• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/fs/btrfs/
1/*
2 * Copyright (C) 2007 Oracle.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/crc32c.h>
30#include <linux/slab.h>
31#include "compat.h"
32#include "ctree.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "btrfs_inode.h"
36#include "volumes.h"
37#include "print-tree.h"
38#include "async-thread.h"
39#include "locking.h"
40#include "tree-log.h"
41#include "free-space-cache.h"
42
43static struct extent_io_ops btree_extent_io_ops;
44static void end_workqueue_fn(struct btrfs_work *work);
45static void free_fs_root(struct btrfs_root *root);
46
47/*
48 * end_io_wq structs are used to do processing in task context when an IO is
49 * complete.  This is used during reads to verify checksums, and it is used
50 * by writes to insert metadata for new file extents after IO is complete.
51 */
52struct end_io_wq {
53	struct bio *bio;
54	bio_end_io_t *end_io;
55	void *private;
56	struct btrfs_fs_info *info;
57	int error;
58	int metadata;
59	struct list_head list;
60	struct btrfs_work work;
61};
62
63/*
64 * async submit bios are used to offload expensive checksumming
65 * onto the worker threads.  They checksum file and metadata bios
66 * just before they are sent down the IO stack.
67 */
68struct async_submit_bio {
69	struct inode *inode;
70	struct bio *bio;
71	struct list_head list;
72	extent_submit_bio_hook_t *submit_bio_start;
73	extent_submit_bio_hook_t *submit_bio_done;
74	int rw;
75	int mirror_num;
76	unsigned long bio_flags;
77	/*
78	 * bio_offset is optional, can be used if the pages in the bio
79	 * can't tell us where in the file the bio should go
80	 */
81	u64 bio_offset;
82	struct btrfs_work work;
83};
84
85/* These are used to set the lockdep class on the extent buffer locks.
86 * The class is set by the readpage_end_io_hook after the buffer has
87 * passed csum validation but before the pages are unlocked.
88 *
89 * The lockdep class is also set by btrfs_init_new_buffer on freshly
90 * allocated blocks.
91 *
92 * The class is based on the level in the tree block, which allows lockdep
93 * to know that lower nodes nest inside the locks of higher nodes.
94 *
95 * We also add a check to make sure the highest level of the tree is
96 * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
97 * code needs update as well.
98 */
99#ifdef CONFIG_DEBUG_LOCK_ALLOC
100# if BTRFS_MAX_LEVEL != 8
101#  error
102# endif
103static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
104static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
105	/* leaf */
106	"btrfs-extent-00",
107	"btrfs-extent-01",
108	"btrfs-extent-02",
109	"btrfs-extent-03",
110	"btrfs-extent-04",
111	"btrfs-extent-05",
112	"btrfs-extent-06",
113	"btrfs-extent-07",
114	/* highest possible level */
115	"btrfs-extent-08",
116};
117#endif
118
119/*
120 * extents on the btree inode are pretty simple, there's one extent
121 * that covers the entire device
122 */
123static struct extent_map *btree_get_extent(struct inode *inode,
124		struct page *page, size_t page_offset, u64 start, u64 len,
125		int create)
126{
127	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
128	struct extent_map *em;
129	int ret;
130
131	read_lock(&em_tree->lock);
132	em = lookup_extent_mapping(em_tree, start, len);
133	if (em) {
134		em->bdev =
135			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
136		read_unlock(&em_tree->lock);
137		goto out;
138	}
139	read_unlock(&em_tree->lock);
140
141	em = alloc_extent_map(GFP_NOFS);
142	if (!em) {
143		em = ERR_PTR(-ENOMEM);
144		goto out;
145	}
146	em->start = 0;
147	em->len = (u64)-1;
148	em->block_len = (u64)-1;
149	em->block_start = 0;
150	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
151
152	write_lock(&em_tree->lock);
153	ret = add_extent_mapping(em_tree, em);
154	if (ret == -EEXIST) {
155		u64 failed_start = em->start;
156		u64 failed_len = em->len;
157
158		free_extent_map(em);
159		em = lookup_extent_mapping(em_tree, start, len);
160		if (em) {
161			ret = 0;
162		} else {
163			em = lookup_extent_mapping(em_tree, failed_start,
164						   failed_len);
165			ret = -EIO;
166		}
167	} else if (ret) {
168		free_extent_map(em);
169		em = NULL;
170	}
171	write_unlock(&em_tree->lock);
172
173	if (ret)
174		em = ERR_PTR(ret);
175out:
176	return em;
177}
178
179u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
180{
181	return crc32c(seed, data, len);
182}
183
184void btrfs_csum_final(u32 crc, char *result)
185{
186	*(__le32 *)result = ~cpu_to_le32(crc);
187}
188
189/*
190 * compute the csum for a btree block, and either verify it or write it
191 * into the csum field of the block.
192 */
193static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
194			   int verify)
195{
196	u16 csum_size =
197		btrfs_super_csum_size(&root->fs_info->super_copy);
198	char *result = NULL;
199	unsigned long len;
200	unsigned long cur_len;
201	unsigned long offset = BTRFS_CSUM_SIZE;
202	char *map_token = NULL;
203	char *kaddr;
204	unsigned long map_start;
205	unsigned long map_len;
206	int err;
207	u32 crc = ~(u32)0;
208	unsigned long inline_result;
209
210	len = buf->len - offset;
211	while (len > 0) {
212		err = map_private_extent_buffer(buf, offset, 32,
213					&map_token, &kaddr,
214					&map_start, &map_len, KM_USER0);
215		if (err)
216			return 1;
217		cur_len = min(len, map_len - (offset - map_start));
218		crc = btrfs_csum_data(root, kaddr + offset - map_start,
219				      crc, cur_len);
220		len -= cur_len;
221		offset += cur_len;
222		unmap_extent_buffer(buf, map_token, KM_USER0);
223	}
224	if (csum_size > sizeof(inline_result)) {
225		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
226		if (!result)
227			return 1;
228	} else {
229		result = (char *)&inline_result;
230	}
231
232	btrfs_csum_final(crc, result);
233
234	if (verify) {
235		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
236			u32 val;
237			u32 found = 0;
238			memcpy(&found, result, csum_size);
239
240			read_extent_buffer(buf, &val, 0, csum_size);
241			if (printk_ratelimit()) {
242				printk(KERN_INFO "btrfs: %s checksum verify "
243				       "failed on %llu wanted %X found %X "
244				       "level %d\n",
245				       root->fs_info->sb->s_id,
246				       (unsigned long long)buf->start, val, found,
247				       btrfs_header_level(buf));
248			}
249			if (result != (char *)&inline_result)
250				kfree(result);
251			return 1;
252		}
253	} else {
254		write_extent_buffer(buf, result, 0, csum_size);
255	}
256	if (result != (char *)&inline_result)
257		kfree(result);
258	return 0;
259}
260
261/*
262 * we can't consider a given block up to date unless the transid of the
263 * block matches the transid in the parent node's pointer.  This is how we
264 * detect blocks that either didn't get written at all or got written
265 * in the wrong place.
266 */
267static int verify_parent_transid(struct extent_io_tree *io_tree,
268				 struct extent_buffer *eb, u64 parent_transid)
269{
270	struct extent_state *cached_state = NULL;
271	int ret;
272
273	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
274		return 0;
275
276	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
277			 0, &cached_state, GFP_NOFS);
278	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
279	    btrfs_header_generation(eb) == parent_transid) {
280		ret = 0;
281		goto out;
282	}
283	if (printk_ratelimit()) {
284		printk("parent transid verify failed on %llu wanted %llu "
285		       "found %llu\n",
286		       (unsigned long long)eb->start,
287		       (unsigned long long)parent_transid,
288		       (unsigned long long)btrfs_header_generation(eb));
289	}
290	ret = 1;
291	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
292out:
293	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
294			     &cached_state, GFP_NOFS);
295	return ret;
296}
297
298/*
299 * helper to read a given tree block, doing retries as required when
300 * the checksums don't match and we have alternate mirrors to try.
301 */
302static int btree_read_extent_buffer_pages(struct btrfs_root *root,
303					  struct extent_buffer *eb,
304					  u64 start, u64 parent_transid)
305{
306	struct extent_io_tree *io_tree;
307	int ret;
308	int num_copies = 0;
309	int mirror_num = 0;
310
311	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
312	while (1) {
313		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
314					       btree_get_extent, mirror_num);
315		if (!ret &&
316		    !verify_parent_transid(io_tree, eb, parent_transid))
317			return ret;
318
319		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
320					      eb->start, eb->len);
321		if (num_copies == 1)
322			return ret;
323
324		mirror_num++;
325		if (mirror_num > num_copies)
326			return ret;
327	}
328	return -EIO;
329}
330
331/*
332 * checksum a dirty tree block before IO.  This has extra checks to make sure
333 * we only fill in the checksum field in the first page of a multi-page block
334 */
335
336static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
337{
338	struct extent_io_tree *tree;
339	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
340	u64 found_start;
341	int found_level;
342	unsigned long len;
343	struct extent_buffer *eb;
344	int ret;
345
346	tree = &BTRFS_I(page->mapping->host)->io_tree;
347
348	if (page->private == EXTENT_PAGE_PRIVATE)
349		goto out;
350	if (!page->private)
351		goto out;
352	len = page->private >> 2;
353	WARN_ON(len == 0);
354
355	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
356	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
357					     btrfs_header_generation(eb));
358	BUG_ON(ret);
359	found_start = btrfs_header_bytenr(eb);
360	if (found_start != start) {
361		WARN_ON(1);
362		goto err;
363	}
364	if (eb->first_page != page) {
365		WARN_ON(1);
366		goto err;
367	}
368	if (!PageUptodate(page)) {
369		WARN_ON(1);
370		goto err;
371	}
372	found_level = btrfs_header_level(eb);
373
374	csum_tree_block(root, eb, 0);
375err:
376	free_extent_buffer(eb);
377out:
378	return 0;
379}
380
381static int check_tree_block_fsid(struct btrfs_root *root,
382				 struct extent_buffer *eb)
383{
384	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
385	u8 fsid[BTRFS_UUID_SIZE];
386	int ret = 1;
387
388	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
389			   BTRFS_FSID_SIZE);
390	while (fs_devices) {
391		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
392			ret = 0;
393			break;
394		}
395		fs_devices = fs_devices->seed;
396	}
397	return ret;
398}
399
400#ifdef CONFIG_DEBUG_LOCK_ALLOC
401void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
402{
403	lockdep_set_class_and_name(&eb->lock,
404			   &btrfs_eb_class[level],
405			   btrfs_eb_name[level]);
406}
407#endif
408
409static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
410			       struct extent_state *state)
411{
412	struct extent_io_tree *tree;
413	u64 found_start;
414	int found_level;
415	unsigned long len;
416	struct extent_buffer *eb;
417	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
418	int ret = 0;
419
420	tree = &BTRFS_I(page->mapping->host)->io_tree;
421	if (page->private == EXTENT_PAGE_PRIVATE)
422		goto out;
423	if (!page->private)
424		goto out;
425
426	len = page->private >> 2;
427	WARN_ON(len == 0);
428
429	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
430
431	found_start = btrfs_header_bytenr(eb);
432	if (found_start != start) {
433		if (printk_ratelimit()) {
434			printk(KERN_INFO "btrfs bad tree block start "
435			       "%llu %llu\n",
436			       (unsigned long long)found_start,
437			       (unsigned long long)eb->start);
438		}
439		ret = -EIO;
440		goto err;
441	}
442	if (eb->first_page != page) {
443		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
444		       eb->first_page->index, page->index);
445		WARN_ON(1);
446		ret = -EIO;
447		goto err;
448	}
449	if (check_tree_block_fsid(root, eb)) {
450		if (printk_ratelimit()) {
451			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
452			       (unsigned long long)eb->start);
453		}
454		ret = -EIO;
455		goto err;
456	}
457	found_level = btrfs_header_level(eb);
458
459	btrfs_set_buffer_lockdep_class(eb, found_level);
460
461	ret = csum_tree_block(root, eb, 1);
462	if (ret)
463		ret = -EIO;
464
465	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
466	end = eb->start + end - 1;
467err:
468	free_extent_buffer(eb);
469out:
470	return ret;
471}
472
473static void end_workqueue_bio(struct bio *bio, int err)
474{
475	struct end_io_wq *end_io_wq = bio->bi_private;
476	struct btrfs_fs_info *fs_info;
477
478	fs_info = end_io_wq->info;
479	end_io_wq->error = err;
480	end_io_wq->work.func = end_workqueue_fn;
481	end_io_wq->work.flags = 0;
482
483	if (bio->bi_rw & REQ_WRITE) {
484		if (end_io_wq->metadata)
485			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
486					   &end_io_wq->work);
487		else
488			btrfs_queue_worker(&fs_info->endio_write_workers,
489					   &end_io_wq->work);
490	} else {
491		if (end_io_wq->metadata)
492			btrfs_queue_worker(&fs_info->endio_meta_workers,
493					   &end_io_wq->work);
494		else
495			btrfs_queue_worker(&fs_info->endio_workers,
496					   &end_io_wq->work);
497	}
498}
499
500int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
501			int metadata)
502{
503	struct end_io_wq *end_io_wq;
504	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
505	if (!end_io_wq)
506		return -ENOMEM;
507
508	end_io_wq->private = bio->bi_private;
509	end_io_wq->end_io = bio->bi_end_io;
510	end_io_wq->info = info;
511	end_io_wq->error = 0;
512	end_io_wq->bio = bio;
513	end_io_wq->metadata = metadata;
514
515	bio->bi_private = end_io_wq;
516	bio->bi_end_io = end_workqueue_bio;
517	return 0;
518}
519
520unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
521{
522	unsigned long limit = min_t(unsigned long,
523				    info->workers.max_workers,
524				    info->fs_devices->open_devices);
525	return 256 * limit;
526}
527
528int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
529{
530	return atomic_read(&info->nr_async_bios) >
531		btrfs_async_submit_limit(info);
532}
533
534static void run_one_async_start(struct btrfs_work *work)
535{
536	struct btrfs_fs_info *fs_info;
537	struct async_submit_bio *async;
538
539	async = container_of(work, struct  async_submit_bio, work);
540	fs_info = BTRFS_I(async->inode)->root->fs_info;
541	async->submit_bio_start(async->inode, async->rw, async->bio,
542			       async->mirror_num, async->bio_flags,
543			       async->bio_offset);
544}
545
546static void run_one_async_done(struct btrfs_work *work)
547{
548	struct btrfs_fs_info *fs_info;
549	struct async_submit_bio *async;
550	int limit;
551
552	async = container_of(work, struct  async_submit_bio, work);
553	fs_info = BTRFS_I(async->inode)->root->fs_info;
554
555	limit = btrfs_async_submit_limit(fs_info);
556	limit = limit * 2 / 3;
557
558	atomic_dec(&fs_info->nr_async_submits);
559
560	if (atomic_read(&fs_info->nr_async_submits) < limit &&
561	    waitqueue_active(&fs_info->async_submit_wait))
562		wake_up(&fs_info->async_submit_wait);
563
564	async->submit_bio_done(async->inode, async->rw, async->bio,
565			       async->mirror_num, async->bio_flags,
566			       async->bio_offset);
567}
568
569static void run_one_async_free(struct btrfs_work *work)
570{
571	struct async_submit_bio *async;
572
573	async = container_of(work, struct  async_submit_bio, work);
574	kfree(async);
575}
576
577int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
578			int rw, struct bio *bio, int mirror_num,
579			unsigned long bio_flags,
580			u64 bio_offset,
581			extent_submit_bio_hook_t *submit_bio_start,
582			extent_submit_bio_hook_t *submit_bio_done)
583{
584	struct async_submit_bio *async;
585
586	async = kmalloc(sizeof(*async), GFP_NOFS);
587	if (!async)
588		return -ENOMEM;
589
590	async->inode = inode;
591	async->rw = rw;
592	async->bio = bio;
593	async->mirror_num = mirror_num;
594	async->submit_bio_start = submit_bio_start;
595	async->submit_bio_done = submit_bio_done;
596
597	async->work.func = run_one_async_start;
598	async->work.ordered_func = run_one_async_done;
599	async->work.ordered_free = run_one_async_free;
600
601	async->work.flags = 0;
602	async->bio_flags = bio_flags;
603	async->bio_offset = bio_offset;
604
605	atomic_inc(&fs_info->nr_async_submits);
606
607	if (rw & REQ_SYNC)
608		btrfs_set_work_high_prio(&async->work);
609
610	btrfs_queue_worker(&fs_info->workers, &async->work);
611
612	while (atomic_read(&fs_info->async_submit_draining) &&
613	      atomic_read(&fs_info->nr_async_submits)) {
614		wait_event(fs_info->async_submit_wait,
615			   (atomic_read(&fs_info->nr_async_submits) == 0));
616	}
617
618	return 0;
619}
620
621static int btree_csum_one_bio(struct bio *bio)
622{
623	struct bio_vec *bvec = bio->bi_io_vec;
624	int bio_index = 0;
625	struct btrfs_root *root;
626
627	WARN_ON(bio->bi_vcnt <= 0);
628	while (bio_index < bio->bi_vcnt) {
629		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
630		csum_dirty_buffer(root, bvec->bv_page);
631		bio_index++;
632		bvec++;
633	}
634	return 0;
635}
636
637static int __btree_submit_bio_start(struct inode *inode, int rw,
638				    struct bio *bio, int mirror_num,
639				    unsigned long bio_flags,
640				    u64 bio_offset)
641{
642	/*
643	 * when we're called for a write, we're already in the async
644	 * submission context.  Just jump into btrfs_map_bio
645	 */
646	btree_csum_one_bio(bio);
647	return 0;
648}
649
650static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
651				 int mirror_num, unsigned long bio_flags,
652				 u64 bio_offset)
653{
654	/*
655	 * when we're called for a write, we're already in the async
656	 * submission context.  Just jump into btrfs_map_bio
657	 */
658	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
659}
660
661static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
662				 int mirror_num, unsigned long bio_flags,
663				 u64 bio_offset)
664{
665	int ret;
666
667	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
668					  bio, 1);
669	BUG_ON(ret);
670
671	if (!(rw & REQ_WRITE)) {
672		/*
673		 * called for a read, do the setup so that checksum validation
674		 * can happen in the async kernel threads
675		 */
676		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
677				     mirror_num, 0);
678	}
679
680	/*
681	 * kthread helpers are used to submit writes so that checksumming
682	 * can happen in parallel across all CPUs
683	 */
684	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
685				   inode, rw, bio, mirror_num, 0,
686				   bio_offset,
687				   __btree_submit_bio_start,
688				   __btree_submit_bio_done);
689}
690
691static int btree_writepage(struct page *page, struct writeback_control *wbc)
692{
693	struct extent_io_tree *tree;
694	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695	struct extent_buffer *eb;
696	int was_dirty;
697
698	tree = &BTRFS_I(page->mapping->host)->io_tree;
699	if (!(current->flags & PF_MEMALLOC)) {
700		return extent_write_full_page(tree, page,
701					      btree_get_extent, wbc);
702	}
703
704	redirty_page_for_writepage(wbc, page);
705	eb = btrfs_find_tree_block(root, page_offset(page),
706				      PAGE_CACHE_SIZE);
707	WARN_ON(!eb);
708
709	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
710	if (!was_dirty) {
711		spin_lock(&root->fs_info->delalloc_lock);
712		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
713		spin_unlock(&root->fs_info->delalloc_lock);
714	}
715	free_extent_buffer(eb);
716
717	unlock_page(page);
718	return 0;
719}
720
721static int btree_writepages(struct address_space *mapping,
722			    struct writeback_control *wbc)
723{
724	struct extent_io_tree *tree;
725	tree = &BTRFS_I(mapping->host)->io_tree;
726	if (wbc->sync_mode == WB_SYNC_NONE) {
727		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
728		u64 num_dirty;
729		unsigned long thresh = 32 * 1024 * 1024;
730
731		if (wbc->for_kupdate)
732			return 0;
733
734		/* this is a bit racy, but that's ok */
735		num_dirty = root->fs_info->dirty_metadata_bytes;
736		if (num_dirty < thresh)
737			return 0;
738	}
739	return extent_writepages(tree, mapping, btree_get_extent, wbc);
740}
741
742static int btree_readpage(struct file *file, struct page *page)
743{
744	struct extent_io_tree *tree;
745	tree = &BTRFS_I(page->mapping->host)->io_tree;
746	return extent_read_full_page(tree, page, btree_get_extent);
747}
748
749static int btree_releasepage(struct page *page, gfp_t gfp_flags)
750{
751	struct extent_io_tree *tree;
752	struct extent_map_tree *map;
753	int ret;
754
755	if (PageWriteback(page) || PageDirty(page))
756		return 0;
757
758	tree = &BTRFS_I(page->mapping->host)->io_tree;
759	map = &BTRFS_I(page->mapping->host)->extent_tree;
760
761	ret = try_release_extent_state(map, tree, page, gfp_flags);
762	if (!ret)
763		return 0;
764
765	ret = try_release_extent_buffer(tree, page);
766	if (ret == 1) {
767		ClearPagePrivate(page);
768		set_page_private(page, 0);
769		page_cache_release(page);
770	}
771
772	return ret;
773}
774
775static void btree_invalidatepage(struct page *page, unsigned long offset)
776{
777	struct extent_io_tree *tree;
778	tree = &BTRFS_I(page->mapping->host)->io_tree;
779	extent_invalidatepage(tree, page, offset);
780	btree_releasepage(page, GFP_NOFS);
781	if (PagePrivate(page)) {
782		printk(KERN_WARNING "btrfs warning page private not zero "
783		       "on page %llu\n", (unsigned long long)page_offset(page));
784		ClearPagePrivate(page);
785		set_page_private(page, 0);
786		page_cache_release(page);
787	}
788}
789
790static const struct address_space_operations btree_aops = {
791	.readpage	= btree_readpage,
792	.writepage	= btree_writepage,
793	.writepages	= btree_writepages,
794	.releasepage	= btree_releasepage,
795	.invalidatepage = btree_invalidatepage,
796	.sync_page	= block_sync_page,
797};
798
799int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
800			 u64 parent_transid)
801{
802	struct extent_buffer *buf = NULL;
803	struct inode *btree_inode = root->fs_info->btree_inode;
804	int ret = 0;
805
806	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
807	if (!buf)
808		return 0;
809	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
810				 buf, 0, 0, btree_get_extent, 0);
811	free_extent_buffer(buf);
812	return ret;
813}
814
815struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
816					    u64 bytenr, u32 blocksize)
817{
818	struct inode *btree_inode = root->fs_info->btree_inode;
819	struct extent_buffer *eb;
820	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
821				bytenr, blocksize, GFP_NOFS);
822	return eb;
823}
824
825struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
826						 u64 bytenr, u32 blocksize)
827{
828	struct inode *btree_inode = root->fs_info->btree_inode;
829	struct extent_buffer *eb;
830
831	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
832				 bytenr, blocksize, NULL, GFP_NOFS);
833	return eb;
834}
835
836
837int btrfs_write_tree_block(struct extent_buffer *buf)
838{
839	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
840					buf->start + buf->len - 1);
841}
842
843int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
844{
845	return filemap_fdatawait_range(buf->first_page->mapping,
846				       buf->start, buf->start + buf->len - 1);
847}
848
849struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
850				      u32 blocksize, u64 parent_transid)
851{
852	struct extent_buffer *buf = NULL;
853	struct inode *btree_inode = root->fs_info->btree_inode;
854	struct extent_io_tree *io_tree;
855	int ret;
856
857	io_tree = &BTRFS_I(btree_inode)->io_tree;
858
859	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
860	if (!buf)
861		return NULL;
862
863	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
864
865	if (ret == 0)
866		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
867	return buf;
868
869}
870
871int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
872		     struct extent_buffer *buf)
873{
874	struct inode *btree_inode = root->fs_info->btree_inode;
875	if (btrfs_header_generation(buf) ==
876	    root->fs_info->running_transaction->transid) {
877		btrfs_assert_tree_locked(buf);
878
879		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
880			spin_lock(&root->fs_info->delalloc_lock);
881			if (root->fs_info->dirty_metadata_bytes >= buf->len)
882				root->fs_info->dirty_metadata_bytes -= buf->len;
883			else
884				WARN_ON(1);
885			spin_unlock(&root->fs_info->delalloc_lock);
886		}
887
888		/* ugh, clear_extent_buffer_dirty needs to lock the page */
889		btrfs_set_lock_blocking(buf);
890		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
891					  buf);
892	}
893	return 0;
894}
895
896static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
897			u32 stripesize, struct btrfs_root *root,
898			struct btrfs_fs_info *fs_info,
899			u64 objectid)
900{
901	root->node = NULL;
902	root->commit_root = NULL;
903	root->sectorsize = sectorsize;
904	root->nodesize = nodesize;
905	root->leafsize = leafsize;
906	root->stripesize = stripesize;
907	root->ref_cows = 0;
908	root->track_dirty = 0;
909	root->in_radix = 0;
910	root->orphan_item_inserted = 0;
911	root->orphan_cleanup_state = 0;
912
913	root->fs_info = fs_info;
914	root->objectid = objectid;
915	root->last_trans = 0;
916	root->highest_objectid = 0;
917	root->name = NULL;
918	root->in_sysfs = 0;
919	root->inode_tree = RB_ROOT;
920	root->block_rsv = NULL;
921	root->orphan_block_rsv = NULL;
922
923	INIT_LIST_HEAD(&root->dirty_list);
924	INIT_LIST_HEAD(&root->orphan_list);
925	INIT_LIST_HEAD(&root->root_list);
926	spin_lock_init(&root->node_lock);
927	spin_lock_init(&root->orphan_lock);
928	spin_lock_init(&root->inode_lock);
929	spin_lock_init(&root->accounting_lock);
930	mutex_init(&root->objectid_mutex);
931	mutex_init(&root->log_mutex);
932	init_waitqueue_head(&root->log_writer_wait);
933	init_waitqueue_head(&root->log_commit_wait[0]);
934	init_waitqueue_head(&root->log_commit_wait[1]);
935	atomic_set(&root->log_commit[0], 0);
936	atomic_set(&root->log_commit[1], 0);
937	atomic_set(&root->log_writers, 0);
938	root->log_batch = 0;
939	root->log_transid = 0;
940	root->last_log_commit = 0;
941	extent_io_tree_init(&root->dirty_log_pages,
942			     fs_info->btree_inode->i_mapping, GFP_NOFS);
943
944	memset(&root->root_key, 0, sizeof(root->root_key));
945	memset(&root->root_item, 0, sizeof(root->root_item));
946	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
947	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
948	root->defrag_trans_start = fs_info->generation;
949	init_completion(&root->kobj_unregister);
950	root->defrag_running = 0;
951	root->root_key.objectid = objectid;
952	root->anon_super.s_root = NULL;
953	root->anon_super.s_dev = 0;
954	INIT_LIST_HEAD(&root->anon_super.s_list);
955	INIT_LIST_HEAD(&root->anon_super.s_instances);
956	init_rwsem(&root->anon_super.s_umount);
957
958	return 0;
959}
960
961static int find_and_setup_root(struct btrfs_root *tree_root,
962			       struct btrfs_fs_info *fs_info,
963			       u64 objectid,
964			       struct btrfs_root *root)
965{
966	int ret;
967	u32 blocksize;
968	u64 generation;
969
970	__setup_root(tree_root->nodesize, tree_root->leafsize,
971		     tree_root->sectorsize, tree_root->stripesize,
972		     root, fs_info, objectid);
973	ret = btrfs_find_last_root(tree_root, objectid,
974				   &root->root_item, &root->root_key);
975	if (ret > 0)
976		return -ENOENT;
977	BUG_ON(ret);
978
979	generation = btrfs_root_generation(&root->root_item);
980	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
981	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
982				     blocksize, generation);
983	BUG_ON(!root->node);
984	root->commit_root = btrfs_root_node(root);
985	return 0;
986}
987
988static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
989					 struct btrfs_fs_info *fs_info)
990{
991	struct btrfs_root *root;
992	struct btrfs_root *tree_root = fs_info->tree_root;
993	struct extent_buffer *leaf;
994
995	root = kzalloc(sizeof(*root), GFP_NOFS);
996	if (!root)
997		return ERR_PTR(-ENOMEM);
998
999	__setup_root(tree_root->nodesize, tree_root->leafsize,
1000		     tree_root->sectorsize, tree_root->stripesize,
1001		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1002
1003	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1004	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1005	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1006	/*
1007	 * log trees do not get reference counted because they go away
1008	 * before a real commit is actually done.  They do store pointers
1009	 * to file data extents, and those reference counts still get
1010	 * updated (along with back refs to the log tree).
1011	 */
1012	root->ref_cows = 0;
1013
1014	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1015				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1016	if (IS_ERR(leaf)) {
1017		kfree(root);
1018		return ERR_CAST(leaf);
1019	}
1020
1021	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1022	btrfs_set_header_bytenr(leaf, leaf->start);
1023	btrfs_set_header_generation(leaf, trans->transid);
1024	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1025	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1026	root->node = leaf;
1027
1028	write_extent_buffer(root->node, root->fs_info->fsid,
1029			    (unsigned long)btrfs_header_fsid(root->node),
1030			    BTRFS_FSID_SIZE);
1031	btrfs_mark_buffer_dirty(root->node);
1032	btrfs_tree_unlock(root->node);
1033	return root;
1034}
1035
1036int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1037			     struct btrfs_fs_info *fs_info)
1038{
1039	struct btrfs_root *log_root;
1040
1041	log_root = alloc_log_tree(trans, fs_info);
1042	if (IS_ERR(log_root))
1043		return PTR_ERR(log_root);
1044	WARN_ON(fs_info->log_root_tree);
1045	fs_info->log_root_tree = log_root;
1046	return 0;
1047}
1048
1049int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1050		       struct btrfs_root *root)
1051{
1052	struct btrfs_root *log_root;
1053	struct btrfs_inode_item *inode_item;
1054
1055	log_root = alloc_log_tree(trans, root->fs_info);
1056	if (IS_ERR(log_root))
1057		return PTR_ERR(log_root);
1058
1059	log_root->last_trans = trans->transid;
1060	log_root->root_key.offset = root->root_key.objectid;
1061
1062	inode_item = &log_root->root_item.inode;
1063	inode_item->generation = cpu_to_le64(1);
1064	inode_item->size = cpu_to_le64(3);
1065	inode_item->nlink = cpu_to_le32(1);
1066	inode_item->nbytes = cpu_to_le64(root->leafsize);
1067	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1068
1069	btrfs_set_root_node(&log_root->root_item, log_root->node);
1070
1071	WARN_ON(root->log_root);
1072	root->log_root = log_root;
1073	root->log_transid = 0;
1074	root->last_log_commit = 0;
1075	return 0;
1076}
1077
1078struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1079					       struct btrfs_key *location)
1080{
1081	struct btrfs_root *root;
1082	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1083	struct btrfs_path *path;
1084	struct extent_buffer *l;
1085	u64 generation;
1086	u32 blocksize;
1087	int ret = 0;
1088
1089	root = kzalloc(sizeof(*root), GFP_NOFS);
1090	if (!root)
1091		return ERR_PTR(-ENOMEM);
1092	if (location->offset == (u64)-1) {
1093		ret = find_and_setup_root(tree_root, fs_info,
1094					  location->objectid, root);
1095		if (ret) {
1096			kfree(root);
1097			return ERR_PTR(ret);
1098		}
1099		goto out;
1100	}
1101
1102	__setup_root(tree_root->nodesize, tree_root->leafsize,
1103		     tree_root->sectorsize, tree_root->stripesize,
1104		     root, fs_info, location->objectid);
1105
1106	path = btrfs_alloc_path();
1107	BUG_ON(!path);
1108	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1109	if (ret == 0) {
1110		l = path->nodes[0];
1111		read_extent_buffer(l, &root->root_item,
1112				btrfs_item_ptr_offset(l, path->slots[0]),
1113				sizeof(root->root_item));
1114		memcpy(&root->root_key, location, sizeof(*location));
1115	}
1116	btrfs_free_path(path);
1117	if (ret) {
1118		if (ret > 0)
1119			ret = -ENOENT;
1120		return ERR_PTR(ret);
1121	}
1122
1123	generation = btrfs_root_generation(&root->root_item);
1124	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1125	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1126				     blocksize, generation);
1127	root->commit_root = btrfs_root_node(root);
1128	BUG_ON(!root->node);
1129out:
1130	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1131		root->ref_cows = 1;
1132
1133	return root;
1134}
1135
1136struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1137					u64 root_objectid)
1138{
1139	struct btrfs_root *root;
1140
1141	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1142		return fs_info->tree_root;
1143	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1144		return fs_info->extent_root;
1145
1146	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1147				 (unsigned long)root_objectid);
1148	return root;
1149}
1150
1151struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1152					      struct btrfs_key *location)
1153{
1154	struct btrfs_root *root;
1155	int ret;
1156
1157	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1158		return fs_info->tree_root;
1159	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1160		return fs_info->extent_root;
1161	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1162		return fs_info->chunk_root;
1163	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1164		return fs_info->dev_root;
1165	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1166		return fs_info->csum_root;
1167again:
1168	spin_lock(&fs_info->fs_roots_radix_lock);
1169	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170				 (unsigned long)location->objectid);
1171	spin_unlock(&fs_info->fs_roots_radix_lock);
1172	if (root)
1173		return root;
1174
1175	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1176	if (IS_ERR(root))
1177		return root;
1178
1179	set_anon_super(&root->anon_super, NULL);
1180
1181	if (btrfs_root_refs(&root->root_item) == 0) {
1182		ret = -ENOENT;
1183		goto fail;
1184	}
1185
1186	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1187	if (ret < 0)
1188		goto fail;
1189	if (ret == 0)
1190		root->orphan_item_inserted = 1;
1191
1192	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1193	if (ret)
1194		goto fail;
1195
1196	spin_lock(&fs_info->fs_roots_radix_lock);
1197	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1198				(unsigned long)root->root_key.objectid,
1199				root);
1200	if (ret == 0)
1201		root->in_radix = 1;
1202
1203	spin_unlock(&fs_info->fs_roots_radix_lock);
1204	radix_tree_preload_end();
1205	if (ret) {
1206		if (ret == -EEXIST) {
1207			free_fs_root(root);
1208			goto again;
1209		}
1210		goto fail;
1211	}
1212
1213	ret = btrfs_find_dead_roots(fs_info->tree_root,
1214				    root->root_key.objectid);
1215	WARN_ON(ret);
1216	return root;
1217fail:
1218	free_fs_root(root);
1219	return ERR_PTR(ret);
1220}
1221
1222struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1223				      struct btrfs_key *location,
1224				      const char *name, int namelen)
1225{
1226	return btrfs_read_fs_root_no_name(fs_info, location);
1227}
1228
1229static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1230{
1231	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1232	int ret = 0;
1233	struct btrfs_device *device;
1234	struct backing_dev_info *bdi;
1235
1236	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1237		if (!device->bdev)
1238			continue;
1239		bdi = blk_get_backing_dev_info(device->bdev);
1240		if (bdi && bdi_congested(bdi, bdi_bits)) {
1241			ret = 1;
1242			break;
1243		}
1244	}
1245	return ret;
1246}
1247
1248/*
1249 * this unplugs every device on the box, and it is only used when page
1250 * is null
1251 */
1252static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1253{
1254	struct btrfs_device *device;
1255	struct btrfs_fs_info *info;
1256
1257	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1258	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1259		if (!device->bdev)
1260			continue;
1261
1262		bdi = blk_get_backing_dev_info(device->bdev);
1263		if (bdi->unplug_io_fn)
1264			bdi->unplug_io_fn(bdi, page);
1265	}
1266}
1267
1268static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1269{
1270	struct inode *inode;
1271	struct extent_map_tree *em_tree;
1272	struct extent_map *em;
1273	struct address_space *mapping;
1274	u64 offset;
1275
1276	/* the generic O_DIRECT read code does this */
1277	if (1 || !page) {
1278		__unplug_io_fn(bdi, page);
1279		return;
1280	}
1281
1282	/*
1283	 * page->mapping may change at any time.  Get a consistent copy
1284	 * and use that for everything below
1285	 */
1286	smp_mb();
1287	mapping = page->mapping;
1288	if (!mapping)
1289		return;
1290
1291	inode = mapping->host;
1292
1293	/*
1294	 * don't do the expensive searching for a small number of
1295	 * devices
1296	 */
1297	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1298		__unplug_io_fn(bdi, page);
1299		return;
1300	}
1301
1302	offset = page_offset(page);
1303
1304	em_tree = &BTRFS_I(inode)->extent_tree;
1305	read_lock(&em_tree->lock);
1306	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1307	read_unlock(&em_tree->lock);
1308	if (!em) {
1309		__unplug_io_fn(bdi, page);
1310		return;
1311	}
1312
1313	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1314		free_extent_map(em);
1315		__unplug_io_fn(bdi, page);
1316		return;
1317	}
1318	offset = offset - em->start;
1319	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1320			  em->block_start + offset, page);
1321	free_extent_map(em);
1322}
1323
1324/*
1325 * If this fails, caller must call bdi_destroy() to get rid of the
1326 * bdi again.
1327 */
1328static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1329{
1330	int err;
1331
1332	bdi->capabilities = BDI_CAP_MAP_COPY;
1333	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1334	if (err)
1335		return err;
1336
1337	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1338	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1339	bdi->unplug_io_data	= info;
1340	bdi->congested_fn	= btrfs_congested_fn;
1341	bdi->congested_data	= info;
1342	return 0;
1343}
1344
1345static int bio_ready_for_csum(struct bio *bio)
1346{
1347	u64 length = 0;
1348	u64 buf_len = 0;
1349	u64 start = 0;
1350	struct page *page;
1351	struct extent_io_tree *io_tree = NULL;
1352	struct btrfs_fs_info *info = NULL;
1353	struct bio_vec *bvec;
1354	int i;
1355	int ret;
1356
1357	bio_for_each_segment(bvec, bio, i) {
1358		page = bvec->bv_page;
1359		if (page->private == EXTENT_PAGE_PRIVATE) {
1360			length += bvec->bv_len;
1361			continue;
1362		}
1363		if (!page->private) {
1364			length += bvec->bv_len;
1365			continue;
1366		}
1367		length = bvec->bv_len;
1368		buf_len = page->private >> 2;
1369		start = page_offset(page) + bvec->bv_offset;
1370		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1371		info = BTRFS_I(page->mapping->host)->root->fs_info;
1372	}
1373	/* are we fully contained in this bio? */
1374	if (buf_len <= length)
1375		return 1;
1376
1377	ret = extent_range_uptodate(io_tree, start + length,
1378				    start + buf_len - 1);
1379	return ret;
1380}
1381
1382/*
1383 * called by the kthread helper functions to finally call the bio end_io
1384 * functions.  This is where read checksum verification actually happens
1385 */
1386static void end_workqueue_fn(struct btrfs_work *work)
1387{
1388	struct bio *bio;
1389	struct end_io_wq *end_io_wq;
1390	struct btrfs_fs_info *fs_info;
1391	int error;
1392
1393	end_io_wq = container_of(work, struct end_io_wq, work);
1394	bio = end_io_wq->bio;
1395	fs_info = end_io_wq->info;
1396
1397	/* metadata bio reads are special because the whole tree block must
1398	 * be checksummed at once.  This makes sure the entire block is in
1399	 * ram and up to date before trying to verify things.  For
1400	 * blocksize <= pagesize, it is basically a noop
1401	 */
1402	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1403	    !bio_ready_for_csum(bio)) {
1404		btrfs_queue_worker(&fs_info->endio_meta_workers,
1405				   &end_io_wq->work);
1406		return;
1407	}
1408	error = end_io_wq->error;
1409	bio->bi_private = end_io_wq->private;
1410	bio->bi_end_io = end_io_wq->end_io;
1411	kfree(end_io_wq);
1412	bio_endio(bio, error);
1413}
1414
1415static int cleaner_kthread(void *arg)
1416{
1417	struct btrfs_root *root = arg;
1418
1419	do {
1420		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1421
1422		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1423		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1424			btrfs_run_delayed_iputs(root);
1425			btrfs_clean_old_snapshots(root);
1426			mutex_unlock(&root->fs_info->cleaner_mutex);
1427		}
1428
1429		if (freezing(current)) {
1430			refrigerator();
1431		} else {
1432			set_current_state(TASK_INTERRUPTIBLE);
1433			if (!kthread_should_stop())
1434				schedule();
1435			__set_current_state(TASK_RUNNING);
1436		}
1437	} while (!kthread_should_stop());
1438	return 0;
1439}
1440
1441static int transaction_kthread(void *arg)
1442{
1443	struct btrfs_root *root = arg;
1444	struct btrfs_trans_handle *trans;
1445	struct btrfs_transaction *cur;
1446	u64 transid;
1447	unsigned long now;
1448	unsigned long delay;
1449	int ret;
1450
1451	do {
1452		delay = HZ * 30;
1453		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1454		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1455
1456		spin_lock(&root->fs_info->new_trans_lock);
1457		cur = root->fs_info->running_transaction;
1458		if (!cur) {
1459			spin_unlock(&root->fs_info->new_trans_lock);
1460			goto sleep;
1461		}
1462
1463		now = get_seconds();
1464		if (!cur->blocked &&
1465		    (now < cur->start_time || now - cur->start_time < 30)) {
1466			spin_unlock(&root->fs_info->new_trans_lock);
1467			delay = HZ * 5;
1468			goto sleep;
1469		}
1470		transid = cur->transid;
1471		spin_unlock(&root->fs_info->new_trans_lock);
1472
1473		trans = btrfs_join_transaction(root, 1);
1474		if (transid == trans->transid) {
1475			ret = btrfs_commit_transaction(trans, root);
1476			BUG_ON(ret);
1477		} else {
1478			btrfs_end_transaction(trans, root);
1479		}
1480sleep:
1481		wake_up_process(root->fs_info->cleaner_kthread);
1482		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1483
1484		if (freezing(current)) {
1485			refrigerator();
1486		} else {
1487			set_current_state(TASK_INTERRUPTIBLE);
1488			if (!kthread_should_stop() &&
1489			    !btrfs_transaction_blocked(root->fs_info))
1490				schedule_timeout(delay);
1491			__set_current_state(TASK_RUNNING);
1492		}
1493	} while (!kthread_should_stop());
1494	return 0;
1495}
1496
1497struct btrfs_root *open_ctree(struct super_block *sb,
1498			      struct btrfs_fs_devices *fs_devices,
1499			      char *options)
1500{
1501	u32 sectorsize;
1502	u32 nodesize;
1503	u32 leafsize;
1504	u32 blocksize;
1505	u32 stripesize;
1506	u64 generation;
1507	u64 features;
1508	struct btrfs_key location;
1509	struct buffer_head *bh;
1510	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1511						 GFP_NOFS);
1512	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1513						 GFP_NOFS);
1514	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1515					       GFP_NOFS);
1516	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1517						GFP_NOFS);
1518	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1519						GFP_NOFS);
1520	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1521					      GFP_NOFS);
1522	struct btrfs_root *log_tree_root;
1523
1524	int ret;
1525	int err = -EINVAL;
1526
1527	struct btrfs_super_block *disk_super;
1528
1529	if (!extent_root || !tree_root || !fs_info ||
1530	    !chunk_root || !dev_root || !csum_root) {
1531		err = -ENOMEM;
1532		goto fail;
1533	}
1534
1535	ret = init_srcu_struct(&fs_info->subvol_srcu);
1536	if (ret) {
1537		err = ret;
1538		goto fail;
1539	}
1540
1541	ret = setup_bdi(fs_info, &fs_info->bdi);
1542	if (ret) {
1543		err = ret;
1544		goto fail_srcu;
1545	}
1546
1547	fs_info->btree_inode = new_inode(sb);
1548	if (!fs_info->btree_inode) {
1549		err = -ENOMEM;
1550		goto fail_bdi;
1551	}
1552
1553	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1554	INIT_LIST_HEAD(&fs_info->trans_list);
1555	INIT_LIST_HEAD(&fs_info->dead_roots);
1556	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1557	INIT_LIST_HEAD(&fs_info->hashers);
1558	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1559	INIT_LIST_HEAD(&fs_info->ordered_operations);
1560	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1561	spin_lock_init(&fs_info->delalloc_lock);
1562	spin_lock_init(&fs_info->new_trans_lock);
1563	spin_lock_init(&fs_info->ref_cache_lock);
1564	spin_lock_init(&fs_info->fs_roots_radix_lock);
1565	spin_lock_init(&fs_info->delayed_iput_lock);
1566
1567	init_completion(&fs_info->kobj_unregister);
1568	fs_info->tree_root = tree_root;
1569	fs_info->extent_root = extent_root;
1570	fs_info->csum_root = csum_root;
1571	fs_info->chunk_root = chunk_root;
1572	fs_info->dev_root = dev_root;
1573	fs_info->fs_devices = fs_devices;
1574	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1575	INIT_LIST_HEAD(&fs_info->space_info);
1576	btrfs_mapping_init(&fs_info->mapping_tree);
1577	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1578	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1579	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1580	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1581	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1582	INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1583	mutex_init(&fs_info->durable_block_rsv_mutex);
1584	atomic_set(&fs_info->nr_async_submits, 0);
1585	atomic_set(&fs_info->async_delalloc_pages, 0);
1586	atomic_set(&fs_info->async_submit_draining, 0);
1587	atomic_set(&fs_info->nr_async_bios, 0);
1588	fs_info->sb = sb;
1589	fs_info->max_inline = 8192 * 1024;
1590	fs_info->metadata_ratio = 0;
1591
1592	fs_info->thread_pool_size = min_t(unsigned long,
1593					  num_online_cpus() + 2, 8);
1594
1595	INIT_LIST_HEAD(&fs_info->ordered_extents);
1596	spin_lock_init(&fs_info->ordered_extent_lock);
1597
1598	sb->s_blocksize = 4096;
1599	sb->s_blocksize_bits = blksize_bits(4096);
1600	sb->s_bdi = &fs_info->bdi;
1601
1602	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1603	fs_info->btree_inode->i_nlink = 1;
1604	/*
1605	 * we set the i_size on the btree inode to the max possible int.
1606	 * the real end of the address space is determined by all of
1607	 * the devices in the system
1608	 */
1609	fs_info->btree_inode->i_size = OFFSET_MAX;
1610	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1611	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1612
1613	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1614	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1615			     fs_info->btree_inode->i_mapping,
1616			     GFP_NOFS);
1617	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1618			     GFP_NOFS);
1619
1620	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1621
1622	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1623	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1624	       sizeof(struct btrfs_key));
1625	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1626	insert_inode_hash(fs_info->btree_inode);
1627
1628	spin_lock_init(&fs_info->block_group_cache_lock);
1629	fs_info->block_group_cache_tree = RB_ROOT;
1630
1631	extent_io_tree_init(&fs_info->freed_extents[0],
1632			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1633	extent_io_tree_init(&fs_info->freed_extents[1],
1634			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1635	fs_info->pinned_extents = &fs_info->freed_extents[0];
1636	fs_info->do_barriers = 1;
1637
1638
1639	mutex_init(&fs_info->trans_mutex);
1640	mutex_init(&fs_info->ordered_operations_mutex);
1641	mutex_init(&fs_info->tree_log_mutex);
1642	mutex_init(&fs_info->chunk_mutex);
1643	mutex_init(&fs_info->transaction_kthread_mutex);
1644	mutex_init(&fs_info->cleaner_mutex);
1645	mutex_init(&fs_info->volume_mutex);
1646	init_rwsem(&fs_info->extent_commit_sem);
1647	init_rwsem(&fs_info->cleanup_work_sem);
1648	init_rwsem(&fs_info->subvol_sem);
1649
1650	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1651	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1652
1653	init_waitqueue_head(&fs_info->transaction_throttle);
1654	init_waitqueue_head(&fs_info->transaction_wait);
1655	init_waitqueue_head(&fs_info->async_submit_wait);
1656
1657	__setup_root(4096, 4096, 4096, 4096, tree_root,
1658		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1659
1660
1661	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1662	if (!bh)
1663		goto fail_iput;
1664
1665	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1666	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1667	       sizeof(fs_info->super_for_commit));
1668	brelse(bh);
1669
1670	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1671
1672	disk_super = &fs_info->super_copy;
1673	if (!btrfs_super_root(disk_super))
1674		goto fail_iput;
1675
1676	ret = btrfs_parse_options(tree_root, options);
1677	if (ret) {
1678		err = ret;
1679		goto fail_iput;
1680	}
1681
1682	features = btrfs_super_incompat_flags(disk_super) &
1683		~BTRFS_FEATURE_INCOMPAT_SUPP;
1684	if (features) {
1685		printk(KERN_ERR "BTRFS: couldn't mount because of "
1686		       "unsupported optional features (%Lx).\n",
1687		       (unsigned long long)features);
1688		err = -EINVAL;
1689		goto fail_iput;
1690	}
1691
1692	features = btrfs_super_incompat_flags(disk_super);
1693	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1694		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1695		btrfs_set_super_incompat_flags(disk_super, features);
1696	}
1697
1698	features = btrfs_super_compat_ro_flags(disk_super) &
1699		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1700	if (!(sb->s_flags & MS_RDONLY) && features) {
1701		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1702		       "unsupported option features (%Lx).\n",
1703		       (unsigned long long)features);
1704		err = -EINVAL;
1705		goto fail_iput;
1706	}
1707
1708	btrfs_init_workers(&fs_info->generic_worker,
1709			   "genwork", 1, NULL);
1710
1711	btrfs_init_workers(&fs_info->workers, "worker",
1712			   fs_info->thread_pool_size,
1713			   &fs_info->generic_worker);
1714
1715	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1716			   fs_info->thread_pool_size,
1717			   &fs_info->generic_worker);
1718
1719	btrfs_init_workers(&fs_info->submit_workers, "submit",
1720			   min_t(u64, fs_devices->num_devices,
1721			   fs_info->thread_pool_size),
1722			   &fs_info->generic_worker);
1723
1724	/* a higher idle thresh on the submit workers makes it much more
1725	 * likely that bios will be send down in a sane order to the
1726	 * devices
1727	 */
1728	fs_info->submit_workers.idle_thresh = 64;
1729
1730	fs_info->workers.idle_thresh = 16;
1731	fs_info->workers.ordered = 1;
1732
1733	fs_info->delalloc_workers.idle_thresh = 2;
1734	fs_info->delalloc_workers.ordered = 1;
1735
1736	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1737			   &fs_info->generic_worker);
1738	btrfs_init_workers(&fs_info->endio_workers, "endio",
1739			   fs_info->thread_pool_size,
1740			   &fs_info->generic_worker);
1741	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1742			   fs_info->thread_pool_size,
1743			   &fs_info->generic_worker);
1744	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1745			   "endio-meta-write", fs_info->thread_pool_size,
1746			   &fs_info->generic_worker);
1747	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1748			   fs_info->thread_pool_size,
1749			   &fs_info->generic_worker);
1750
1751	/*
1752	 * endios are largely parallel and should have a very
1753	 * low idle thresh
1754	 */
1755	fs_info->endio_workers.idle_thresh = 4;
1756	fs_info->endio_meta_workers.idle_thresh = 4;
1757
1758	fs_info->endio_write_workers.idle_thresh = 2;
1759	fs_info->endio_meta_write_workers.idle_thresh = 2;
1760
1761	btrfs_start_workers(&fs_info->workers, 1);
1762	btrfs_start_workers(&fs_info->generic_worker, 1);
1763	btrfs_start_workers(&fs_info->submit_workers, 1);
1764	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1765	btrfs_start_workers(&fs_info->fixup_workers, 1);
1766	btrfs_start_workers(&fs_info->endio_workers, 1);
1767	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1768	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1769	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1770
1771	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1772	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1773				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1774
1775	nodesize = btrfs_super_nodesize(disk_super);
1776	leafsize = btrfs_super_leafsize(disk_super);
1777	sectorsize = btrfs_super_sectorsize(disk_super);
1778	stripesize = btrfs_super_stripesize(disk_super);
1779	tree_root->nodesize = nodesize;
1780	tree_root->leafsize = leafsize;
1781	tree_root->sectorsize = sectorsize;
1782	tree_root->stripesize = stripesize;
1783
1784	sb->s_blocksize = sectorsize;
1785	sb->s_blocksize_bits = blksize_bits(sectorsize);
1786
1787	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1788		    sizeof(disk_super->magic))) {
1789		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1790		goto fail_sb_buffer;
1791	}
1792
1793	mutex_lock(&fs_info->chunk_mutex);
1794	ret = btrfs_read_sys_array(tree_root);
1795	mutex_unlock(&fs_info->chunk_mutex);
1796	if (ret) {
1797		printk(KERN_WARNING "btrfs: failed to read the system "
1798		       "array on %s\n", sb->s_id);
1799		goto fail_sb_buffer;
1800	}
1801
1802	blocksize = btrfs_level_size(tree_root,
1803				     btrfs_super_chunk_root_level(disk_super));
1804	generation = btrfs_super_chunk_root_generation(disk_super);
1805
1806	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1807		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1808
1809	chunk_root->node = read_tree_block(chunk_root,
1810					   btrfs_super_chunk_root(disk_super),
1811					   blocksize, generation);
1812	BUG_ON(!chunk_root->node);
1813	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1814		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1815		       sb->s_id);
1816		goto fail_chunk_root;
1817	}
1818	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1819	chunk_root->commit_root = btrfs_root_node(chunk_root);
1820
1821	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1822	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1823	   BTRFS_UUID_SIZE);
1824
1825	mutex_lock(&fs_info->chunk_mutex);
1826	ret = btrfs_read_chunk_tree(chunk_root);
1827	mutex_unlock(&fs_info->chunk_mutex);
1828	if (ret) {
1829		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1830		       sb->s_id);
1831		goto fail_chunk_root;
1832	}
1833
1834	btrfs_close_extra_devices(fs_devices);
1835
1836	blocksize = btrfs_level_size(tree_root,
1837				     btrfs_super_root_level(disk_super));
1838	generation = btrfs_super_generation(disk_super);
1839
1840	tree_root->node = read_tree_block(tree_root,
1841					  btrfs_super_root(disk_super),
1842					  blocksize, generation);
1843	if (!tree_root->node)
1844		goto fail_chunk_root;
1845	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1846		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1847		       sb->s_id);
1848		goto fail_tree_root;
1849	}
1850	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1851	tree_root->commit_root = btrfs_root_node(tree_root);
1852
1853	ret = find_and_setup_root(tree_root, fs_info,
1854				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1855	if (ret)
1856		goto fail_tree_root;
1857	extent_root->track_dirty = 1;
1858
1859	ret = find_and_setup_root(tree_root, fs_info,
1860				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1861	if (ret)
1862		goto fail_extent_root;
1863	dev_root->track_dirty = 1;
1864
1865	ret = find_and_setup_root(tree_root, fs_info,
1866				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1867	if (ret)
1868		goto fail_dev_root;
1869
1870	csum_root->track_dirty = 1;
1871
1872	fs_info->generation = generation;
1873	fs_info->last_trans_committed = generation;
1874	fs_info->data_alloc_profile = (u64)-1;
1875	fs_info->metadata_alloc_profile = (u64)-1;
1876	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1877
1878	ret = btrfs_read_block_groups(extent_root);
1879	if (ret) {
1880		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1881		goto fail_block_groups;
1882	}
1883
1884	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1885					       "btrfs-cleaner");
1886	if (IS_ERR(fs_info->cleaner_kthread))
1887		goto fail_block_groups;
1888
1889	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1890						   tree_root,
1891						   "btrfs-transaction");
1892	if (IS_ERR(fs_info->transaction_kthread))
1893		goto fail_cleaner;
1894
1895	if (!btrfs_test_opt(tree_root, SSD) &&
1896	    !btrfs_test_opt(tree_root, NOSSD) &&
1897	    !fs_info->fs_devices->rotating) {
1898		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1899		       "mode\n");
1900		btrfs_set_opt(fs_info->mount_opt, SSD);
1901	}
1902
1903	if (btrfs_super_log_root(disk_super) != 0) {
1904		u64 bytenr = btrfs_super_log_root(disk_super);
1905
1906		if (fs_devices->rw_devices == 0) {
1907			printk(KERN_WARNING "Btrfs log replay required "
1908			       "on RO media\n");
1909			err = -EIO;
1910			goto fail_trans_kthread;
1911		}
1912		blocksize =
1913		     btrfs_level_size(tree_root,
1914				      btrfs_super_log_root_level(disk_super));
1915
1916		log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1917		if (!log_tree_root) {
1918			err = -ENOMEM;
1919			goto fail_trans_kthread;
1920		}
1921
1922		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1923			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1924
1925		log_tree_root->node = read_tree_block(tree_root, bytenr,
1926						      blocksize,
1927						      generation + 1);
1928		ret = btrfs_recover_log_trees(log_tree_root);
1929		BUG_ON(ret);
1930
1931		if (sb->s_flags & MS_RDONLY) {
1932			ret =  btrfs_commit_super(tree_root);
1933			BUG_ON(ret);
1934		}
1935	}
1936
1937	ret = btrfs_find_orphan_roots(tree_root);
1938	BUG_ON(ret);
1939
1940	if (!(sb->s_flags & MS_RDONLY)) {
1941		ret = btrfs_cleanup_fs_roots(fs_info);
1942		BUG_ON(ret);
1943
1944		ret = btrfs_recover_relocation(tree_root);
1945		if (ret < 0) {
1946			printk(KERN_WARNING
1947			       "btrfs: failed to recover relocation\n");
1948			err = -EINVAL;
1949			goto fail_trans_kthread;
1950		}
1951	}
1952
1953	location.objectid = BTRFS_FS_TREE_OBJECTID;
1954	location.type = BTRFS_ROOT_ITEM_KEY;
1955	location.offset = (u64)-1;
1956
1957	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1958	if (!fs_info->fs_root)
1959		goto fail_trans_kthread;
1960	if (IS_ERR(fs_info->fs_root)) {
1961		err = PTR_ERR(fs_info->fs_root);
1962		goto fail_trans_kthread;
1963	}
1964
1965	if (!(sb->s_flags & MS_RDONLY)) {
1966		down_read(&fs_info->cleanup_work_sem);
1967		btrfs_orphan_cleanup(fs_info->fs_root);
1968		up_read(&fs_info->cleanup_work_sem);
1969	}
1970
1971	return tree_root;
1972
1973fail_trans_kthread:
1974	kthread_stop(fs_info->transaction_kthread);
1975fail_cleaner:
1976	kthread_stop(fs_info->cleaner_kthread);
1977
1978	/*
1979	 * make sure we're done with the btree inode before we stop our
1980	 * kthreads
1981	 */
1982	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1983	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1984
1985fail_block_groups:
1986	btrfs_free_block_groups(fs_info);
1987	free_extent_buffer(csum_root->node);
1988	free_extent_buffer(csum_root->commit_root);
1989fail_dev_root:
1990	free_extent_buffer(dev_root->node);
1991	free_extent_buffer(dev_root->commit_root);
1992fail_extent_root:
1993	free_extent_buffer(extent_root->node);
1994	free_extent_buffer(extent_root->commit_root);
1995fail_tree_root:
1996	free_extent_buffer(tree_root->node);
1997	free_extent_buffer(tree_root->commit_root);
1998fail_chunk_root:
1999	free_extent_buffer(chunk_root->node);
2000	free_extent_buffer(chunk_root->commit_root);
2001fail_sb_buffer:
2002	btrfs_stop_workers(&fs_info->generic_worker);
2003	btrfs_stop_workers(&fs_info->fixup_workers);
2004	btrfs_stop_workers(&fs_info->delalloc_workers);
2005	btrfs_stop_workers(&fs_info->workers);
2006	btrfs_stop_workers(&fs_info->endio_workers);
2007	btrfs_stop_workers(&fs_info->endio_meta_workers);
2008	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2009	btrfs_stop_workers(&fs_info->endio_write_workers);
2010	btrfs_stop_workers(&fs_info->submit_workers);
2011fail_iput:
2012	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2013	iput(fs_info->btree_inode);
2014
2015	btrfs_close_devices(fs_info->fs_devices);
2016	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2017fail_bdi:
2018	bdi_destroy(&fs_info->bdi);
2019fail_srcu:
2020	cleanup_srcu_struct(&fs_info->subvol_srcu);
2021fail:
2022	kfree(extent_root);
2023	kfree(tree_root);
2024	kfree(fs_info);
2025	kfree(chunk_root);
2026	kfree(dev_root);
2027	kfree(csum_root);
2028	return ERR_PTR(err);
2029}
2030
2031static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2032{
2033	char b[BDEVNAME_SIZE];
2034
2035	if (uptodate) {
2036		set_buffer_uptodate(bh);
2037	} else {
2038		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2039			printk(KERN_WARNING "lost page write due to "
2040					"I/O error on %s\n",
2041				       bdevname(bh->b_bdev, b));
2042		}
2043		/* note, we dont' set_buffer_write_io_error because we have
2044		 * our own ways of dealing with the IO errors
2045		 */
2046		clear_buffer_uptodate(bh);
2047	}
2048	unlock_buffer(bh);
2049	put_bh(bh);
2050}
2051
2052struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2053{
2054	struct buffer_head *bh;
2055	struct buffer_head *latest = NULL;
2056	struct btrfs_super_block *super;
2057	int i;
2058	u64 transid = 0;
2059	u64 bytenr;
2060
2061	/* we would like to check all the supers, but that would make
2062	 * a btrfs mount succeed after a mkfs from a different FS.
2063	 * So, we need to add a special mount option to scan for
2064	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2065	 */
2066	for (i = 0; i < 1; i++) {
2067		bytenr = btrfs_sb_offset(i);
2068		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2069			break;
2070		bh = __bread(bdev, bytenr / 4096, 4096);
2071		if (!bh)
2072			continue;
2073
2074		super = (struct btrfs_super_block *)bh->b_data;
2075		if (btrfs_super_bytenr(super) != bytenr ||
2076		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2077			    sizeof(super->magic))) {
2078			brelse(bh);
2079			continue;
2080		}
2081
2082		if (!latest || btrfs_super_generation(super) > transid) {
2083			brelse(latest);
2084			latest = bh;
2085			transid = btrfs_super_generation(super);
2086		} else {
2087			brelse(bh);
2088		}
2089	}
2090	return latest;
2091}
2092
2093/*
2094 * this should be called twice, once with wait == 0 and
2095 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2096 * we write are pinned.
2097 *
2098 * They are released when wait == 1 is done.
2099 * max_mirrors must be the same for both runs, and it indicates how
2100 * many supers on this one device should be written.
2101 *
2102 * max_mirrors == 0 means to write them all.
2103 */
2104static int write_dev_supers(struct btrfs_device *device,
2105			    struct btrfs_super_block *sb,
2106			    int do_barriers, int wait, int max_mirrors)
2107{
2108	struct buffer_head *bh;
2109	int i;
2110	int ret;
2111	int errors = 0;
2112	u32 crc;
2113	u64 bytenr;
2114	int last_barrier = 0;
2115
2116	if (max_mirrors == 0)
2117		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2118
2119	/* make sure only the last submit_bh does a barrier */
2120	if (do_barriers) {
2121		for (i = 0; i < max_mirrors; i++) {
2122			bytenr = btrfs_sb_offset(i);
2123			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2124			    device->total_bytes)
2125				break;
2126			last_barrier = i;
2127		}
2128	}
2129
2130	for (i = 0; i < max_mirrors; i++) {
2131		bytenr = btrfs_sb_offset(i);
2132		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2133			break;
2134
2135		if (wait) {
2136			bh = __find_get_block(device->bdev, bytenr / 4096,
2137					      BTRFS_SUPER_INFO_SIZE);
2138			BUG_ON(!bh);
2139			wait_on_buffer(bh);
2140			if (!buffer_uptodate(bh))
2141				errors++;
2142
2143			/* drop our reference */
2144			brelse(bh);
2145
2146			/* drop the reference from the wait == 0 run */
2147			brelse(bh);
2148			continue;
2149		} else {
2150			btrfs_set_super_bytenr(sb, bytenr);
2151
2152			crc = ~(u32)0;
2153			crc = btrfs_csum_data(NULL, (char *)sb +
2154					      BTRFS_CSUM_SIZE, crc,
2155					      BTRFS_SUPER_INFO_SIZE -
2156					      BTRFS_CSUM_SIZE);
2157			btrfs_csum_final(crc, sb->csum);
2158
2159			/*
2160			 * one reference for us, and we leave it for the
2161			 * caller
2162			 */
2163			bh = __getblk(device->bdev, bytenr / 4096,
2164				      BTRFS_SUPER_INFO_SIZE);
2165			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2166
2167			/* one reference for submit_bh */
2168			get_bh(bh);
2169
2170			set_buffer_uptodate(bh);
2171			lock_buffer(bh);
2172			bh->b_end_io = btrfs_end_buffer_write_sync;
2173		}
2174
2175		if (i == last_barrier && do_barriers && device->barriers) {
2176			ret = submit_bh(WRITE_BARRIER, bh);
2177			if (ret == -EOPNOTSUPP) {
2178				printk("btrfs: disabling barriers on dev %s\n",
2179				       device->name);
2180				set_buffer_uptodate(bh);
2181				device->barriers = 0;
2182				/* one reference for submit_bh */
2183				get_bh(bh);
2184				lock_buffer(bh);
2185				ret = submit_bh(WRITE_SYNC, bh);
2186			}
2187		} else {
2188			ret = submit_bh(WRITE_SYNC, bh);
2189		}
2190
2191		if (ret)
2192			errors++;
2193	}
2194	return errors < i ? 0 : -1;
2195}
2196
2197int write_all_supers(struct btrfs_root *root, int max_mirrors)
2198{
2199	struct list_head *head;
2200	struct btrfs_device *dev;
2201	struct btrfs_super_block *sb;
2202	struct btrfs_dev_item *dev_item;
2203	int ret;
2204	int do_barriers;
2205	int max_errors;
2206	int total_errors = 0;
2207	u64 flags;
2208
2209	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2210	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2211
2212	sb = &root->fs_info->super_for_commit;
2213	dev_item = &sb->dev_item;
2214
2215	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2216	head = &root->fs_info->fs_devices->devices;
2217	list_for_each_entry(dev, head, dev_list) {
2218		if (!dev->bdev) {
2219			total_errors++;
2220			continue;
2221		}
2222		if (!dev->in_fs_metadata || !dev->writeable)
2223			continue;
2224
2225		btrfs_set_stack_device_generation(dev_item, 0);
2226		btrfs_set_stack_device_type(dev_item, dev->type);
2227		btrfs_set_stack_device_id(dev_item, dev->devid);
2228		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2229		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2230		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2231		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2232		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2233		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2234		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2235
2236		flags = btrfs_super_flags(sb);
2237		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2238
2239		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2240		if (ret)
2241			total_errors++;
2242	}
2243	if (total_errors > max_errors) {
2244		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2245		       total_errors);
2246		BUG();
2247	}
2248
2249	total_errors = 0;
2250	list_for_each_entry(dev, head, dev_list) {
2251		if (!dev->bdev)
2252			continue;
2253		if (!dev->in_fs_metadata || !dev->writeable)
2254			continue;
2255
2256		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2257		if (ret)
2258			total_errors++;
2259	}
2260	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2261	if (total_errors > max_errors) {
2262		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2263		       total_errors);
2264		BUG();
2265	}
2266	return 0;
2267}
2268
2269int write_ctree_super(struct btrfs_trans_handle *trans,
2270		      struct btrfs_root *root, int max_mirrors)
2271{
2272	int ret;
2273
2274	ret = write_all_supers(root, max_mirrors);
2275	return ret;
2276}
2277
2278int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2279{
2280	spin_lock(&fs_info->fs_roots_radix_lock);
2281	radix_tree_delete(&fs_info->fs_roots_radix,
2282			  (unsigned long)root->root_key.objectid);
2283	spin_unlock(&fs_info->fs_roots_radix_lock);
2284
2285	if (btrfs_root_refs(&root->root_item) == 0)
2286		synchronize_srcu(&fs_info->subvol_srcu);
2287
2288	free_fs_root(root);
2289	return 0;
2290}
2291
2292static void free_fs_root(struct btrfs_root *root)
2293{
2294	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2295	if (root->anon_super.s_dev) {
2296		down_write(&root->anon_super.s_umount);
2297		kill_anon_super(&root->anon_super);
2298	}
2299	free_extent_buffer(root->node);
2300	free_extent_buffer(root->commit_root);
2301	kfree(root->name);
2302	kfree(root);
2303}
2304
2305static int del_fs_roots(struct btrfs_fs_info *fs_info)
2306{
2307	int ret;
2308	struct btrfs_root *gang[8];
2309	int i;
2310
2311	while (!list_empty(&fs_info->dead_roots)) {
2312		gang[0] = list_entry(fs_info->dead_roots.next,
2313				     struct btrfs_root, root_list);
2314		list_del(&gang[0]->root_list);
2315
2316		if (gang[0]->in_radix) {
2317			btrfs_free_fs_root(fs_info, gang[0]);
2318		} else {
2319			free_extent_buffer(gang[0]->node);
2320			free_extent_buffer(gang[0]->commit_root);
2321			kfree(gang[0]);
2322		}
2323	}
2324
2325	while (1) {
2326		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2327					     (void **)gang, 0,
2328					     ARRAY_SIZE(gang));
2329		if (!ret)
2330			break;
2331		for (i = 0; i < ret; i++)
2332			btrfs_free_fs_root(fs_info, gang[i]);
2333	}
2334	return 0;
2335}
2336
2337int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2338{
2339	u64 root_objectid = 0;
2340	struct btrfs_root *gang[8];
2341	int i;
2342	int ret;
2343
2344	while (1) {
2345		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2346					     (void **)gang, root_objectid,
2347					     ARRAY_SIZE(gang));
2348		if (!ret)
2349			break;
2350
2351		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2352		for (i = 0; i < ret; i++) {
2353			root_objectid = gang[i]->root_key.objectid;
2354			btrfs_orphan_cleanup(gang[i]);
2355		}
2356		root_objectid++;
2357	}
2358	return 0;
2359}
2360
2361int btrfs_commit_super(struct btrfs_root *root)
2362{
2363	struct btrfs_trans_handle *trans;
2364	int ret;
2365
2366	mutex_lock(&root->fs_info->cleaner_mutex);
2367	btrfs_run_delayed_iputs(root);
2368	btrfs_clean_old_snapshots(root);
2369	mutex_unlock(&root->fs_info->cleaner_mutex);
2370
2371	/* wait until ongoing cleanup work done */
2372	down_write(&root->fs_info->cleanup_work_sem);
2373	up_write(&root->fs_info->cleanup_work_sem);
2374
2375	trans = btrfs_join_transaction(root, 1);
2376	ret = btrfs_commit_transaction(trans, root);
2377	BUG_ON(ret);
2378	/* run commit again to drop the original snapshot */
2379	trans = btrfs_join_transaction(root, 1);
2380	btrfs_commit_transaction(trans, root);
2381	ret = btrfs_write_and_wait_transaction(NULL, root);
2382	BUG_ON(ret);
2383
2384	ret = write_ctree_super(NULL, root, 0);
2385	return ret;
2386}
2387
2388int close_ctree(struct btrfs_root *root)
2389{
2390	struct btrfs_fs_info *fs_info = root->fs_info;
2391	int ret;
2392
2393	fs_info->closing = 1;
2394	smp_mb();
2395
2396	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2397		ret =  btrfs_commit_super(root);
2398		if (ret)
2399			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2400	}
2401
2402	kthread_stop(root->fs_info->transaction_kthread);
2403	kthread_stop(root->fs_info->cleaner_kthread);
2404
2405	fs_info->closing = 2;
2406	smp_mb();
2407
2408	if (fs_info->delalloc_bytes) {
2409		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2410		       (unsigned long long)fs_info->delalloc_bytes);
2411	}
2412	if (fs_info->total_ref_cache_size) {
2413		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2414		       (unsigned long long)fs_info->total_ref_cache_size);
2415	}
2416
2417	free_extent_buffer(fs_info->extent_root->node);
2418	free_extent_buffer(fs_info->extent_root->commit_root);
2419	free_extent_buffer(fs_info->tree_root->node);
2420	free_extent_buffer(fs_info->tree_root->commit_root);
2421	free_extent_buffer(root->fs_info->chunk_root->node);
2422	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2423	free_extent_buffer(root->fs_info->dev_root->node);
2424	free_extent_buffer(root->fs_info->dev_root->commit_root);
2425	free_extent_buffer(root->fs_info->csum_root->node);
2426	free_extent_buffer(root->fs_info->csum_root->commit_root);
2427
2428	btrfs_free_block_groups(root->fs_info);
2429
2430	del_fs_roots(fs_info);
2431
2432	iput(fs_info->btree_inode);
2433
2434	btrfs_stop_workers(&fs_info->generic_worker);
2435	btrfs_stop_workers(&fs_info->fixup_workers);
2436	btrfs_stop_workers(&fs_info->delalloc_workers);
2437	btrfs_stop_workers(&fs_info->workers);
2438	btrfs_stop_workers(&fs_info->endio_workers);
2439	btrfs_stop_workers(&fs_info->endio_meta_workers);
2440	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2441	btrfs_stop_workers(&fs_info->endio_write_workers);
2442	btrfs_stop_workers(&fs_info->submit_workers);
2443
2444	btrfs_close_devices(fs_info->fs_devices);
2445	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2446
2447	bdi_destroy(&fs_info->bdi);
2448	cleanup_srcu_struct(&fs_info->subvol_srcu);
2449
2450	kfree(fs_info->extent_root);
2451	kfree(fs_info->tree_root);
2452	kfree(fs_info->chunk_root);
2453	kfree(fs_info->dev_root);
2454	kfree(fs_info->csum_root);
2455	return 0;
2456}
2457
2458int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2459{
2460	int ret;
2461	struct inode *btree_inode = buf->first_page->mapping->host;
2462
2463	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2464				     NULL);
2465	if (!ret)
2466		return ret;
2467
2468	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2469				    parent_transid);
2470	return !ret;
2471}
2472
2473int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2474{
2475	struct inode *btree_inode = buf->first_page->mapping->host;
2476	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2477					  buf);
2478}
2479
2480void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2481{
2482	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2483	u64 transid = btrfs_header_generation(buf);
2484	struct inode *btree_inode = root->fs_info->btree_inode;
2485	int was_dirty;
2486
2487	btrfs_assert_tree_locked(buf);
2488	if (transid != root->fs_info->generation) {
2489		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2490		       "found %llu running %llu\n",
2491			(unsigned long long)buf->start,
2492			(unsigned long long)transid,
2493			(unsigned long long)root->fs_info->generation);
2494		WARN_ON(1);
2495	}
2496	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2497					    buf);
2498	if (!was_dirty) {
2499		spin_lock(&root->fs_info->delalloc_lock);
2500		root->fs_info->dirty_metadata_bytes += buf->len;
2501		spin_unlock(&root->fs_info->delalloc_lock);
2502	}
2503}
2504
2505void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2506{
2507	/*
2508	 * looks as though older kernels can get into trouble with
2509	 * this code, they end up stuck in balance_dirty_pages forever
2510	 */
2511	u64 num_dirty;
2512	unsigned long thresh = 32 * 1024 * 1024;
2513
2514	if (current->flags & PF_MEMALLOC)
2515		return;
2516
2517	num_dirty = root->fs_info->dirty_metadata_bytes;
2518
2519	if (num_dirty > thresh) {
2520		balance_dirty_pages_ratelimited_nr(
2521				   root->fs_info->btree_inode->i_mapping, 1);
2522	}
2523	return;
2524}
2525
2526int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2527{
2528	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2529	int ret;
2530	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2531	if (ret == 0)
2532		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2533	return ret;
2534}
2535
2536int btree_lock_page_hook(struct page *page)
2537{
2538	struct inode *inode = page->mapping->host;
2539	struct btrfs_root *root = BTRFS_I(inode)->root;
2540	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2541	struct extent_buffer *eb;
2542	unsigned long len;
2543	u64 bytenr = page_offset(page);
2544
2545	if (page->private == EXTENT_PAGE_PRIVATE)
2546		goto out;
2547
2548	len = page->private >> 2;
2549	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2550	if (!eb)
2551		goto out;
2552
2553	btrfs_tree_lock(eb);
2554	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2555
2556	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2557		spin_lock(&root->fs_info->delalloc_lock);
2558		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2559			root->fs_info->dirty_metadata_bytes -= eb->len;
2560		else
2561			WARN_ON(1);
2562		spin_unlock(&root->fs_info->delalloc_lock);
2563	}
2564
2565	btrfs_tree_unlock(eb);
2566	free_extent_buffer(eb);
2567out:
2568	lock_page(page);
2569	return 0;
2570}
2571
2572static struct extent_io_ops btree_extent_io_ops = {
2573	.write_cache_pages_lock_hook = btree_lock_page_hook,
2574	.readpage_end_io_hook = btree_readpage_end_io_hook,
2575	.submit_bio_hook = btree_submit_bio_hook,
2576	/* note we're sharing with inode.c for the merge bio hook */
2577	.merge_bio_hook = btrfs_merge_bio_hook,
2578};
2579