684		goto more;
1685	}
1686
1687	if (con->in_base_pos < 0) {
1688		static char buf[1024];
1689		int skip = min(1024, -con->in_base_pos);
1690		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1691		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1692		if (ret <= 0)
1693			goto done;
1694		con->in_base_pos += ret;
1695		if (con->in_base_pos)
1696			goto more;
1697	}
1698	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1699		/*
1700		 * what's next?
1701		 */
1702		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1703		if (ret <= 0)
1704			goto done;
1705		dout("try_read got tag %d\n", (int)con->in_tag);
1706		switch (con->in_tag) {
1707		case CEPH_MSGR_TAG_MSG:
1708			prepare_read_message(con);
1709			break;
1710		case CEPH_MSGR_TAG_ACK:
1711			prepare_read_ack(con);
1712			break;
1713		case CEPH_MSGR_TAG_CLOSE:
1714			set_bit(CLOSED, &con->state);
1715			goto done;
1716		default:
1717			goto bad_tag;
1718		}
1719	}
1720	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1721		ret = read_partial_message(con);
1722		if (ret <= 0) {
1723			switch (ret) {
1724			case -EBADMSG:
1725				con->error_msg = "bad crc";
1726				ret = -EIO;
1727				goto out;
1728			case -EIO:
1729				con->error_msg = "io error";
1730				goto out;
1731			default:
1732				goto done;
1733			}
1734		}
1735		if (con->in_tag == CEPH_MSGR_TAG_READY)
1736			goto more;
1737		process_message(con);
1738		goto more;
1739	}
1740	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1741		ret = read_partial_ack(con);
1742		if (ret <= 0)
1743			goto done;
1744		process_ack(con);
1745		goto more;
1746	}
1747
1748done:
1749	ret = 0;
1750out:
1751	dout("try_read done on %p\n", con);
1752	return ret;
1753
1754bad_tag:
1755	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1756	con->error_msg = "protocol error, garbage tag";
1757	ret = -1;
1758	goto out;
1759}
1760
1761
1762/*
1763 * Atomically queue work on a connection.  Bump @con reference to
1764 * avoid races with connection teardown.
1765 *
1766 * There is some trickery going on with QUEUED and BUSY because we
1767 * only want a _single_ thread operating on each connection at any
1768 * point in time, but we want to use all available CPUs.
1769 *
1770 * The worker thread only proceeds if it can atomically set BUSY.  It
1771 * clears QUEUED and does it's thing.  When it thinks it's done, it
1772 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1773 * (tries again to set BUSY).
1774 *
1775 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1776 * try to queue work.  If that fails (work is already queued, or BUSY)
1777 * we give up (work also already being done or is queued) but leave QUEUED
1778 * set so that the worker thread will loop if necessary.
1779 */
1780static void queue_con(struct ceph_connection *con)
1781{
1782	if (test_bit(DEAD, &con->state)) {
1783		dout("queue_con %p ignoring: DEAD\n",
1784		     con);
1785		return;
1786	}
1787
1788	if (!con->ops->get(con)) {
1789		dout("queue_con %p ref count 0\n", con);
1790		return;
1791	}
1792
1793	set_bit(QUEUED, &con->state);
1794	if (test_bit(BUSY, &con->state)) {
1795		dout("queue_con %p - already BUSY\n", con);
1796		con->ops->put(con);
1797	} else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1798		dout("queue_con %p - already queued\n", con);
1799		con->ops->put(con);
1800	} else {
1801		dout("queue_con %p\n", con);
1802	}
1803}
1804
1805/*
1806 * Do some work on a connection.  Drop a connection ref when we're done.
1807 */
1808static void con_work(struct work_struct *work)
1809{
1810	struct ceph_connection *con = container_of(work, struct ceph_connection,
1811						   work.work);
1812	int backoff = 0;
1813
1814more:
1815	if (test_and_set_bit(BUSY, &con->state) != 0) {
1816		dout("con_work %p BUSY already set\n", con);
1817		goto out;
1818	}
1819	dout("con_work %p start, clearing QUEUED\n", con);
1820	clear_bit(QUEUED, &con->state);
1821
1822	mutex_lock(&con->mutex);
1823
1824	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1825		dout("con_work CLOSED\n");
1826		con_close_socket(con);
1827		goto done;
1828	}
1829	if (test_and_clear_bit(OPENING, &con->state)) {
1830		/* reopen w/ new peer */
1831		dout("con_work OPENING\n");
1832		con_close_socket(con);
1833	}
1834
1835	if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1836	    try_read(con) < 0 ||
1837	    try_write(con) < 0) {
1838		mutex_unlock(&con->mutex);
1839		backoff = 1;
1840		ceph_fault(con);     /* error/fault path */
1841		goto done_unlocked;
1842	}
1843
1844done:
1845	mutex_unlock(&con->mutex);
1846
1847done_unlocked:
1848	clear_bit(BUSY, &con->state);
1849	dout("con->state=%lu\n", con->state);
1850	if (test_bit(QUEUED, &con->state)) {
1851		if (!backoff || test_bit(OPENING, &con->state)) {
1852			dout("con_work %p QUEUED reset, looping\n", con);
1853			goto more;
1854		}
1855		dout("con_work %p QUEUED reset, but just faulted\n", con);
1856		clear_bit(QUEUED, &con->state);
1857	}
1858	dout("con_work %p done\n", con);
1859
1860out:
1861	con->ops->put(con);
1862}
1863
1864
1865/*
1866 * Generic error/fault handler.  A retry mechanism is used with
1867 * exponential backoff
1868 */
1869static void ceph_fault(struct ceph_connection *con)
1870{
1871	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1872	       pr_addr(&con->peer_addr.in_addr), con->error_msg);
1873	dout("fault %p state %lu to peer %s\n",
1874	     con, con->state, pr_addr(&con->peer_addr.in_addr));
1875
1876	if (test_bit(LOSSYTX, &con->state)) {
1877		dout("fault on LOSSYTX channel\n");
1878		goto out;
1879	}
1880
1881	mutex_lock(&con->mutex);
1882	if (test_bit(CLOSED, &con->state))
1883		goto out_unlock;
1884
1885	con_close_socket(con);
1886
1887	if (con->in_msg) {
1888		ceph_msg_put(con->in_msg);
1889		con->in_msg = NULL;
1890	}
1891
1892	/* Requeue anything that hasn't been acked */
1893	list_splice_init(&con->out_sent, &con->out_queue);
1894
1895	/* If there are no messages in the queue, place the connection
1896	 * in a STANDBY state (i.e., don't try to reconnect just yet). */
1897	if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1898		dout("fault setting STANDBY\n");
1899		set_bit(STANDBY, &con->state);
1900	} else {
1901		/* retry after a delay. */
1902		if (con->delay == 0)
1903			con->delay = BASE_DELAY_INTERVAL;
1904		else if (con->delay < MAX_DELAY_INTERVAL)
1905			con->delay *= 2;
1906		dout("fault queueing %p delay %lu\n", con, con->delay);
1907		con->ops->get(con);
1908		if (queue_delayed_work(ceph_msgr_wq, &con->work,
1909				       round_jiffies_relative(con->delay)) == 0)
1910			con->ops->put(con);
1911	}
1912
1913out_unlock:
1914	mutex_unlock(&con->mutex);
1915out:
1916	/*
1917	 * in case we faulted due to authentication, invalidate our
1918	 * current tickets so that we can get new ones.
1919	 */
1920	if (con->auth_retry && con->ops->invalidate_authorizer) {
1921		dout("calling invalidate_authorizer()\n");
1922		con->ops->invalidate_authorizer(con);
1923	}
1924
1925	if (con->ops->fault)
1926		con->ops->fault(con);
1927}
1928
1929
1930
1931/*
1932 * create a new messenger instance
1933 */
1934struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1935{
1936	struct ceph_messenger *msgr;
1937
1938	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1939	if (msgr == NULL)
1940		return ERR_PTR(-ENOMEM);
1941
1942	spin_lock_init(&msgr->global_seq_lock);
1943
1944	/* the zero page is needed if a request is "canceled" while the message
1945	 * is being written over the socket */
1946	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
1947	if (!msgr->zero_page) {
1948		kfree(msgr);
1949		return ERR_PTR(-ENOMEM);
1950	}
1951	kmap(msgr->zero_page);
1952
1953	if (myaddr)
1954		msgr->inst.addr = *myaddr;
1955
1956	/* select a random nonce */
1957	msgr->inst.addr.type = 0;
1958	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
1959	encode_my_addr(msgr);
1960
1961	dout("messenger_create %p\n", msgr);
1962	return msgr;
1963}
1964
1965void ceph_messenger_destroy(struct ceph_messenger *msgr)
1966{
1967	dout("destroy %p\n", msgr);
1968	kunmap(msgr->zero_page);
1969	__free_page(msgr->zero_page);
1970	kfree(msgr);
1971	dout("destroyed messenger %p\n", msgr);
1972}
1973
1974/*
1975 * Queue up an outgoing message on the given connection.
1976 */
1977void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1978{
1979	if (test_bit(CLOSED, &con->state)) {
1980		dout("con_send %p closed, dropping %p\n", con, msg);
1981		ceph_msg_put(msg);
1982		return;
1983	}
1984
1985	/* set src+dst */
1986	msg->hdr.src = con->msgr->inst.name;
1987
1988	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1989
1990	msg->needs_out_seq = true;
1991
1992	/* queue */
1993	mutex_lock(&con->mutex);
1994	BUG_ON(!list_empty(&msg->list_head));
1995	list_add_tail(&msg->list_head, &con->out_queue);
1996	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1997	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1998	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1999	     le32_to_cpu(msg->hdr.front_len),
2000	     le32_to_cpu(msg->hdr.middle_len),
2001	     le32_to_cpu(msg->hdr.data_len));
2002	mutex_unlock(&con->mutex);
2003
2004	/* if there wasn't anything waiting to send before, queue
2005	 * new work */
2006	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2007		queue_con(con);
2008}
2009
2010/*
2011 * Revoke a message that was previously queued for send
2012 */
2013void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2014{
2015	mutex_lock(&con->mutex);
2016	if (!list_empty(&msg->list_head)) {
2017		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2018		list_del_init(&msg->list_head);
2019		ceph_msg_put(msg);
2020		msg->hdr.seq = 0;
2021	}
2022	if (con->out_msg == msg) {
2023		dout("con_revoke %p msg %p - was sending\n", con, msg);
2024		con->out_msg = NULL;
2025		if (con->out_kvec_is_msg) {
2026			con->out_skip = con->out_kvec_bytes;
2027			con->out_kvec_is_msg = false;
2028		}
2029		ceph_msg_put(msg);
2030		msg->hdr.seq = 0;
2031	}
2032	mutex_unlock(&con->mutex);
2033}
2034
2035/*
2036 * Revoke a message that we may be reading data into
2037 */
2038void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2039{
2040	mutex_lock(&con->mutex);
2041	if (con->in_msg && con->in_msg == msg) {
2042		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2043		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2044		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2045
2046		/* skip rest of message */
2047		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2048			con->in_base_pos = con->in_base_pos -
2049				sizeof(struct ceph_msg_header) -
2050				front_len -
2051				middle_len -
2052				data_len -
2053				sizeof(struct ceph_msg_footer);
2054		ceph_msg_put(con->in_msg);
2055		con->in_msg = NULL;
2056		con->in_tag = CEPH_MSGR_TAG_READY;
2057		con->in_seq++;
2058	} else {
2059		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2060		     con, con->in_msg, msg);
2061	}
2062	mutex_unlock(&con->mutex);
2063}
2064
2065/*
2066 * Queue a keepalive byte to ensure the tcp connection is alive.
2067 */
2068void ceph_con_keepalive(struct ceph_connection *con)
2069{
2070	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2071	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2072		queue_con(con);
2073}
2074
2075
2076/*
2077 * construct a new message with given type, size
2078 * the new msg has a ref count of 1.
2079 */
2080struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2081{
2082	struct ceph_msg *m;
2083
2084	m = kmalloc(sizeof(*m), flags);
2085	if (m == NULL)
2086		goto out;
2087	kref_init(&m->kref);
2088	INIT_LIST_HEAD(&m->list_head);
2089
2090	m->hdr.tid = 0;
2091	m->hdr.type = cpu_to_le16(type);
2092	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2093	m->hdr.version = 0;
2094	m->hdr.front_len = cpu_to_le32(front_len);
2095	m->hdr.middle_len = 0;
2096	m->hdr.data_len = 0;
2097	m->hdr.data_off = 0;
2098	m->hdr.reserved = 0;
2099	m->footer.front_crc = 0;
2100	m->footer.middle_crc = 0;
2101	m->footer.data_crc = 0;
2102	m->footer.flags = 0;
2103	m->front_max = front_len;
2104	m->front_is_vmalloc = false;
2105	m->more_to_follow = false;
2106	m->pool = NULL;
2107
2108	/* front */
2109	if (front_len) {
2110		if (front_len > PAGE_CACHE_SIZE) {
2111			m->front.iov_base = __vmalloc(front_len, flags,
2112						      PAGE_KERNEL);
2113			m->front_is_vmalloc = true;
2114		} else {
2115			m->front.iov_base = kmalloc(front_len, flags);
2116		}
2117		if (m->front.iov_base == NULL) {
2118			pr_err("msg_new can't allocate %d bytes\n",
2119			     front_len);
2120			goto out2;
2121		}
2122	} else {
2123		m->front.iov_base = NULL;
2124	}
2125	m->front.iov_len = front_len;
2126
2127	/* middle */
2128	m->middle = NULL;
2129
2130	/* data */
2131	m->nr_pages = 0;
2132	m->pages = NULL;
2133	m->pagelist = NULL;
2134
2135	dout("ceph_msg_new %p front %d\n", m, front_len);
2136	return m;
2137
2138out2:
2139	ceph_msg_put(m);
2140out:
2141	pr_err("msg_new can't create type %d front %d\n", type, front_len);
2142	return NULL;
2143}
2144
2145/*
2146 * Allocate "middle" portion of a message, if it is needed and wasn't
2147 * allocated by alloc_msg.  This allows us to read a small fixed-size
2148 * per-type header in the front and then gracefully fail (i.e.,
2149 * propagate the error to the caller based on info in the front) when
2150 * the middle is too large.
2151 */
2152static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2153{
2154	int type = le16_to_cpu(msg->hdr.type);
2155	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2156
2157	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2158	     ceph_msg_type_name(type), middle_len);
2159	BUG_ON(!middle_len);
2160	BUG_ON(msg->middle);
2161
2162	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2163	if (!msg->middle)
2164		return -ENOMEM;
2165	return 0;
2166}
2167
2168/*
2169 * Generic message allocator, for incoming messages.
2170 */
2171static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2172				struct ceph_msg_header *hdr,
2173				int *skip)
2174{
2175	int type = le16_to_cpu(hdr->type);
2176	int front_len = le32_to_cpu(hdr->front_len);
2177	int middle_len = le32_to_cpu(hdr->middle_len);
2178	struct ceph_msg *msg = NULL;
2179	int ret;
2180
2181	if (con->ops->alloc_msg) {
2182		mutex_unlock(&con->mutex);
2183		msg = con->ops->alloc_msg(con, hdr, skip);
2184		mutex_lock(&con->mutex);
2185		if (!msg || *skip)
2186			return NULL;
2187	}
2188	if (!msg) {
2189		*skip = 0;
2190		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2191		if (!msg) {
2192			pr_err("unable to allocate msg type %d len %d\n",
2193			       type, front_len);
2194			return NULL;
2195		}
2196	}
2197	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2198
2199	if (middle_len && !msg->middle) {
2200		ret = ceph_alloc_middle(con, msg);
2201		if (ret < 0) {
2202			ceph_msg_put(msg);
2203			return NULL;
2204		}
2205	}
2206
2207	return msg;
2208}
2209
2210
2211/*
2212 * Free a generically kmalloc'd message.
2213 */
2214void ceph_msg_kfree(struct ceph_msg *m)
2215{
2216	dout("msg_kfree %p\n", m);
2217	if (m->front_is_vmalloc)
2218		vfree(m->front.iov_base);
2219	else
2220		kfree(m->front.iov_base);
2221	kfree(m);
2222}
2223
2224/*
2225 * Drop a msg ref.  Destroy as needed.
2226 */
2227void ceph_msg_last_put(struct kref *kref)
2228{
2229	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2230
2231	dout("ceph_msg_put last one on %p\n", m);
2232	WARN_ON(!list_empty(&m->list_head));
2233
2234	/* drop middle, data, if any */
2235	if (m->middle) {
2236		ceph_buffer_put(m->middle);
2237		m->middle = NULL;
2238	}
2239	m->nr_pages = 0;
2240	m->pages = NULL;
2241
2242	if (m->pagelist) {
2243		ceph_pagelist_release(m->pagelist);
2244		kfree(m->pagelist);
2245		m->pagelist = NULL;
2246	}
2247
2248	if (m->pool)
2249		ceph_msgpool_put(m->pool, m);
2250	else
2251		ceph_msg_kfree(m);
2252}
2253
2254void ceph_msg_dump(struct ceph_msg *msg)
2255{
2256	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2257		 msg->front_max, msg->nr_pages);
2258	print_hex_dump(KERN_DEBUG, "header: ",
2259		       DUMP_PREFIX_OFFSET, 16, 1,
2260		       &msg->hdr, sizeof(msg->hdr), true);
2261	print_hex_dump(KERN_DEBUG, " front: ",
2262		       DUMP_PREFIX_OFFSET, 16, 1,
2263		       msg->front.iov_base, msg->front.iov_len, true);
2264	if (msg->middle)
2265		print_hex_dump(KERN_DEBUG, "middle: ",
2266			       DUMP_PREFIX_OFFSET, 16, 1,
2267			       msg->middle->vec.iov_base,
2268			       msg->middle->vec.iov_len, true);
2269	print_hex_dump(KERN_DEBUG, "footer: ",
2270		       DUMP_PREFIX_OFFSET, 16, 1,
2271		       &msg->footer, sizeof(msg->footer), true);
2272}
2273