1/*
2 * bio-integrity.c - bio data integrity extensions
3 *
4 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
5 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; see the file COPYING.  If not, write to
18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
19 * USA.
20 *
21 */
22
23#include <linux/blkdev.h>
24#include <linux/mempool.h>
25#include <linux/bio.h>
26#include <linux/workqueue.h>
27#include <linux/slab.h>
28
29struct integrity_slab {
30	struct kmem_cache *slab;
31	unsigned short nr_vecs;
32	char name[8];
33};
34
35#define IS(x) { .nr_vecs = x, .name = "bip-"__stringify(x) }
36struct integrity_slab bip_slab[BIOVEC_NR_POOLS] __read_mostly = {
37	IS(1), IS(4), IS(16), IS(64), IS(128), IS(BIO_MAX_PAGES),
38};
39#undef IS
40
41static struct workqueue_struct *kintegrityd_wq;
42
43static inline unsigned int vecs_to_idx(unsigned int nr)
44{
45	switch (nr) {
46	case 1:
47		return 0;
48	case 2 ... 4:
49		return 1;
50	case 5 ... 16:
51		return 2;
52	case 17 ... 64:
53		return 3;
54	case 65 ... 128:
55		return 4;
56	case 129 ... BIO_MAX_PAGES:
57		return 5;
58	default:
59		BUG();
60	}
61}
62
63static inline int use_bip_pool(unsigned int idx)
64{
65	if (idx == BIOVEC_MAX_IDX)
66		return 1;
67
68	return 0;
69}
70
71/**
72 * bio_integrity_alloc_bioset - Allocate integrity payload and attach it to bio
73 * @bio:	bio to attach integrity metadata to
74 * @gfp_mask:	Memory allocation mask
75 * @nr_vecs:	Number of integrity metadata scatter-gather elements
76 * @bs:		bio_set to allocate from
77 *
78 * Description: This function prepares a bio for attaching integrity
79 * metadata.  nr_vecs specifies the maximum number of pages containing
80 * integrity metadata that can be attached.
81 */
82struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *bio,
83							 gfp_t gfp_mask,
84							 unsigned int nr_vecs,
85							 struct bio_set *bs)
86{
87	struct bio_integrity_payload *bip;
88	unsigned int idx = vecs_to_idx(nr_vecs);
89
90	BUG_ON(bio == NULL);
91	bip = NULL;
92
93	/* Lower order allocations come straight from slab */
94	if (!use_bip_pool(idx))
95		bip = kmem_cache_alloc(bip_slab[idx].slab, gfp_mask);
96
97	/* Use mempool if lower order alloc failed or max vecs were requested */
98	if (bip == NULL) {
99		idx = BIOVEC_MAX_IDX;  /* so we free the payload properly later */
100		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
101
102		if (unlikely(bip == NULL)) {
103			printk(KERN_ERR "%s: could not alloc bip\n", __func__);
104			return NULL;
105		}
106	}
107
108	memset(bip, 0, sizeof(*bip));
109
110	bip->bip_slab = idx;
111	bip->bip_bio = bio;
112	bio->bi_integrity = bip;
113
114	return bip;
115}
116EXPORT_SYMBOL(bio_integrity_alloc_bioset);
117
118/**
119 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
120 * @bio:	bio to attach integrity metadata to
121 * @gfp_mask:	Memory allocation mask
122 * @nr_vecs:	Number of integrity metadata scatter-gather elements
123 *
124 * Description: This function prepares a bio for attaching integrity
125 * metadata.  nr_vecs specifies the maximum number of pages containing
126 * integrity metadata that can be attached.
127 */
128struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
129						  gfp_t gfp_mask,
130						  unsigned int nr_vecs)
131{
132	return bio_integrity_alloc_bioset(bio, gfp_mask, nr_vecs, fs_bio_set);
133}
134EXPORT_SYMBOL(bio_integrity_alloc);
135
136/**
137 * bio_integrity_free - Free bio integrity payload
138 * @bio:	bio containing bip to be freed
139 * @bs:		bio_set this bio was allocated from
140 *
141 * Description: Used to free the integrity portion of a bio. Usually
142 * called from bio_free().
143 */
144void bio_integrity_free(struct bio *bio, struct bio_set *bs)
145{
146	struct bio_integrity_payload *bip = bio->bi_integrity;
147
148	BUG_ON(bip == NULL);
149
150	/* A cloned bio doesn't own the integrity metadata */
151	if (!bio_flagged(bio, BIO_CLONED) && !bio_flagged(bio, BIO_FS_INTEGRITY)
152	    && bip->bip_buf != NULL)
153		kfree(bip->bip_buf);
154
155	if (use_bip_pool(bip->bip_slab))
156		mempool_free(bip, bs->bio_integrity_pool);
157	else
158		kmem_cache_free(bip_slab[bip->bip_slab].slab, bip);
159
160	bio->bi_integrity = NULL;
161}
162EXPORT_SYMBOL(bio_integrity_free);
163
164/**
165 * bio_integrity_add_page - Attach integrity metadata
166 * @bio:	bio to update
167 * @page:	page containing integrity metadata
168 * @len:	number of bytes of integrity metadata in page
169 * @offset:	start offset within page
170 *
171 * Description: Attach a page containing integrity metadata to bio.
172 */
173int bio_integrity_add_page(struct bio *bio, struct page *page,
174			   unsigned int len, unsigned int offset)
175{
176	struct bio_integrity_payload *bip = bio->bi_integrity;
177	struct bio_vec *iv;
178
179	if (bip->bip_vcnt >= bvec_nr_vecs(bip->bip_slab)) {
180		printk(KERN_ERR "%s: bip_vec full\n", __func__);
181		return 0;
182	}
183
184	iv = bip_vec_idx(bip, bip->bip_vcnt);
185	BUG_ON(iv == NULL);
186
187	iv->bv_page = page;
188	iv->bv_len = len;
189	iv->bv_offset = offset;
190	bip->bip_vcnt++;
191
192	return len;
193}
194EXPORT_SYMBOL(bio_integrity_add_page);
195
196static int bdev_integrity_enabled(struct block_device *bdev, int rw)
197{
198	struct blk_integrity *bi = bdev_get_integrity(bdev);
199
200	if (bi == NULL)
201		return 0;
202
203	if (rw == READ && bi->verify_fn != NULL &&
204	    (bi->flags & INTEGRITY_FLAG_READ))
205		return 1;
206
207	if (rw == WRITE && bi->generate_fn != NULL &&
208	    (bi->flags & INTEGRITY_FLAG_WRITE))
209		return 1;
210
211	return 0;
212}
213
214/**
215 * bio_integrity_enabled - Check whether integrity can be passed
216 * @bio:	bio to check
217 *
218 * Description: Determines whether bio_integrity_prep() can be called
219 * on this bio or not.	bio data direction and target device must be
220 * set prior to calling.  The functions honors the write_generate and
221 * read_verify flags in sysfs.
222 */
223int bio_integrity_enabled(struct bio *bio)
224{
225	/* Already protected? */
226	if (bio_integrity(bio))
227		return 0;
228
229	return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio));
230}
231EXPORT_SYMBOL(bio_integrity_enabled);
232
233/**
234 * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto
235 * @bi:		blk_integrity profile for device
236 * @sectors:	Number of 512 sectors to convert
237 *
238 * Description: The block layer calculates everything in 512 byte
239 * sectors but integrity metadata is done in terms of the hardware
240 * sector size of the storage device.  Convert the block layer sectors
241 * to physical sectors.
242 */
243static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi,
244						    unsigned int sectors)
245{
246	/* At this point there are only 512b or 4096b DIF/EPP devices */
247	if (bi->sector_size == 4096)
248		return sectors >>= 3;
249
250	return sectors;
251}
252
253/**
254 * bio_integrity_tag_size - Retrieve integrity tag space
255 * @bio:	bio to inspect
256 *
257 * Description: Returns the maximum number of tag bytes that can be
258 * attached to this bio. Filesystems can use this to determine how
259 * much metadata to attach to an I/O.
260 */
261unsigned int bio_integrity_tag_size(struct bio *bio)
262{
263	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
264
265	BUG_ON(bio->bi_size == 0);
266
267	return bi->tag_size * (bio->bi_size / bi->sector_size);
268}
269EXPORT_SYMBOL(bio_integrity_tag_size);
270
271int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len, int set)
272{
273	struct bio_integrity_payload *bip = bio->bi_integrity;
274	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
275	unsigned int nr_sectors;
276
277	BUG_ON(bip->bip_buf == NULL);
278
279	if (bi->tag_size == 0)
280		return -1;
281
282	nr_sectors = bio_integrity_hw_sectors(bi,
283					DIV_ROUND_UP(len, bi->tag_size));
284
285	if (nr_sectors * bi->tuple_size > bip->bip_size) {
286		printk(KERN_ERR "%s: tag too big for bio: %u > %u\n",
287		       __func__, nr_sectors * bi->tuple_size, bip->bip_size);
288		return -1;
289	}
290
291	if (set)
292		bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
293	else
294		bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
295
296	return 0;
297}
298
299/**
300 * bio_integrity_set_tag - Attach a tag buffer to a bio
301 * @bio:	bio to attach buffer to
302 * @tag_buf:	Pointer to a buffer containing tag data
303 * @len:	Length of the included buffer
304 *
305 * Description: Use this function to tag a bio by leveraging the extra
306 * space provided by devices formatted with integrity protection.  The
307 * size of the integrity buffer must be <= to the size reported by
308 * bio_integrity_tag_size().
309 */
310int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len)
311{
312	BUG_ON(bio_data_dir(bio) != WRITE);
313
314	return bio_integrity_tag(bio, tag_buf, len, 1);
315}
316EXPORT_SYMBOL(bio_integrity_set_tag);
317
318/**
319 * bio_integrity_get_tag - Retrieve a tag buffer from a bio
320 * @bio:	bio to retrieve buffer from
321 * @tag_buf:	Pointer to a buffer for the tag data
322 * @len:	Length of the target buffer
323 *
324 * Description: Use this function to retrieve the tag buffer from a
325 * completed I/O. The size of the integrity buffer must be <= to the
326 * size reported by bio_integrity_tag_size().
327 */
328int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len)
329{
330	BUG_ON(bio_data_dir(bio) != READ);
331
332	return bio_integrity_tag(bio, tag_buf, len, 0);
333}
334EXPORT_SYMBOL(bio_integrity_get_tag);
335
336/**
337 * bio_integrity_generate - Generate integrity metadata for a bio
338 * @bio:	bio to generate integrity metadata for
339 *
340 * Description: Generates integrity metadata for a bio by calling the
341 * block device's generation callback function.  The bio must have a
342 * bip attached with enough room to accommodate the generated
343 * integrity metadata.
344 */
345static void bio_integrity_generate(struct bio *bio)
346{
347	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
348	struct blk_integrity_exchg bix;
349	struct bio_vec *bv;
350	sector_t sector = bio->bi_sector;
351	unsigned int i, sectors, total;
352	void *prot_buf = bio->bi_integrity->bip_buf;
353
354	total = 0;
355	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
356	bix.sector_size = bi->sector_size;
357
358	bio_for_each_segment(bv, bio, i) {
359		void *kaddr = kmap_atomic(bv->bv_page, KM_USER0);
360		bix.data_buf = kaddr + bv->bv_offset;
361		bix.data_size = bv->bv_len;
362		bix.prot_buf = prot_buf;
363		bix.sector = sector;
364
365		bi->generate_fn(&bix);
366
367		sectors = bv->bv_len / bi->sector_size;
368		sector += sectors;
369		prot_buf += sectors * bi->tuple_size;
370		total += sectors * bi->tuple_size;
371		BUG_ON(total > bio->bi_integrity->bip_size);
372
373		kunmap_atomic(kaddr, KM_USER0);
374	}
375}
376
377static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi)
378{
379	if (bi)
380		return bi->tuple_size;
381
382	return 0;
383}
384
385/**
386 * bio_integrity_prep - Prepare bio for integrity I/O
387 * @bio:	bio to prepare
388 *
389 * Description: Allocates a buffer for integrity metadata, maps the
390 * pages and attaches them to a bio.  The bio must have data
391 * direction, target device and start sector set priot to calling.  In
392 * the WRITE case, integrity metadata will be generated using the
393 * block device's integrity function.  In the READ case, the buffer
394 * will be prepared for DMA and a suitable end_io handler set up.
395 */
396int bio_integrity_prep(struct bio *bio)
397{
398	struct bio_integrity_payload *bip;
399	struct blk_integrity *bi;
400	struct request_queue *q;
401	void *buf;
402	unsigned long start, end;
403	unsigned int len, nr_pages;
404	unsigned int bytes, offset, i;
405	unsigned int sectors;
406
407	bi = bdev_get_integrity(bio->bi_bdev);
408	q = bdev_get_queue(bio->bi_bdev);
409	BUG_ON(bi == NULL);
410	BUG_ON(bio_integrity(bio));
411
412	sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio));
413
414	/* Allocate kernel buffer for protection data */
415	len = sectors * blk_integrity_tuple_size(bi);
416	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
417	if (unlikely(buf == NULL)) {
418		printk(KERN_ERR "could not allocate integrity buffer\n");
419		return -ENOMEM;
420	}
421
422	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
423	start = ((unsigned long) buf) >> PAGE_SHIFT;
424	nr_pages = end - start;
425
426	/* Allocate bio integrity payload and integrity vectors */
427	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
428	if (unlikely(bip == NULL)) {
429		printk(KERN_ERR "could not allocate data integrity bioset\n");
430		kfree(buf);
431		return -EIO;
432	}
433
434	bip->bip_buf = buf;
435	bip->bip_size = len;
436	bip->bip_sector = bio->bi_sector;
437
438	/* Map it */
439	offset = offset_in_page(buf);
440	for (i = 0 ; i < nr_pages ; i++) {
441		int ret;
442		bytes = PAGE_SIZE - offset;
443
444		if (len <= 0)
445			break;
446
447		if (bytes > len)
448			bytes = len;
449
450		ret = bio_integrity_add_page(bio, virt_to_page(buf),
451					     bytes, offset);
452
453		if (ret == 0)
454			return 0;
455
456		if (ret < bytes)
457			break;
458
459		buf += bytes;
460		len -= bytes;
461		offset = 0;
462	}
463
464	/* Install custom I/O completion handler if read verify is enabled */
465	if (bio_data_dir(bio) == READ) {
466		bip->bip_end_io = bio->bi_end_io;
467		bio->bi_end_io = bio_integrity_endio;
468	}
469
470	/* Auto-generate integrity metadata if this is a write */
471	if (bio_data_dir(bio) == WRITE)
472		bio_integrity_generate(bio);
473
474	return 0;
475}
476EXPORT_SYMBOL(bio_integrity_prep);
477
478/**
479 * bio_integrity_verify - Verify integrity metadata for a bio
480 * @bio:	bio to verify
481 *
482 * Description: This function is called to verify the integrity of a
483 * bio.	 The data in the bio io_vec is compared to the integrity
484 * metadata returned by the HBA.
485 */
486static int bio_integrity_verify(struct bio *bio)
487{
488	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
489	struct blk_integrity_exchg bix;
490	struct bio_vec *bv;
491	sector_t sector = bio->bi_integrity->bip_sector;
492	unsigned int i, sectors, total, ret;
493	void *prot_buf = bio->bi_integrity->bip_buf;
494
495	ret = total = 0;
496	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
497	bix.sector_size = bi->sector_size;
498
499	bio_for_each_segment(bv, bio, i) {
500		void *kaddr = kmap_atomic(bv->bv_page, KM_USER0);
501		bix.data_buf = kaddr + bv->bv_offset;
502		bix.data_size = bv->bv_len;
503		bix.prot_buf = prot_buf;
504		bix.sector = sector;
505
506		ret = bi->verify_fn(&bix);
507
508		if (ret) {
509			kunmap_atomic(kaddr, KM_USER0);
510			return ret;
511		}
512
513		sectors = bv->bv_len / bi->sector_size;
514		sector += sectors;
515		prot_buf += sectors * bi->tuple_size;
516		total += sectors * bi->tuple_size;
517		BUG_ON(total > bio->bi_integrity->bip_size);
518
519		kunmap_atomic(kaddr, KM_USER0);
520	}
521
522	return ret;
523}
524
525/**
526 * bio_integrity_verify_fn - Integrity I/O completion worker
527 * @work:	Work struct stored in bio to be verified
528 *
529 * Description: This workqueue function is called to complete a READ
530 * request.  The function verifies the transferred integrity metadata
531 * and then calls the original bio end_io function.
532 */
533static void bio_integrity_verify_fn(struct work_struct *work)
534{
535	struct bio_integrity_payload *bip =
536		container_of(work, struct bio_integrity_payload, bip_work);
537	struct bio *bio = bip->bip_bio;
538	int error;
539
540	error = bio_integrity_verify(bio);
541
542	/* Restore original bio completion handler */
543	bio->bi_end_io = bip->bip_end_io;
544	bio_endio(bio, error);
545}
546
547/**
548 * bio_integrity_endio - Integrity I/O completion function
549 * @bio:	Protected bio
550 * @error:	Pointer to errno
551 *
552 * Description: Completion for integrity I/O
553 *
554 * Normally I/O completion is done in interrupt context.  However,
555 * verifying I/O integrity is a time-consuming task which must be run
556 * in process context.	This function postpones completion
557 * accordingly.
558 */
559void bio_integrity_endio(struct bio *bio, int error)
560{
561	struct bio_integrity_payload *bip = bio->bi_integrity;
562
563	BUG_ON(bip->bip_bio != bio);
564
565	/* In case of an I/O error there is no point in verifying the
566	 * integrity metadata.  Restore original bio end_io handler
567	 * and run it.
568	 */
569	if (error) {
570		bio->bi_end_io = bip->bip_end_io;
571		bio_endio(bio, error);
572
573		return;
574	}
575
576	INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
577	queue_work(kintegrityd_wq, &bip->bip_work);
578}
579EXPORT_SYMBOL(bio_integrity_endio);
580
581/**
582 * bio_integrity_mark_head - Advance bip_vec skip bytes
583 * @bip:	Integrity vector to advance
584 * @skip:	Number of bytes to advance it
585 */
586void bio_integrity_mark_head(struct bio_integrity_payload *bip,
587			     unsigned int skip)
588{
589	struct bio_vec *iv;
590	unsigned int i;
591
592	bip_for_each_vec(iv, bip, i) {
593		if (skip == 0) {
594			bip->bip_idx = i;
595			return;
596		} else if (skip >= iv->bv_len) {
597			skip -= iv->bv_len;
598		} else { /* skip < iv->bv_len) */
599			iv->bv_offset += skip;
600			iv->bv_len -= skip;
601			bip->bip_idx = i;
602			return;
603		}
604	}
605}
606
607/**
608 * bio_integrity_mark_tail - Truncate bip_vec to be len bytes long
609 * @bip:	Integrity vector to truncate
610 * @len:	New length of integrity vector
611 */
612void bio_integrity_mark_tail(struct bio_integrity_payload *bip,
613			     unsigned int len)
614{
615	struct bio_vec *iv;
616	unsigned int i;
617
618	bip_for_each_vec(iv, bip, i) {
619		if (len == 0) {
620			bip->bip_vcnt = i;
621			return;
622		} else if (len >= iv->bv_len) {
623			len -= iv->bv_len;
624		} else { /* len < iv->bv_len) */
625			iv->bv_len = len;
626			len = 0;
627		}
628	}
629}
630
631/**
632 * bio_integrity_advance - Advance integrity vector
633 * @bio:	bio whose integrity vector to update
634 * @bytes_done:	number of data bytes that have been completed
635 *
636 * Description: This function calculates how many integrity bytes the
637 * number of completed data bytes correspond to and advances the
638 * integrity vector accordingly.
639 */
640void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
641{
642	struct bio_integrity_payload *bip = bio->bi_integrity;
643	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
644	unsigned int nr_sectors;
645
646	BUG_ON(bip == NULL);
647	BUG_ON(bi == NULL);
648
649	nr_sectors = bio_integrity_hw_sectors(bi, bytes_done >> 9);
650	bio_integrity_mark_head(bip, nr_sectors * bi->tuple_size);
651}
652EXPORT_SYMBOL(bio_integrity_advance);
653
654/**
655 * bio_integrity_trim - Trim integrity vector
656 * @bio:	bio whose integrity vector to update
657 * @offset:	offset to first data sector
658 * @sectors:	number of data sectors
659 *
660 * Description: Used to trim the integrity vector in a cloned bio.
661 * The ivec will be advanced corresponding to 'offset' data sectors
662 * and the length will be truncated corresponding to 'len' data
663 * sectors.
664 */
665void bio_integrity_trim(struct bio *bio, unsigned int offset,
666			unsigned int sectors)
667{
668	struct bio_integrity_payload *bip = bio->bi_integrity;
669	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
670	unsigned int nr_sectors;
671
672	BUG_ON(bip == NULL);
673	BUG_ON(bi == NULL);
674	BUG_ON(!bio_flagged(bio, BIO_CLONED));
675
676	nr_sectors = bio_integrity_hw_sectors(bi, sectors);
677	bip->bip_sector = bip->bip_sector + offset;
678	bio_integrity_mark_head(bip, offset * bi->tuple_size);
679	bio_integrity_mark_tail(bip, sectors * bi->tuple_size);
680}
681EXPORT_SYMBOL(bio_integrity_trim);
682
683/**
684 * bio_integrity_split - Split integrity metadata
685 * @bio:	Protected bio
686 * @bp:		Resulting bio_pair
687 * @sectors:	Offset
688 *
689 * Description: Splits an integrity page into a bio_pair.
690 */
691void bio_integrity_split(struct bio *bio, struct bio_pair *bp, int sectors)
692{
693	struct blk_integrity *bi;
694	struct bio_integrity_payload *bip = bio->bi_integrity;
695	unsigned int nr_sectors;
696
697	if (bio_integrity(bio) == 0)
698		return;
699
700	bi = bdev_get_integrity(bio->bi_bdev);
701	BUG_ON(bi == NULL);
702	BUG_ON(bip->bip_vcnt != 1);
703
704	nr_sectors = bio_integrity_hw_sectors(bi, sectors);
705
706	bp->bio1.bi_integrity = &bp->bip1;
707	bp->bio2.bi_integrity = &bp->bip2;
708
709	bp->iv1 = bip->bip_vec[0];
710	bp->iv2 = bip->bip_vec[0];
711
712	bp->bip1.bip_vec[0] = bp->iv1;
713	bp->bip2.bip_vec[0] = bp->iv2;
714
715	bp->iv1.bv_len = sectors * bi->tuple_size;
716	bp->iv2.bv_offset += sectors * bi->tuple_size;
717	bp->iv2.bv_len -= sectors * bi->tuple_size;
718
719	bp->bip1.bip_sector = bio->bi_integrity->bip_sector;
720	bp->bip2.bip_sector = bio->bi_integrity->bip_sector + nr_sectors;
721
722	bp->bip1.bip_vcnt = bp->bip2.bip_vcnt = 1;
723	bp->bip1.bip_idx = bp->bip2.bip_idx = 0;
724}
725EXPORT_SYMBOL(bio_integrity_split);
726
727/**
728 * bio_integrity_clone - Callback for cloning bios with integrity metadata
729 * @bio:	New bio
730 * @bio_src:	Original bio
731 * @gfp_mask:	Memory allocation mask
732 * @bs:		bio_set to allocate bip from
733 *
734 * Description:	Called to allocate a bip when cloning a bio
735 */
736int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
737			gfp_t gfp_mask, struct bio_set *bs)
738{
739	struct bio_integrity_payload *bip_src = bio_src->bi_integrity;
740	struct bio_integrity_payload *bip;
741
742	BUG_ON(bip_src == NULL);
743
744	bip = bio_integrity_alloc_bioset(bio, gfp_mask, bip_src->bip_vcnt, bs);
745
746	if (bip == NULL)
747		return -EIO;
748
749	memcpy(bip->bip_vec, bip_src->bip_vec,
750	       bip_src->bip_vcnt * sizeof(struct bio_vec));
751
752	bip->bip_sector = bip_src->bip_sector;
753	bip->bip_vcnt = bip_src->bip_vcnt;
754	bip->bip_idx = bip_src->bip_idx;
755
756	return 0;
757}
758EXPORT_SYMBOL(bio_integrity_clone);
759
760int bioset_integrity_create(struct bio_set *bs, int pool_size)
761{
762	unsigned int max_slab = vecs_to_idx(BIO_MAX_PAGES);
763
764	bs->bio_integrity_pool =
765		mempool_create_slab_pool(pool_size, bip_slab[max_slab].slab);
766
767	if (!bs->bio_integrity_pool)
768		return -1;
769
770	return 0;
771}
772EXPORT_SYMBOL(bioset_integrity_create);
773
774void bioset_integrity_free(struct bio_set *bs)
775{
776	if (bs->bio_integrity_pool)
777		mempool_destroy(bs->bio_integrity_pool);
778}
779EXPORT_SYMBOL(bioset_integrity_free);
780
781void __init bio_integrity_init(void)
782{
783	unsigned int i;
784
785	kintegrityd_wq = create_workqueue("kintegrityd");
786	if (!kintegrityd_wq)
787		panic("Failed to create kintegrityd\n");
788
789	for (i = 0 ; i < BIOVEC_NR_POOLS ; i++) {
790		unsigned int size;
791
792		size = sizeof(struct bio_integrity_payload)
793			+ bip_slab[i].nr_vecs * sizeof(struct bio_vec);
794
795		bip_slab[i].slab =
796			kmem_cache_create(bip_slab[i].name, size, 0,
797					  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
798	}
799}
800