• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/serial/
1/*
2 * zs.c: Serial port driver for IOASIC DECstations.
3 *
4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6 *
7 * DECstation changes
8 * Copyright (C) 1998-2000 Harald Koerfgen
9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
10 *
11 * For the rest of the code the original Copyright applies:
12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
14 *
15 *
16 * Note: for IOASIC systems the wiring is as follows:
17 *
18 * mouse/keyboard:
19 * DIN-7 MJ-4  signal        SCC
20 * 2     1     TxD       <-  A.TxD
21 * 3     4     RxD       ->  A.RxD
22 *
23 * EIA-232/EIA-423:
24 * DB-25 MMJ-6 signal        SCC
25 * 2     2     TxD       <-  B.TxD
26 * 3     5     RxD       ->  B.RxD
27 * 4           RTS       <- ~A.RTS
28 * 5           CTS       -> ~B.CTS
29 * 6     6     DSR       -> ~A.SYNC
30 * 8           CD        -> ~B.DCD
31 * 12          DSRS(DCE) -> ~A.CTS  (*)
32 * 15          TxC       ->  B.TxC
33 * 17          RxC       ->  B.RxC
34 * 20    1     DTR       <- ~A.DTR
35 * 22          RI        -> ~A.DCD
36 * 23          DSRS(DTE) <- ~B.RTS
37 *
38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39 *     is shared with DSRS(DTE) at pin 23.
40 *
41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42 * is a bit odd.  This makes the handling of port B unnecessarily
43 * complicated and prevents the use of some automatic modes of operation.
44 */
45
46#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
47#define SUPPORT_SYSRQ
48#endif
49
50#include <linux/bug.h>
51#include <linux/console.h>
52#include <linux/delay.h>
53#include <linux/errno.h>
54#include <linux/init.h>
55#include <linux/interrupt.h>
56#include <linux/io.h>
57#include <linux/ioport.h>
58#include <linux/irqflags.h>
59#include <linux/kernel.h>
60#include <linux/major.h>
61#include <linux/serial.h>
62#include <linux/serial_core.h>
63#include <linux/spinlock.h>
64#include <linux/sysrq.h>
65#include <linux/tty.h>
66#include <linux/types.h>
67
68#include <asm/atomic.h>
69#include <asm/system.h>
70
71#include <asm/dec/interrupts.h>
72#include <asm/dec/ioasic_addrs.h>
73#include <asm/dec/system.h>
74
75#include "zs.h"
76
77
78MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
79MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
80MODULE_LICENSE("GPL");
81
82
83static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
84static char zs_version[] __initdata = "0.10";
85
86/*
87 * It would be nice to dynamically allocate everything that
88 * depends on ZS_NUM_SCCS, so we could support any number of
89 * Z85C30s, but for now...
90 */
91#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
92#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
93#define ZS_CHAN_A	0		/* Index of the channel A.  */
94#define ZS_CHAN_B	1		/* Index of the channel B.  */
95#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
96#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
97#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
98					   of the 16-bit IOBUS.  */
99#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
100
101#define to_zport(uport) container_of(uport, struct zs_port, port)
102
103struct zs_parms {
104	resource_size_t scc[ZS_NUM_SCCS];
105	int irq[ZS_NUM_SCCS];
106};
107
108static struct zs_scc zs_sccs[ZS_NUM_SCCS];
109
110static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
111	0,				/* write 0 */
112	PAR_SPEC,			/* write 1 */
113	0,				/* write 2 */
114	0,				/* write 3 */
115	X16CLK | SB1,			/* write 4 */
116	0,				/* write 5 */
117	0, 0, 0,			/* write 6, 7, 8 */
118	MIE | DLC | NV,			/* write 9 */
119	NRZ,				/* write 10 */
120	TCBR | RCBR,			/* write 11 */
121	0, 0,				/* BRG time constant, write 12 + 13 */
122	BRSRC | BRENABL,		/* write 14 */
123	0,				/* write 15 */
124};
125
126/*
127 * Debugging.
128 */
129#undef ZS_DEBUG_REGS
130
131
132/*
133 * Reading and writing Z85C30 registers.
134 */
135static void recovery_delay(void)
136{
137	udelay(2);
138}
139
140static u8 read_zsreg(struct zs_port *zport, int reg)
141{
142	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
143	u8 retval;
144
145	if (reg != 0) {
146		writeb(reg & 0xf, control);
147		fast_iob();
148		recovery_delay();
149	}
150	retval = readb(control);
151	recovery_delay();
152	return retval;
153}
154
155static void write_zsreg(struct zs_port *zport, int reg, u8 value)
156{
157	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
158
159	if (reg != 0) {
160		writeb(reg & 0xf, control);
161		fast_iob(); recovery_delay();
162	}
163	writeb(value, control);
164	fast_iob();
165	recovery_delay();
166	return;
167}
168
169static u8 read_zsdata(struct zs_port *zport)
170{
171	void __iomem *data = zport->port.membase +
172			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
173	u8 retval;
174
175	retval = readb(data);
176	recovery_delay();
177	return retval;
178}
179
180static void write_zsdata(struct zs_port *zport, u8 value)
181{
182	void __iomem *data = zport->port.membase +
183			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
184
185	writeb(value, data);
186	fast_iob();
187	recovery_delay();
188	return;
189}
190
191#ifdef ZS_DEBUG_REGS
192void zs_dump(void)
193{
194	struct zs_port *zport;
195	int i, j;
196
197	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
198		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
199
200		if (!zport->scc)
201			continue;
202
203		for (j = 0; j < 16; j++)
204			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
205		printk("\n");
206		for (j = 0; j < 16; j++)
207			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
208		printk("\n\n");
209	}
210}
211#endif
212
213
214static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
215{
216	if (irq)
217		spin_lock_irq(lock);
218	else
219		spin_lock(lock);
220}
221
222static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
223{
224	if (irq)
225		spin_unlock_irq(lock);
226	else
227		spin_unlock(lock);
228}
229
230static int zs_receive_drain(struct zs_port *zport)
231{
232	int loops = 10000;
233
234	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
235		read_zsdata(zport);
236	return loops;
237}
238
239static int zs_transmit_drain(struct zs_port *zport, int irq)
240{
241	struct zs_scc *scc = zport->scc;
242	int loops = 10000;
243
244	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
245		zs_spin_unlock_cond_irq(&scc->zlock, irq);
246		udelay(2);
247		zs_spin_lock_cond_irq(&scc->zlock, irq);
248	}
249	return loops;
250}
251
252static int zs_line_drain(struct zs_port *zport, int irq)
253{
254	struct zs_scc *scc = zport->scc;
255	int loops = 10000;
256
257	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
258		zs_spin_unlock_cond_irq(&scc->zlock, irq);
259		udelay(2);
260		zs_spin_lock_cond_irq(&scc->zlock, irq);
261	}
262	return loops;
263}
264
265
266static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
267{
268	/* Let the current transmission finish.  */
269	zs_line_drain(zport, irq);
270	/* Load 'em up.  */
271	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
272	write_zsreg(zport, R5, regs[5] & ~TxENAB);
273	write_zsreg(zport, R4, regs[4]);
274	write_zsreg(zport, R9, regs[9]);
275	write_zsreg(zport, R1, regs[1]);
276	write_zsreg(zport, R2, regs[2]);
277	write_zsreg(zport, R10, regs[10]);
278	write_zsreg(zport, R14, regs[14] & ~BRENABL);
279	write_zsreg(zport, R11, regs[11]);
280	write_zsreg(zport, R12, regs[12]);
281	write_zsreg(zport, R13, regs[13]);
282	write_zsreg(zport, R14, regs[14]);
283	write_zsreg(zport, R15, regs[15]);
284	if (regs[3] & RxENABLE)
285		write_zsreg(zport, R3, regs[3]);
286	if (regs[5] & TxENAB)
287		write_zsreg(zport, R5, regs[5]);
288	return;
289}
290
291
292/*
293 * Status handling routines.
294 */
295
296/*
297 * zs_tx_empty() -- get the transmitter empty status
298 *
299 * Purpose: Let user call ioctl() to get info when the UART physically
300 * 	    is emptied.  On bus types like RS485, the transmitter must
301 * 	    release the bus after transmitting.  This must be done when
302 * 	    the transmit shift register is empty, not be done when the
303 * 	    transmit holding register is empty.  This functionality
304 * 	    allows an RS485 driver to be written in user space.
305 */
306static unsigned int zs_tx_empty(struct uart_port *uport)
307{
308	struct zs_port *zport = to_zport(uport);
309	struct zs_scc *scc = zport->scc;
310	unsigned long flags;
311	u8 status;
312
313	spin_lock_irqsave(&scc->zlock, flags);
314	status = read_zsreg(zport, R1);
315	spin_unlock_irqrestore(&scc->zlock, flags);
316
317	return status & ALL_SNT ? TIOCSER_TEMT : 0;
318}
319
320static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
321					struct zs_port *zport_b)
322{
323	u8 status_a, status_b;
324	unsigned int mctrl;
325
326	status_a = read_zsreg(zport_a, R0);
327	status_b = read_zsreg(zport_b, R0);
328
329	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
330		((status_b & DCD) ? TIOCM_CAR : 0) |
331		((status_a & DCD) ? TIOCM_RNG : 0) |
332		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
333
334	return mctrl;
335}
336
337static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
338{
339	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
340
341	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
342}
343
344static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
345{
346	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
347	unsigned int mmask, mctrl, delta;
348	u8 mask_a, mask_b;
349
350	if (zport == zport_a)
351		return 0;
352
353	mask_a = zport_a->regs[15];
354	mask_b = zport->regs[15];
355
356	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
357		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
358		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
359		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
360
361	mctrl = zport->mctrl;
362	if (mmask) {
363		mctrl &= ~mmask;
364		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
365	}
366
367	delta = mctrl ^ zport->mctrl;
368	if (delta)
369		zport->mctrl = mctrl;
370
371	return delta;
372}
373
374static unsigned int zs_get_mctrl(struct uart_port *uport)
375{
376	struct zs_port *zport = to_zport(uport);
377	struct zs_scc *scc = zport->scc;
378	unsigned int mctrl;
379
380	spin_lock(&scc->zlock);
381	mctrl = zs_raw_get_mctrl(zport);
382	spin_unlock(&scc->zlock);
383
384	return mctrl;
385}
386
387static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
388{
389	struct zs_port *zport = to_zport(uport);
390	struct zs_scc *scc = zport->scc;
391	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
392	u8 oldloop, newloop;
393
394	spin_lock(&scc->zlock);
395	if (zport != zport_a) {
396		if (mctrl & TIOCM_DTR)
397			zport_a->regs[5] |= DTR;
398		else
399			zport_a->regs[5] &= ~DTR;
400		if (mctrl & TIOCM_RTS)
401			zport_a->regs[5] |= RTS;
402		else
403			zport_a->regs[5] &= ~RTS;
404		write_zsreg(zport_a, R5, zport_a->regs[5]);
405	}
406
407	/* Rarely modified, so don't poke at hardware unless necessary. */
408	oldloop = zport->regs[14];
409	newloop = oldloop;
410	if (mctrl & TIOCM_LOOP)
411		newloop |= LOOPBAK;
412	else
413		newloop &= ~LOOPBAK;
414	if (newloop != oldloop) {
415		zport->regs[14] = newloop;
416		write_zsreg(zport, R14, zport->regs[14]);
417	}
418	spin_unlock(&scc->zlock);
419}
420
421static void zs_raw_stop_tx(struct zs_port *zport)
422{
423	write_zsreg(zport, R0, RES_Tx_P);
424	zport->tx_stopped = 1;
425}
426
427static void zs_stop_tx(struct uart_port *uport)
428{
429	struct zs_port *zport = to_zport(uport);
430	struct zs_scc *scc = zport->scc;
431
432	spin_lock(&scc->zlock);
433	zs_raw_stop_tx(zport);
434	spin_unlock(&scc->zlock);
435}
436
437static void zs_raw_transmit_chars(struct zs_port *);
438
439static void zs_start_tx(struct uart_port *uport)
440{
441	struct zs_port *zport = to_zport(uport);
442	struct zs_scc *scc = zport->scc;
443
444	spin_lock(&scc->zlock);
445	if (zport->tx_stopped) {
446		zs_transmit_drain(zport, 0);
447		zport->tx_stopped = 0;
448		zs_raw_transmit_chars(zport);
449	}
450	spin_unlock(&scc->zlock);
451}
452
453static void zs_stop_rx(struct uart_port *uport)
454{
455	struct zs_port *zport = to_zport(uport);
456	struct zs_scc *scc = zport->scc;
457	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
458
459	spin_lock(&scc->zlock);
460	zport->regs[15] &= ~BRKIE;
461	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
462	zport->regs[1] |= RxINT_DISAB;
463
464	if (zport != zport_a) {
465		/* A-side DCD tracks RI and SYNC tracks DSR.  */
466		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
467		write_zsreg(zport_a, R15, zport_a->regs[15]);
468		if (!(zport_a->regs[15] & BRKIE)) {
469			zport_a->regs[1] &= ~EXT_INT_ENAB;
470			write_zsreg(zport_a, R1, zport_a->regs[1]);
471		}
472
473		/* This-side DCD tracks DCD and CTS tracks CTS.  */
474		zport->regs[15] &= ~(DCDIE | CTSIE);
475		zport->regs[1] &= ~EXT_INT_ENAB;
476	} else {
477		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
478		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
479			zport->regs[1] &= ~EXT_INT_ENAB;
480	}
481
482	write_zsreg(zport, R15, zport->regs[15]);
483	write_zsreg(zport, R1, zport->regs[1]);
484	spin_unlock(&scc->zlock);
485}
486
487static void zs_enable_ms(struct uart_port *uport)
488{
489	struct zs_port *zport = to_zport(uport);
490	struct zs_scc *scc = zport->scc;
491	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
492
493	if (zport == zport_a)
494		return;
495
496	spin_lock(&scc->zlock);
497
498	/* Clear Ext interrupts if not being handled already.  */
499	if (!(zport_a->regs[1] & EXT_INT_ENAB))
500		write_zsreg(zport_a, R0, RES_EXT_INT);
501
502	/* A-side DCD tracks RI and SYNC tracks DSR.  */
503	zport_a->regs[1] |= EXT_INT_ENAB;
504	zport_a->regs[15] |= DCDIE | SYNCIE;
505
506	/* This-side DCD tracks DCD and CTS tracks CTS.  */
507	zport->regs[15] |= DCDIE | CTSIE;
508
509	zs_raw_xor_mctrl(zport);
510
511	write_zsreg(zport_a, R1, zport_a->regs[1]);
512	write_zsreg(zport_a, R15, zport_a->regs[15]);
513	write_zsreg(zport, R15, zport->regs[15]);
514	spin_unlock(&scc->zlock);
515}
516
517static void zs_break_ctl(struct uart_port *uport, int break_state)
518{
519	struct zs_port *zport = to_zport(uport);
520	struct zs_scc *scc = zport->scc;
521	unsigned long flags;
522
523	spin_lock_irqsave(&scc->zlock, flags);
524	if (break_state == -1)
525		zport->regs[5] |= SND_BRK;
526	else
527		zport->regs[5] &= ~SND_BRK;
528	write_zsreg(zport, R5, zport->regs[5]);
529	spin_unlock_irqrestore(&scc->zlock, flags);
530}
531
532
533/*
534 * Interrupt handling routines.
535 */
536#define Rx_BRK 0x0100			/* BREAK event software flag.  */
537#define Rx_SYS 0x0200			/* SysRq event software flag.  */
538
539static void zs_receive_chars(struct zs_port *zport)
540{
541	struct uart_port *uport = &zport->port;
542	struct zs_scc *scc = zport->scc;
543	struct uart_icount *icount;
544	unsigned int avail, status, ch, flag;
545	int count;
546
547	for (count = 16; count; count--) {
548		spin_lock(&scc->zlock);
549		avail = read_zsreg(zport, R0) & Rx_CH_AV;
550		spin_unlock(&scc->zlock);
551		if (!avail)
552			break;
553
554		spin_lock(&scc->zlock);
555		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
556		ch = read_zsdata(zport);
557		spin_unlock(&scc->zlock);
558
559		flag = TTY_NORMAL;
560
561		icount = &uport->icount;
562		icount->rx++;
563
564		/* Handle the null char got when BREAK is removed.  */
565		if (!ch)
566			status |= zport->tty_break;
567		if (unlikely(status &
568			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
569			zport->tty_break = 0;
570
571			/* Reset the error indication.  */
572			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
573				spin_lock(&scc->zlock);
574				write_zsreg(zport, R0, ERR_RES);
575				spin_unlock(&scc->zlock);
576			}
577
578			if (status & (Rx_SYS | Rx_BRK)) {
579				icount->brk++;
580				/* SysRq discards the null char.  */
581				if (status & Rx_SYS)
582					continue;
583			} else if (status & FRM_ERR)
584				icount->frame++;
585			else if (status & PAR_ERR)
586				icount->parity++;
587			if (status & Rx_OVR)
588				icount->overrun++;
589
590			status &= uport->read_status_mask;
591			if (status & Rx_BRK)
592				flag = TTY_BREAK;
593			else if (status & FRM_ERR)
594				flag = TTY_FRAME;
595			else if (status & PAR_ERR)
596				flag = TTY_PARITY;
597		}
598
599		if (uart_handle_sysrq_char(uport, ch))
600			continue;
601
602		uart_insert_char(uport, status, Rx_OVR, ch, flag);
603	}
604
605	tty_flip_buffer_push(uport->state->port.tty);
606}
607
608static void zs_raw_transmit_chars(struct zs_port *zport)
609{
610	struct circ_buf *xmit = &zport->port.state->xmit;
611
612	/* XON/XOFF chars.  */
613	if (zport->port.x_char) {
614		write_zsdata(zport, zport->port.x_char);
615		zport->port.icount.tx++;
616		zport->port.x_char = 0;
617		return;
618	}
619
620	/* If nothing to do or stopped or hardware stopped.  */
621	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
622		zs_raw_stop_tx(zport);
623		return;
624	}
625
626	/* Send char.  */
627	write_zsdata(zport, xmit->buf[xmit->tail]);
628	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
629	zport->port.icount.tx++;
630
631	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
632		uart_write_wakeup(&zport->port);
633
634	/* Are we are done?  */
635	if (uart_circ_empty(xmit))
636		zs_raw_stop_tx(zport);
637}
638
639static void zs_transmit_chars(struct zs_port *zport)
640{
641	struct zs_scc *scc = zport->scc;
642
643	spin_lock(&scc->zlock);
644	zs_raw_transmit_chars(zport);
645	spin_unlock(&scc->zlock);
646}
647
648static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
649{
650	struct uart_port *uport = &zport->port;
651	struct zs_scc *scc = zport->scc;
652	unsigned int delta;
653	u8 status, brk;
654
655	spin_lock(&scc->zlock);
656
657	/* Get status from Read Register 0.  */
658	status = read_zsreg(zport, R0);
659
660	if (zport->regs[15] & BRKIE) {
661		brk = status & BRK_ABRT;
662		if (brk && !zport->brk) {
663			spin_unlock(&scc->zlock);
664			if (uart_handle_break(uport))
665				zport->tty_break = Rx_SYS;
666			else
667				zport->tty_break = Rx_BRK;
668			spin_lock(&scc->zlock);
669		}
670		zport->brk = brk;
671	}
672
673	if (zport != zport_a) {
674		delta = zs_raw_xor_mctrl(zport);
675		spin_unlock(&scc->zlock);
676
677		if (delta & TIOCM_CTS)
678			uart_handle_cts_change(uport,
679					       zport->mctrl & TIOCM_CTS);
680		if (delta & TIOCM_CAR)
681			uart_handle_dcd_change(uport,
682					       zport->mctrl & TIOCM_CAR);
683		if (delta & TIOCM_RNG)
684			uport->icount.dsr++;
685		if (delta & TIOCM_DSR)
686			uport->icount.rng++;
687
688		if (delta)
689			wake_up_interruptible(&uport->state->port.delta_msr_wait);
690
691		spin_lock(&scc->zlock);
692	}
693
694	/* Clear the status condition...  */
695	write_zsreg(zport, R0, RES_EXT_INT);
696
697	spin_unlock(&scc->zlock);
698}
699
700/*
701 * This is the Z85C30 driver's generic interrupt routine.
702 */
703static irqreturn_t zs_interrupt(int irq, void *dev_id)
704{
705	struct zs_scc *scc = dev_id;
706	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
707	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
708	irqreturn_t status = IRQ_NONE;
709	u8 zs_intreg;
710	int count;
711
712	/*
713	 * NOTE: The read register 3, which holds the irq status,
714	 *       does so for both channels on each chip.  Although
715	 *       the status value itself must be read from the A
716	 *       channel and is only valid when read from channel A.
717	 *       Yes... broken hardware...
718	 */
719	for (count = 16; count; count--) {
720		spin_lock(&scc->zlock);
721		zs_intreg = read_zsreg(zport_a, R3);
722		spin_unlock(&scc->zlock);
723		if (!zs_intreg)
724			break;
725
726		/*
727		 * We do not like losing characters, so we prioritise
728		 * interrupt sources a little bit differently than
729		 * the SCC would, was it allowed to.
730		 */
731		if (zs_intreg & CHBRxIP)
732			zs_receive_chars(zport_b);
733		if (zs_intreg & CHARxIP)
734			zs_receive_chars(zport_a);
735		if (zs_intreg & CHBEXT)
736			zs_status_handle(zport_b, zport_a);
737		if (zs_intreg & CHAEXT)
738			zs_status_handle(zport_a, zport_a);
739		if (zs_intreg & CHBTxIP)
740			zs_transmit_chars(zport_b);
741		if (zs_intreg & CHATxIP)
742			zs_transmit_chars(zport_a);
743
744		status = IRQ_HANDLED;
745	}
746
747	return status;
748}
749
750
751/*
752 * Finally, routines used to initialize the serial port.
753 */
754static int zs_startup(struct uart_port *uport)
755{
756	struct zs_port *zport = to_zport(uport);
757	struct zs_scc *scc = zport->scc;
758	unsigned long flags;
759	int irq_guard;
760	int ret;
761
762	irq_guard = atomic_add_return(1, &scc->irq_guard);
763	if (irq_guard == 1) {
764		ret = request_irq(zport->port.irq, zs_interrupt,
765				  IRQF_SHARED, "scc", scc);
766		if (ret) {
767			atomic_add(-1, &scc->irq_guard);
768			printk(KERN_ERR "zs: can't get irq %d\n",
769			       zport->port.irq);
770			return ret;
771		}
772	}
773
774	spin_lock_irqsave(&scc->zlock, flags);
775
776	/* Clear the receive FIFO.  */
777	zs_receive_drain(zport);
778
779	/* Clear the interrupt registers.  */
780	write_zsreg(zport, R0, ERR_RES);
781	write_zsreg(zport, R0, RES_Tx_P);
782	/* But Ext only if not being handled already.  */
783	if (!(zport->regs[1] & EXT_INT_ENAB))
784		write_zsreg(zport, R0, RES_EXT_INT);
785
786	/* Finally, enable sequencing and interrupts.  */
787	zport->regs[1] &= ~RxINT_MASK;
788	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
789	zport->regs[3] |= RxENABLE;
790	zport->regs[15] |= BRKIE;
791	write_zsreg(zport, R1, zport->regs[1]);
792	write_zsreg(zport, R3, zport->regs[3]);
793	write_zsreg(zport, R5, zport->regs[5]);
794	write_zsreg(zport, R15, zport->regs[15]);
795
796	/* Record the current state of RR0.  */
797	zport->mctrl = zs_raw_get_mctrl(zport);
798	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
799
800	zport->tx_stopped = 1;
801
802	spin_unlock_irqrestore(&scc->zlock, flags);
803
804	return 0;
805}
806
807static void zs_shutdown(struct uart_port *uport)
808{
809	struct zs_port *zport = to_zport(uport);
810	struct zs_scc *scc = zport->scc;
811	unsigned long flags;
812	int irq_guard;
813
814	spin_lock_irqsave(&scc->zlock, flags);
815
816	zport->regs[3] &= ~RxENABLE;
817	write_zsreg(zport, R5, zport->regs[5]);
818	write_zsreg(zport, R3, zport->regs[3]);
819
820	spin_unlock_irqrestore(&scc->zlock, flags);
821
822	irq_guard = atomic_add_return(-1, &scc->irq_guard);
823	if (!irq_guard)
824		free_irq(zport->port.irq, scc);
825}
826
827
828static void zs_reset(struct zs_port *zport)
829{
830	struct zs_scc *scc = zport->scc;
831	int irq;
832	unsigned long flags;
833
834	spin_lock_irqsave(&scc->zlock, flags);
835	irq = !irqs_disabled_flags(flags);
836	if (!scc->initialised) {
837		/* Reset the pointer first, just in case...  */
838		read_zsreg(zport, R0);
839		/* And let the current transmission finish.  */
840		zs_line_drain(zport, irq);
841		write_zsreg(zport, R9, FHWRES);
842		udelay(10);
843		write_zsreg(zport, R9, 0);
844		scc->initialised = 1;
845	}
846	load_zsregs(zport, zport->regs, irq);
847	spin_unlock_irqrestore(&scc->zlock, flags);
848}
849
850static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
851			   struct ktermios *old_termios)
852{
853	struct zs_port *zport = to_zport(uport);
854	struct zs_scc *scc = zport->scc;
855	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
856	int irq;
857	unsigned int baud, brg;
858	unsigned long flags;
859
860	spin_lock_irqsave(&scc->zlock, flags);
861	irq = !irqs_disabled_flags(flags);
862
863	/* Byte size.  */
864	zport->regs[3] &= ~RxNBITS_MASK;
865	zport->regs[5] &= ~TxNBITS_MASK;
866	switch (termios->c_cflag & CSIZE) {
867	case CS5:
868		zport->regs[3] |= Rx5;
869		zport->regs[5] |= Tx5;
870		break;
871	case CS6:
872		zport->regs[3] |= Rx6;
873		zport->regs[5] |= Tx6;
874		break;
875	case CS7:
876		zport->regs[3] |= Rx7;
877		zport->regs[5] |= Tx7;
878		break;
879	case CS8:
880	default:
881		zport->regs[3] |= Rx8;
882		zport->regs[5] |= Tx8;
883		break;
884	}
885
886	/* Parity and stop bits.  */
887	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
888	if (termios->c_cflag & CSTOPB)
889		zport->regs[4] |= SB2;
890	else
891		zport->regs[4] |= SB1;
892	if (termios->c_cflag & PARENB)
893		zport->regs[4] |= PAR_ENA;
894	if (!(termios->c_cflag & PARODD))
895		zport->regs[4] |= PAR_EVEN;
896	switch (zport->clk_mode) {
897	case 64:
898		zport->regs[4] |= X64CLK;
899		break;
900	case 32:
901		zport->regs[4] |= X32CLK;
902		break;
903	case 16:
904		zport->regs[4] |= X16CLK;
905		break;
906	case 1:
907		zport->regs[4] |= X1CLK;
908		break;
909	default:
910		BUG();
911	}
912
913	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
914				  uport->uartclk / zport->clk_mode / 4);
915
916	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
917	zport->regs[12] = brg & 0xff;
918	zport->regs[13] = (brg >> 8) & 0xff;
919
920	uart_update_timeout(uport, termios->c_cflag, baud);
921
922	uport->read_status_mask = Rx_OVR;
923	if (termios->c_iflag & INPCK)
924		uport->read_status_mask |= FRM_ERR | PAR_ERR;
925	if (termios->c_iflag & (BRKINT | PARMRK))
926		uport->read_status_mask |= Rx_BRK;
927
928	uport->ignore_status_mask = 0;
929	if (termios->c_iflag & IGNPAR)
930		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
931	if (termios->c_iflag & IGNBRK) {
932		uport->ignore_status_mask |= Rx_BRK;
933		if (termios->c_iflag & IGNPAR)
934			uport->ignore_status_mask |= Rx_OVR;
935	}
936
937	if (termios->c_cflag & CREAD)
938		zport->regs[3] |= RxENABLE;
939	else
940		zport->regs[3] &= ~RxENABLE;
941
942	if (zport != zport_a) {
943		if (!(termios->c_cflag & CLOCAL)) {
944			zport->regs[15] |= DCDIE;
945		} else
946			zport->regs[15] &= ~DCDIE;
947		if (termios->c_cflag & CRTSCTS) {
948			zport->regs[15] |= CTSIE;
949		} else
950			zport->regs[15] &= ~CTSIE;
951		zs_raw_xor_mctrl(zport);
952	}
953
954	/* Load up the new values.  */
955	load_zsregs(zport, zport->regs, irq);
956
957	spin_unlock_irqrestore(&scc->zlock, flags);
958}
959
960/*
961 * Hack alert!
962 * Required solely so that the initial PROM-based console
963 * works undisturbed in parallel with this one.
964 */
965static void zs_pm(struct uart_port *uport, unsigned int state,
966		  unsigned int oldstate)
967{
968	struct zs_port *zport = to_zport(uport);
969
970	if (state < 3)
971		zport->regs[5] |= TxENAB;
972	else
973		zport->regs[5] &= ~TxENAB;
974	write_zsreg(zport, R5, zport->regs[5]);
975}
976
977
978static const char *zs_type(struct uart_port *uport)
979{
980	return "Z85C30 SCC";
981}
982
983static void zs_release_port(struct uart_port *uport)
984{
985	iounmap(uport->membase);
986	uport->membase = 0;
987	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
988}
989
990static int zs_map_port(struct uart_port *uport)
991{
992	if (!uport->membase)
993		uport->membase = ioremap_nocache(uport->mapbase,
994						 ZS_CHAN_IO_SIZE);
995	if (!uport->membase) {
996		printk(KERN_ERR "zs: Cannot map MMIO\n");
997		return -ENOMEM;
998	}
999	return 0;
1000}
1001
1002static int zs_request_port(struct uart_port *uport)
1003{
1004	int ret;
1005
1006	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1007		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1008		return -EBUSY;
1009	}
1010	ret = zs_map_port(uport);
1011	if (ret) {
1012		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1013		return ret;
1014	}
1015	return 0;
1016}
1017
1018static void zs_config_port(struct uart_port *uport, int flags)
1019{
1020	struct zs_port *zport = to_zport(uport);
1021
1022	if (flags & UART_CONFIG_TYPE) {
1023		if (zs_request_port(uport))
1024			return;
1025
1026		uport->type = PORT_ZS;
1027
1028		zs_reset(zport);
1029	}
1030}
1031
1032static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1033{
1034	struct zs_port *zport = to_zport(uport);
1035	int ret = 0;
1036
1037	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1038		ret = -EINVAL;
1039	if (ser->irq != uport->irq)
1040		ret = -EINVAL;
1041	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1042		ret = -EINVAL;
1043	return ret;
1044}
1045
1046
1047static struct uart_ops zs_ops = {
1048	.tx_empty	= zs_tx_empty,
1049	.set_mctrl	= zs_set_mctrl,
1050	.get_mctrl	= zs_get_mctrl,
1051	.stop_tx	= zs_stop_tx,
1052	.start_tx	= zs_start_tx,
1053	.stop_rx	= zs_stop_rx,
1054	.enable_ms	= zs_enable_ms,
1055	.break_ctl	= zs_break_ctl,
1056	.startup	= zs_startup,
1057	.shutdown	= zs_shutdown,
1058	.set_termios	= zs_set_termios,
1059	.pm		= zs_pm,
1060	.type		= zs_type,
1061	.release_port	= zs_release_port,
1062	.request_port	= zs_request_port,
1063	.config_port	= zs_config_port,
1064	.verify_port	= zs_verify_port,
1065};
1066
1067/*
1068 * Initialize Z85C30 port structures.
1069 */
1070static int __init zs_probe_sccs(void)
1071{
1072	static int probed;
1073	struct zs_parms zs_parms;
1074	int chip, side, irq;
1075	int n_chips = 0;
1076	int i;
1077
1078	if (probed)
1079		return 0;
1080
1081	irq = dec_interrupt[DEC_IRQ_SCC0];
1082	if (irq >= 0) {
1083		zs_parms.scc[n_chips] = IOASIC_SCC0;
1084		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1085		n_chips++;
1086	}
1087	irq = dec_interrupt[DEC_IRQ_SCC1];
1088	if (irq >= 0) {
1089		zs_parms.scc[n_chips] = IOASIC_SCC1;
1090		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1091		n_chips++;
1092	}
1093	if (!n_chips)
1094		return -ENXIO;
1095
1096	probed = 1;
1097
1098	for (chip = 0; chip < n_chips; chip++) {
1099		spin_lock_init(&zs_sccs[chip].zlock);
1100		for (side = 0; side < ZS_NUM_CHAN; side++) {
1101			struct zs_port *zport = &zs_sccs[chip].zport[side];
1102			struct uart_port *uport = &zport->port;
1103
1104			zport->scc	= &zs_sccs[chip];
1105			zport->clk_mode	= 16;
1106
1107			uport->irq	= zs_parms.irq[chip];
1108			uport->uartclk	= ZS_CLOCK;
1109			uport->fifosize	= 1;
1110			uport->iotype	= UPIO_MEM;
1111			uport->flags	= UPF_BOOT_AUTOCONF;
1112			uport->ops	= &zs_ops;
1113			uport->line	= chip * ZS_NUM_CHAN + side;
1114			uport->mapbase	= dec_kn_slot_base +
1115					  zs_parms.scc[chip] +
1116					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1117
1118			for (i = 0; i < ZS_NUM_REGS; i++)
1119				zport->regs[i] = zs_init_regs[i];
1120		}
1121	}
1122
1123	return 0;
1124}
1125
1126
1127#ifdef CONFIG_SERIAL_ZS_CONSOLE
1128static void zs_console_putchar(struct uart_port *uport, int ch)
1129{
1130	struct zs_port *zport = to_zport(uport);
1131	struct zs_scc *scc = zport->scc;
1132	int irq;
1133	unsigned long flags;
1134
1135	spin_lock_irqsave(&scc->zlock, flags);
1136	irq = !irqs_disabled_flags(flags);
1137	if (zs_transmit_drain(zport, irq))
1138		write_zsdata(zport, ch);
1139	spin_unlock_irqrestore(&scc->zlock, flags);
1140}
1141
1142/*
1143 * Print a string to the serial port trying not to disturb
1144 * any possible real use of the port...
1145 */
1146static void zs_console_write(struct console *co, const char *s,
1147			     unsigned int count)
1148{
1149	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1150	struct zs_port *zport = &zs_sccs[chip].zport[side];
1151	struct zs_scc *scc = zport->scc;
1152	unsigned long flags;
1153	u8 txint, txenb;
1154	int irq;
1155
1156	/* Disable transmit interrupts and enable the transmitter. */
1157	spin_lock_irqsave(&scc->zlock, flags);
1158	txint = zport->regs[1];
1159	txenb = zport->regs[5];
1160	if (txint & TxINT_ENAB) {
1161		zport->regs[1] = txint & ~TxINT_ENAB;
1162		write_zsreg(zport, R1, zport->regs[1]);
1163	}
1164	if (!(txenb & TxENAB)) {
1165		zport->regs[5] = txenb | TxENAB;
1166		write_zsreg(zport, R5, zport->regs[5]);
1167	}
1168	spin_unlock_irqrestore(&scc->zlock, flags);
1169
1170	uart_console_write(&zport->port, s, count, zs_console_putchar);
1171
1172	/* Restore transmit interrupts and the transmitter enable. */
1173	spin_lock_irqsave(&scc->zlock, flags);
1174	irq = !irqs_disabled_flags(flags);
1175	zs_line_drain(zport, irq);
1176	if (!(txenb & TxENAB)) {
1177		zport->regs[5] &= ~TxENAB;
1178		write_zsreg(zport, R5, zport->regs[5]);
1179	}
1180	if (txint & TxINT_ENAB) {
1181		zport->regs[1] |= TxINT_ENAB;
1182		write_zsreg(zport, R1, zport->regs[1]);
1183	}
1184	spin_unlock_irqrestore(&scc->zlock, flags);
1185}
1186
1187/*
1188 * Setup serial console baud/bits/parity.  We do two things here:
1189 * - construct a cflag setting for the first uart_open()
1190 * - initialise the serial port
1191 * Return non-zero if we didn't find a serial port.
1192 */
1193static int __init zs_console_setup(struct console *co, char *options)
1194{
1195	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1196	struct zs_port *zport = &zs_sccs[chip].zport[side];
1197	struct uart_port *uport = &zport->port;
1198	int baud = 9600;
1199	int bits = 8;
1200	int parity = 'n';
1201	int flow = 'n';
1202	int ret;
1203
1204	ret = zs_map_port(uport);
1205	if (ret)
1206		return ret;
1207
1208	zs_reset(zport);
1209	zs_pm(uport, 0, -1);
1210
1211	if (options)
1212		uart_parse_options(options, &baud, &parity, &bits, &flow);
1213	return uart_set_options(uport, co, baud, parity, bits, flow);
1214}
1215
1216static struct uart_driver zs_reg;
1217static struct console zs_console = {
1218	.name	= "ttyS",
1219	.write	= zs_console_write,
1220	.device	= uart_console_device,
1221	.setup	= zs_console_setup,
1222	.flags	= CON_PRINTBUFFER,
1223	.index	= -1,
1224	.data	= &zs_reg,
1225};
1226
1227/*
1228 *	Register console.
1229 */
1230static int __init zs_serial_console_init(void)
1231{
1232	int ret;
1233
1234	ret = zs_probe_sccs();
1235	if (ret)
1236		return ret;
1237	register_console(&zs_console);
1238
1239	return 0;
1240}
1241
1242console_initcall(zs_serial_console_init);
1243
1244#define SERIAL_ZS_CONSOLE	&zs_console
1245#else
1246#define SERIAL_ZS_CONSOLE	NULL
1247#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1248
1249static struct uart_driver zs_reg = {
1250	.owner			= THIS_MODULE,
1251	.driver_name		= "serial",
1252	.dev_name		= "ttyS",
1253	.major			= TTY_MAJOR,
1254	.minor			= 64,
1255	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1256	.cons			= SERIAL_ZS_CONSOLE,
1257};
1258
1259/* zs_init inits the driver. */
1260static int __init zs_init(void)
1261{
1262	int i, ret;
1263
1264	pr_info("%s%s\n", zs_name, zs_version);
1265
1266	/* Find out how many Z85C30 SCCs we have.  */
1267	ret = zs_probe_sccs();
1268	if (ret)
1269		return ret;
1270
1271	ret = uart_register_driver(&zs_reg);
1272	if (ret)
1273		return ret;
1274
1275	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1276		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1277		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1278		struct uart_port *uport = &zport->port;
1279
1280		if (zport->scc)
1281			uart_add_one_port(&zs_reg, uport);
1282	}
1283
1284	return 0;
1285}
1286
1287static void __exit zs_exit(void)
1288{
1289	int i;
1290
1291	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1292		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1293		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1294		struct uart_port *uport = &zport->port;
1295
1296		if (zport->scc)
1297			uart_remove_one_port(&zs_reg, uport);
1298	}
1299
1300	uart_unregister_driver(&zs_reg);
1301}
1302
1303module_init(zs_init);
1304module_exit(zs_exit);
1305