• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/staging/et131x/
1/*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 *
5 * Copyright * 2005 Agere Systems Inc.
6 * All rights reserved.
7 *   http://www.agere.com
8 *
9 *------------------------------------------------------------------------------
10 *
11 * et1310_phy.c - Routines for configuring and accessing the PHY
12 *
13 *------------------------------------------------------------------------------
14 *
15 * SOFTWARE LICENSE
16 *
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software.  Using this
19 * software indicates your acceptance of these terms and conditions.  If you do
20 * not agree with these terms and conditions, do not use the software.
21 *
22 * Copyright * 2005 Agere Systems Inc.
23 * All rights reserved.
24 *
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
27 *
28 * . Redistributions of source code must retain the above copyright notice, this
29 *    list of conditions and the following Disclaimer as comments in the code as
30 *    well as in the documentation and/or other materials provided with the
31 *    distribution.
32 *
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 *    this list of conditions and the following Disclaimer in the documentation
35 *    and/or other materials provided with the distribution.
36 *
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 *    may be used to endorse or promote products derived from this software
39 *    without specific prior written permission.
40 *
41 * Disclaimer
42 *
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 * DAMAGE.
55 *
56 */
57
58#include "et131x_version.h"
59#include "et131x_defs.h"
60
61#include <linux/pci.h>
62#include <linux/init.h>
63#include <linux/module.h>
64#include <linux/types.h>
65#include <linux/kernel.h>
66
67#include <linux/sched.h>
68#include <linux/ptrace.h>
69#include <linux/ctype.h>
70#include <linux/string.h>
71#include <linux/timer.h>
72#include <linux/interrupt.h>
73#include <linux/in.h>
74#include <linux/delay.h>
75#include <linux/io.h>
76#include <linux/bitops.h>
77#include <asm/system.h>
78
79#include <linux/netdevice.h>
80#include <linux/etherdevice.h>
81#include <linux/skbuff.h>
82#include <linux/if_arp.h>
83#include <linux/ioport.h>
84#include <linux/random.h>
85
86#include "et1310_phy.h"
87
88#include "et131x_adapter.h"
89
90#include "et1310_address_map.h"
91#include "et1310_tx.h"
92#include "et1310_rx.h"
93
94#include "et131x.h"
95
96/* Prototypes for functions with local scope */
97static void et131x_xcvr_init(struct et131x_adapter *etdev);
98
99/**
100 * PhyMiRead - Read from the PHY through the MII Interface on the MAC
101 * @etdev: pointer to our private adapter structure
102 * @xcvrAddr: the address of the transciever
103 * @xcvrReg: the register to read
104 * @value: pointer to a 16-bit value in which the value will be stored
105 *
106 * Returns 0 on success, errno on failure (as defined in errno.h)
107 */
108int PhyMiRead(struct et131x_adapter *etdev, u8 xcvrAddr,
109	      u8 xcvrReg, u16 *value)
110{
111	struct _MAC_t __iomem *mac = &etdev->regs->mac;
112	int status = 0;
113	u32 delay;
114	u32 miiAddr;
115	u32 miiCmd;
116	u32 miiIndicator;
117
118	/* Save a local copy of the registers we are dealing with so we can
119	 * set them back
120	 */
121	miiAddr = readl(&mac->mii_mgmt_addr);
122	miiCmd = readl(&mac->mii_mgmt_cmd);
123
124	/* Stop the current operation */
125	writel(0, &mac->mii_mgmt_cmd);
126
127	/* Set up the register we need to read from on the correct PHY */
128	writel(MII_ADDR(xcvrAddr, xcvrReg), &mac->mii_mgmt_addr);
129
130	/* Kick the read cycle off */
131	delay = 0;
132
133	writel(0x1, &mac->mii_mgmt_cmd);
134
135	do {
136		udelay(50);
137		delay++;
138		miiIndicator = readl(&mac->mii_mgmt_indicator);
139	} while ((miiIndicator & MGMT_WAIT) && delay < 50);
140
141	/* If we hit the max delay, we could not read the register */
142	if (delay == 50) {
143		dev_warn(&etdev->pdev->dev,
144			    "xcvrReg 0x%08x could not be read\n", xcvrReg);
145		dev_warn(&etdev->pdev->dev, "status is  0x%08x\n",
146			    miiIndicator);
147
148		status = -EIO;
149	}
150
151	/* If we hit here we were able to read the register and we need to
152	 * return the value to the caller */
153	*value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
154
155	/* Stop the read operation */
156	writel(0, &mac->mii_mgmt_cmd);
157
158	/* set the registers we touched back to the state at which we entered
159	 * this function
160	 */
161	writel(miiAddr, &mac->mii_mgmt_addr);
162	writel(miiCmd, &mac->mii_mgmt_cmd);
163
164	return status;
165}
166
167int MiWrite(struct et131x_adapter *etdev, u8 xcvrReg, u16 value)
168{
169	struct _MAC_t __iomem *mac = &etdev->regs->mac;
170	int status = 0;
171	u8 xcvrAddr = etdev->Stats.xcvr_addr;
172	u32 delay;
173	u32 miiAddr;
174	u32 miiCmd;
175	u32 miiIndicator;
176
177	/* Save a local copy of the registers we are dealing with so we can
178	 * set them back
179	 */
180	miiAddr = readl(&mac->mii_mgmt_addr);
181	miiCmd = readl(&mac->mii_mgmt_cmd);
182
183	/* Stop the current operation */
184	writel(0, &mac->mii_mgmt_cmd);
185
186	/* Set up the register we need to write to on the correct PHY */
187	writel(MII_ADDR(xcvrAddr, xcvrReg), &mac->mii_mgmt_addr);
188
189	/* Add the value to write to the registers to the mac */
190	writel(value, &mac->mii_mgmt_ctrl);
191	delay = 0;
192
193	do {
194		udelay(50);
195		delay++;
196		miiIndicator = readl(&mac->mii_mgmt_indicator);
197	} while ((miiIndicator & MGMT_BUSY) && delay < 100);
198
199	/* If we hit the max delay, we could not write the register */
200	if (delay == 100) {
201		u16 TempValue;
202
203		dev_warn(&etdev->pdev->dev,
204		    "xcvrReg 0x%08x could not be written", xcvrReg);
205		dev_warn(&etdev->pdev->dev, "status is  0x%08x\n",
206			    miiIndicator);
207		dev_warn(&etdev->pdev->dev, "command is  0x%08x\n",
208			    readl(&mac->mii_mgmt_cmd));
209
210		MiRead(etdev, xcvrReg, &TempValue);
211
212		status = -EIO;
213	}
214	/* Stop the write operation */
215	writel(0, &mac->mii_mgmt_cmd);
216
217	/* set the registers we touched back to the state at which we entered
218	 * this function
219	 */
220	writel(miiAddr, &mac->mii_mgmt_addr);
221	writel(miiCmd, &mac->mii_mgmt_cmd);
222
223	return status;
224}
225
226/**
227 * et131x_xcvr_find - Find the PHY ID
228 * @etdev: pointer to our private adapter structure
229 *
230 * Returns 0 on success, errno on failure (as defined in errno.h)
231 */
232int et131x_xcvr_find(struct et131x_adapter *etdev)
233{
234	u8 xcvr_addr;
235	MI_IDR1_t idr1;
236	MI_IDR2_t idr2;
237	u32 xcvr_id;
238
239	/* We need to get xcvr id and address we just get the first one */
240	for (xcvr_addr = 0; xcvr_addr < 32; xcvr_addr++) {
241		/* Read the ID from the PHY */
242		PhyMiRead(etdev, xcvr_addr,
243			  (u8) offsetof(MI_REGS_t, idr1),
244			  &idr1.value);
245		PhyMiRead(etdev, xcvr_addr,
246			  (u8) offsetof(MI_REGS_t, idr2),
247			  &idr2.value);
248
249		xcvr_id = (u32) ((idr1.value << 16) | idr2.value);
250
251		if (idr1.value != 0 && idr1.value != 0xffff) {
252			etdev->Stats.xcvr_id = xcvr_id;
253			etdev->Stats.xcvr_addr = xcvr_addr;
254			return 0;
255		}
256	}
257	return -ENODEV;
258}
259
260void ET1310_PhyReset(struct et131x_adapter *etdev)
261{
262	MiWrite(etdev, PHY_CONTROL, 0x8000);
263}
264
265/**
266 *	ET1310_PhyPowerDown	-	PHY power control
267 *	@etdev: device to control
268 *	@down: true for off/false for back on
269 *
270 *	one hundred, ten, one thousand megs
271 *	How would you like to have your LAN accessed
272 *	Can't you see that this code processed
273 *	Phy power, phy power..
274 */
275
276void ET1310_PhyPowerDown(struct et131x_adapter *etdev, bool down)
277{
278	u16 data;
279
280	MiRead(etdev, PHY_CONTROL, &data);
281	data &= ~0x0800;	/* Power UP */
282	if (down) /* Power DOWN */
283		data |= 0x0800;
284	MiWrite(etdev, PHY_CONTROL, data);
285}
286
287/**
288 *	ET130_PhyAutoNEg	-	autonegotiate control
289 *	@etdev: device to control
290 *	@enabe: autoneg on/off
291 *
292 *	Set up the autonegotiation state according to whether we will be
293 *	negotiating the state or forcing a speed.
294 */
295
296static void ET1310_PhyAutoNeg(struct et131x_adapter *etdev, bool enable)
297{
298	u16 data;
299
300	MiRead(etdev, PHY_CONTROL, &data);
301	data &= ~0x1000;	/* Autonegotiation OFF */
302	if (enable)
303		data |= 0x1000;		/* Autonegotiation ON */
304	MiWrite(etdev, PHY_CONTROL, data);
305}
306
307/**
308 *	ET130_PhyDuplexMode	-	duplex control
309 *	@etdev: device to control
310 *	@duplex: duplex on/off
311 *
312 *	Set up the duplex state on the PHY
313 */
314
315static void ET1310_PhyDuplexMode(struct et131x_adapter *etdev, u16 duplex)
316{
317	u16 data;
318
319	MiRead(etdev, PHY_CONTROL, &data);
320	data &= ~0x100;		/* Set Half Duplex */
321	if (duplex == TRUEPHY_DUPLEX_FULL)
322		data |= 0x100;	/* Set Full Duplex */
323	MiWrite(etdev, PHY_CONTROL, data);
324}
325
326/**
327 *	ET130_PhySpeedSelect	-	speed control
328 *	@etdev: device to control
329 *	@duplex: duplex on/off
330 *
331 *	Set the speed of our PHY.
332 */
333
334static void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, u16 speed)
335{
336	u16 data;
337	static const u16 bits[3] = {0x0000, 0x2000, 0x0040};
338
339	/* Read the PHY control register */
340	MiRead(etdev, PHY_CONTROL, &data);
341	/* Clear all Speed settings (Bits 6, 13) */
342	data &= ~0x2040;
343	/* Write back the new speed */
344	MiWrite(etdev, PHY_CONTROL, data | bits[speed]);
345}
346
347/**
348 *	ET1310_PhyLinkStatus	-	read link state
349 *	@etdev: device to read
350 *	@link_status: reported link state
351 *	@autoneg: reported autonegotiation state (complete/incomplete/disabled)
352 *	@linkspeed: returnedlink speed in use
353 *	@duplex_mode: reported half/full duplex state
354 *	@mdi_mdix: not yet working
355 *	@masterslave: report whether we are master or slave
356 *	@polarity: link polarity
357 *
358 *	I can read your lan like a magazine
359 *	I see if your up
360 *	I know your link speed
361 *	I see all the setting that you'd rather keep
362 */
363
364static void ET1310_PhyLinkStatus(struct et131x_adapter *etdev,
365			  u8 *link_status,
366			  u32 *autoneg,
367			  u32 *linkspeed,
368			  u32 *duplex_mode,
369			  u32 *mdi_mdix,
370			  u32 *masterslave, u32 *polarity)
371{
372	u16 mistatus = 0;
373	u16 is1000BaseT = 0;
374	u16 vmi_phystatus = 0;
375	u16 control = 0;
376
377	MiRead(etdev, PHY_STATUS, &mistatus);
378	MiRead(etdev, PHY_1000_STATUS, &is1000BaseT);
379	MiRead(etdev, PHY_PHY_STATUS, &vmi_phystatus);
380	MiRead(etdev, PHY_CONTROL, &control);
381
382	*link_status = (vmi_phystatus & 0x0040) ? 1 : 0;
383	*autoneg = (control & 0x1000) ? ((vmi_phystatus & 0x0020) ?
384					    TRUEPHY_ANEG_COMPLETE :
385					    TRUEPHY_ANEG_NOT_COMPLETE) :
386		    TRUEPHY_ANEG_DISABLED;
387	*linkspeed = (vmi_phystatus & 0x0300) >> 8;
388	*duplex_mode = (vmi_phystatus & 0x0080) >> 7;
389	/* NOTE: Need to complete this */
390	*mdi_mdix = 0;
391
392	*masterslave = (is1000BaseT & 0x4000) ?
393			TRUEPHY_CFG_MASTER : TRUEPHY_CFG_SLAVE;
394	*polarity = (vmi_phystatus & 0x0400) ?
395			TRUEPHY_POLARITY_INVERTED : TRUEPHY_POLARITY_NORMAL;
396}
397
398static void ET1310_PhyAndOrReg(struct et131x_adapter *etdev,
399			u16 regnum, u16 andMask, u16 orMask)
400{
401	u16 reg;
402
403	MiRead(etdev, regnum, &reg);
404	reg &= andMask;
405	reg |= orMask;
406	MiWrite(etdev, regnum, reg);
407}
408
409/* Still used from _mac  for BIT_READ */
410void ET1310_PhyAccessMiBit(struct et131x_adapter *etdev, u16 action,
411			   u16 regnum, u16 bitnum, u8 *value)
412{
413	u16 reg;
414	u16 mask = 0x0001 << bitnum;
415
416	/* Read the requested register */
417	MiRead(etdev, regnum, &reg);
418
419	switch (action) {
420	case TRUEPHY_BIT_READ:
421		*value = (reg & mask) >> bitnum;
422		break;
423
424	case TRUEPHY_BIT_SET:
425		MiWrite(etdev, regnum, reg | mask);
426		break;
427
428	case TRUEPHY_BIT_CLEAR:
429		MiWrite(etdev, regnum, reg & ~mask);
430		break;
431
432	default:
433		break;
434	}
435}
436
437void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
438				  u16 duplex)
439{
440	u16 data;
441
442	/* Read the PHY 1000 Base-T Control Register */
443	MiRead(etdev, PHY_1000_CONTROL, &data);
444
445	/* Clear Bits 8,9 */
446	data &= ~0x0300;
447
448	switch (duplex) {
449	case TRUEPHY_ADV_DUPLEX_NONE:
450		/* Duplex already cleared, do nothing */
451		break;
452
453	case TRUEPHY_ADV_DUPLEX_FULL:
454		/* Set Bit 9 */
455		data |= 0x0200;
456		break;
457
458	case TRUEPHY_ADV_DUPLEX_HALF:
459		/* Set Bit 8 */
460		data |= 0x0100;
461		break;
462
463	case TRUEPHY_ADV_DUPLEX_BOTH:
464	default:
465		data |= 0x0300;
466		break;
467	}
468
469	/* Write back advertisement */
470	MiWrite(etdev, PHY_1000_CONTROL, data);
471}
472
473static void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
474				 u16 duplex)
475{
476	u16 data;
477
478	/* Read the Autonegotiation Register (10/100) */
479	MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
480
481	/* Clear bits 7,8 */
482	data &= ~0x0180;
483
484	switch (duplex) {
485	case TRUEPHY_ADV_DUPLEX_NONE:
486		/* Duplex already cleared, do nothing */
487		break;
488
489	case TRUEPHY_ADV_DUPLEX_FULL:
490		/* Set Bit 8 */
491		data |= 0x0100;
492		break;
493
494	case TRUEPHY_ADV_DUPLEX_HALF:
495		/* Set Bit 7 */
496		data |= 0x0080;
497		break;
498
499	case TRUEPHY_ADV_DUPLEX_BOTH:
500	default:
501		/* Set Bits 7,8 */
502		data |= 0x0180;
503		break;
504	}
505
506	/* Write back advertisement */
507	MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
508}
509
510static void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
511				u16 duplex)
512{
513	u16 data;
514
515	/* Read the Autonegotiation Register (10/100) */
516	MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
517
518	/* Clear bits 5,6 */
519	data &= ~0x0060;
520
521	switch (duplex) {
522	case TRUEPHY_ADV_DUPLEX_NONE:
523		/* Duplex already cleared, do nothing */
524		break;
525
526	case TRUEPHY_ADV_DUPLEX_FULL:
527		/* Set Bit 6 */
528		data |= 0x0040;
529		break;
530
531	case TRUEPHY_ADV_DUPLEX_HALF:
532		/* Set Bit 5 */
533		data |= 0x0020;
534		break;
535
536	case TRUEPHY_ADV_DUPLEX_BOTH:
537	default:
538		/* Set Bits 5,6 */
539		data |= 0x0060;
540		break;
541	}
542
543	/* Write back advertisement */
544	MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
545}
546
547/**
548 * et131x_setphy_normal - Set PHY for normal operation.
549 * @etdev: pointer to our private adapter structure
550 *
551 * Used by Power Management to force the PHY into 10 Base T half-duplex mode,
552 * when going to D3 in WOL mode. Also used during initialization to set the
553 * PHY for normal operation.
554 */
555void et131x_setphy_normal(struct et131x_adapter *etdev)
556{
557	/* Make sure the PHY is powered up */
558	ET1310_PhyPowerDown(etdev, 0);
559	et131x_xcvr_init(etdev);
560}
561
562
563/**
564 * et131x_xcvr_init - Init the phy if we are setting it into force mode
565 * @etdev: pointer to our private adapter structure
566 *
567 */
568static void et131x_xcvr_init(struct et131x_adapter *etdev)
569{
570	MI_IMR_t imr;
571	MI_ISR_t isr;
572	MI_LCR2_t lcr2;
573
574	/* Zero out the adapter structure variable representing BMSR */
575	etdev->Bmsr.value = 0;
576
577	MiRead(etdev, (u8) offsetof(MI_REGS_t, isr), &isr.value);
578	MiRead(etdev, (u8) offsetof(MI_REGS_t, imr), &imr.value);
579
580	/* Set the link status interrupt only.  Bad behavior when link status
581	 * and auto neg are set, we run into a nested interrupt problem
582	 */
583	imr.bits.int_en = 0x1;
584	imr.bits.link_status = 0x1;
585	imr.bits.autoneg_status = 0x1;
586
587	MiWrite(etdev, (u8) offsetof(MI_REGS_t, imr), imr.value);
588
589	/* Set the LED behavior such that LED 1 indicates speed (off =
590	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
591	 * link and activity (on for link, blink off for activity).
592	 *
593	 * NOTE: Some customizations have been added here for specific
594	 * vendors; The LED behavior is now determined by vendor data in the
595	 * EEPROM. However, the above description is the default.
596	 */
597	if ((etdev->eepromData[1] & 0x4) == 0) {
598		MiRead(etdev, (u8) offsetof(MI_REGS_t, lcr2),
599		       &lcr2.value);
600		if ((etdev->eepromData[1] & 0x8) == 0)
601			lcr2.bits.led_tx_rx = 0x3;
602		else
603			lcr2.bits.led_tx_rx = 0x4;
604		lcr2.bits.led_link = 0xa;
605		MiWrite(etdev, (u8) offsetof(MI_REGS_t, lcr2),
606			lcr2.value);
607	}
608
609	/* Determine if we need to go into a force mode and set it */
610	if (etdev->AiForceSpeed == 0 && etdev->AiForceDpx == 0) {
611		if (etdev->RegistryFlowControl == TxOnly ||
612		    etdev->RegistryFlowControl == Both)
613			ET1310_PhyAccessMiBit(etdev,
614					      TRUEPHY_BIT_SET, 4, 11, NULL);
615		else
616			ET1310_PhyAccessMiBit(etdev,
617					      TRUEPHY_BIT_CLEAR, 4, 11, NULL);
618
619		if (etdev->RegistryFlowControl == Both)
620			ET1310_PhyAccessMiBit(etdev,
621					      TRUEPHY_BIT_SET, 4, 10, NULL);
622		else
623			ET1310_PhyAccessMiBit(etdev,
624					      TRUEPHY_BIT_CLEAR, 4, 10, NULL);
625
626		/* Set the phy to autonegotiation */
627		ET1310_PhyAutoNeg(etdev, true);
628
629		/* NOTE - Do we need this? */
630		ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_SET, 0, 9, NULL);
631		return;
632	}
633
634	ET1310_PhyAutoNeg(etdev, false);
635
636	/* Set to the correct force mode. */
637	if (etdev->AiForceDpx != 1) {
638		if (etdev->RegistryFlowControl == TxOnly ||
639		    etdev->RegistryFlowControl == Both)
640			ET1310_PhyAccessMiBit(etdev,
641				      TRUEPHY_BIT_SET, 4, 11, NULL);
642		else
643			ET1310_PhyAccessMiBit(etdev,
644					      TRUEPHY_BIT_CLEAR, 4, 11, NULL);
645
646		if (etdev->RegistryFlowControl == Both)
647			ET1310_PhyAccessMiBit(etdev,
648					      TRUEPHY_BIT_SET, 4, 10, NULL);
649		else
650			ET1310_PhyAccessMiBit(etdev,
651					      TRUEPHY_BIT_CLEAR, 4, 10, NULL);
652	} else {
653		ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_CLEAR, 4, 10, NULL);
654		ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_CLEAR, 4, 11, NULL);
655	}
656	ET1310_PhyPowerDown(etdev, 1);
657	switch (etdev->AiForceSpeed) {
658	case 10:
659		/* First we need to turn off all other advertisement */
660		ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
661		ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
662		if (etdev->AiForceDpx == 1) {
663			/* Set our advertise values accordingly */
664			ET1310_PhyAdvertise10BaseT(etdev,
665						TRUEPHY_ADV_DUPLEX_HALF);
666		} else if (etdev->AiForceDpx == 2) {
667			/* Set our advertise values accordingly */
668			ET1310_PhyAdvertise10BaseT(etdev,
669						TRUEPHY_ADV_DUPLEX_FULL);
670		} else {
671			/* Disable autoneg */
672			ET1310_PhyAutoNeg(etdev, false);
673			/* Disable rest of the advertisements */
674			ET1310_PhyAdvertise10BaseT(etdev,
675					TRUEPHY_ADV_DUPLEX_NONE);
676			/* Force 10 Mbps */
677			ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_10MBPS);
678			/* Force Full duplex */
679			ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
680		}
681		break;
682	case 100:
683		/* first we need to turn off all other advertisement */
684		ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
685		ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
686		if (etdev->AiForceDpx == 1) {
687			/* Set our advertise values accordingly */
688			ET1310_PhyAdvertise100BaseT(etdev,
689						TRUEPHY_ADV_DUPLEX_HALF);
690			/* Set speed */
691			ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
692		} else if (etdev->AiForceDpx == 2) {
693			/* Set our advertise values accordingly */
694			ET1310_PhyAdvertise100BaseT(etdev,
695						TRUEPHY_ADV_DUPLEX_FULL);
696		} else {
697			/* Disable autoneg */
698			ET1310_PhyAutoNeg(etdev, false);
699			/* Disable other advertisement */
700			ET1310_PhyAdvertise100BaseT(etdev,
701						TRUEPHY_ADV_DUPLEX_NONE);
702			/* Force 100 Mbps */
703			ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
704			/* Force Full duplex */
705			ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
706		}
707		break;
708	case 1000:
709		/* first we need to turn off all other advertisement */
710		ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
711		ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
712		/* set our advertise values accordingly */
713		ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_FULL);
714		break;
715	}
716	ET1310_PhyPowerDown(etdev, 0);
717}
718
719void et131x_Mii_check(struct et131x_adapter *etdev,
720		      MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints)
721{
722	u8 link_status;
723	u32 autoneg_status;
724	u32 speed;
725	u32 duplex;
726	u32 mdi_mdix;
727	u32 masterslave;
728	u32 polarity;
729	unsigned long flags;
730
731	if (bmsr_ints.bits.link_status) {
732		if (bmsr.bits.link_status) {
733			etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
734
735			/* Update our state variables and indicate the
736			 * connected state
737			 */
738			spin_lock_irqsave(&etdev->Lock, flags);
739
740			etdev->MediaState = NETIF_STATUS_MEDIA_CONNECT;
741			etdev->Flags &= ~fMP_ADAPTER_LINK_DETECTION;
742
743			spin_unlock_irqrestore(&etdev->Lock, flags);
744
745			netif_carrier_on(etdev->netdev);
746		} else {
747			dev_warn(&etdev->pdev->dev,
748			    "Link down - cable problem ?\n");
749
750			if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
751				/* NOTE - Is there a way to query this without
752				 * TruePHY?
753				 * && TRU_QueryCoreType(etdev->hTruePhy, 0) ==
754				 * EMI_TRUEPHY_A13O) {
755				 */
756				u16 Register18;
757
758				MiRead(etdev, 0x12, &Register18);
759				MiWrite(etdev, 0x12, Register18 | 0x4);
760				MiWrite(etdev, 0x10, Register18 | 0x8402);
761				MiWrite(etdev, 0x11, Register18 | 511);
762				MiWrite(etdev, 0x12, Register18);
763			}
764
765			/* For the first N seconds of life, we are in "link
766			 * detection" When we are in this state, we should
767			 * only report "connected". When the LinkDetection
768			 * Timer expires, we can report disconnected (handled
769			 * in the LinkDetectionDPC).
770			 */
771			if (!(etdev->Flags & fMP_ADAPTER_LINK_DETECTION) ||
772			 (etdev->MediaState == NETIF_STATUS_MEDIA_DISCONNECT)) {
773				spin_lock_irqsave(&etdev->Lock, flags);
774				etdev->MediaState =
775				    NETIF_STATUS_MEDIA_DISCONNECT;
776				spin_unlock_irqrestore(&etdev->Lock,
777						       flags);
778
779				netif_carrier_off(etdev->netdev);
780			}
781
782			etdev->linkspeed = 0;
783			etdev->duplex_mode = 0;
784
785			/* Free the packets being actively sent & stopped */
786			et131x_free_busy_send_packets(etdev);
787
788			/* Re-initialize the send structures */
789			et131x_init_send(etdev);
790
791			/* Reset the RFD list and re-start RU */
792			et131x_reset_recv(etdev);
793
794			/*
795			 * Bring the device back to the state it was during
796			 * init prior to autonegotiation being complete. This
797			 * way, when we get the auto-neg complete interrupt,
798			 * we can complete init by calling ConfigMacREGS2.
799			 */
800			et131x_soft_reset(etdev);
801
802			/* Setup ET1310 as per the documentation */
803			et131x_adapter_setup(etdev);
804
805			/* Setup the PHY into coma mode until the cable is
806			 * plugged back in
807			 */
808			if (etdev->RegistryPhyComa == 1)
809				EnablePhyComa(etdev);
810		}
811	}
812
813	if (bmsr_ints.bits.auto_neg_complete ||
814	    (etdev->AiForceDpx == 3 && bmsr_ints.bits.link_status)) {
815		if (bmsr.bits.auto_neg_complete || etdev->AiForceDpx == 3) {
816			ET1310_PhyLinkStatus(etdev,
817					     &link_status, &autoneg_status,
818					     &speed, &duplex, &mdi_mdix,
819					     &masterslave, &polarity);
820
821			etdev->linkspeed = speed;
822			etdev->duplex_mode = duplex;
823
824			etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
825
826			if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
827				/*
828				 * NOTE - Is there a way to query this without
829				 * TruePHY?
830				 * && TRU_QueryCoreType(etdev->hTruePhy, 0)==
831				 * EMI_TRUEPHY_A13O) {
832				 */
833				u16 Register18;
834
835				MiRead(etdev, 0x12, &Register18);
836				MiWrite(etdev, 0x12, Register18 | 0x4);
837				MiWrite(etdev, 0x10, Register18 | 0x8402);
838				MiWrite(etdev, 0x11, Register18 | 511);
839				MiWrite(etdev, 0x12, Register18);
840			}
841
842			ConfigFlowControl(etdev);
843
844			if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS &&
845					etdev->RegistryJumboPacket > 2048)
846				ET1310_PhyAndOrReg(etdev, 0x16, 0xcfff,
847								   0x2000);
848
849			SetRxDmaTimer(etdev);
850			ConfigMACRegs2(etdev);
851		}
852	}
853}
854
855/*
856 * The routines which follow provide low-level access to the PHY, and are used
857 * primarily by the routines above (although there are a few places elsewhere
858 * in the driver where this level of access is required).
859 */
860
861static const u16 ConfigPhy[25][2] = {
862	/* Reg      Value      Register */
863	/* Addr                         */
864	{0x880B, 0x0926},	/* AfeIfCreg4B1000Msbs */
865	{0x880C, 0x0926},	/* AfeIfCreg4B100Msbs */
866	{0x880D, 0x0926},	/* AfeIfCreg4B10Msbs */
867
868	{0x880E, 0xB4D3},	/* AfeIfCreg4B1000Lsbs */
869	{0x880F, 0xB4D3},	/* AfeIfCreg4B100Lsbs */
870	{0x8810, 0xB4D3},	/* AfeIfCreg4B10Lsbs */
871
872	{0x8805, 0xB03E},	/* AfeIfCreg3B1000Msbs */
873	{0x8806, 0xB03E},	/* AfeIfCreg3B100Msbs */
874	{0x8807, 0xFF00},	/* AfeIfCreg3B10Msbs */
875
876	{0x8808, 0xE090},	/* AfeIfCreg3B1000Lsbs */
877	{0x8809, 0xE110},	/* AfeIfCreg3B100Lsbs */
878	{0x880A, 0x0000},	/* AfeIfCreg3B10Lsbs */
879
880	{0x300D, 1},		/* DisableNorm */
881
882	{0x280C, 0x0180},	/* LinkHoldEnd */
883
884	{0x1C21, 0x0002},	/* AlphaM */
885
886	{0x3821, 6},		/* FfeLkgTx0 */
887	{0x381D, 1},		/* FfeLkg1g4 */
888	{0x381E, 1},		/* FfeLkg1g5 */
889	{0x381F, 1},		/* FfeLkg1g6 */
890	{0x3820, 1},		/* FfeLkg1g7 */
891
892	{0x8402, 0x01F0},	/* Btinact */
893	{0x800E, 20},		/* LftrainTime */
894	{0x800F, 24},		/* DvguardTime */
895	{0x8010, 46},		/* IdlguardTime */
896
897	{0, 0}
898
899};
900
901/* condensed version of the phy initialization routine */
902void ET1310_PhyInit(struct et131x_adapter *etdev)
903{
904	u16 data, index;
905
906	if (etdev == NULL)
907		return;
908
909	/* get the identity (again ?) */
910	MiRead(etdev, PHY_ID_1, &data);
911	MiRead(etdev, PHY_ID_2, &data);
912
913	/* what does this do/achieve ? */
914	MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
915	MiWrite(etdev, PHY_MPHY_CONTROL_REG,	0x0006);
916
917	/* read modem register 0402, should I do something with the return
918	   data ? */
919	MiWrite(etdev, PHY_INDEX_REG, 0x0402);
920	MiRead(etdev, PHY_DATA_REG, &data);
921
922	/* what does this do/achieve ? */
923	MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
924
925	/* get the identity (again ?) */
926	MiRead(etdev, PHY_ID_1, &data);
927	MiRead(etdev, PHY_ID_2, &data);
928
929	/* what does this achieve ? */
930	MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
931	MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
932
933	/* read modem register 0402, should I do something with
934	   the return data? */
935	MiWrite(etdev, PHY_INDEX_REG, 0x0402);
936	MiRead(etdev, PHY_DATA_REG, &data);
937
938	MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
939
940	/* what does this achieve (should return 0x1040) */
941	MiRead(etdev, PHY_CONTROL, &data);
942	MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
943	MiWrite(etdev, PHY_CONTROL, 0x1840);
944
945	MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0007);
946
947	/* here the writing of the array starts.... */
948	index = 0;
949	while (ConfigPhy[index][0] != 0x0000) {
950		/* write value */
951		MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
952		MiWrite(etdev, PHY_DATA_REG, ConfigPhy[index][1]);
953
954		/* read it back */
955		MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
956		MiRead(etdev, PHY_DATA_REG, &data);
957
958		/* do a check on the value read back ? */
959		index++;
960	}
961	/* here the writing of the array ends... */
962
963	MiRead(etdev, PHY_CONTROL, &data);		/* 0x1840 */
964	MiRead(etdev, PHY_MPHY_CONTROL_REG, &data);/* should read 0007 */
965	MiWrite(etdev, PHY_CONTROL, 0x1040);
966	MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
967}
968