• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/scsi/libfc/
1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29
30#include <scsi/fc/fc_fc2.h>
31
32#include <scsi/libfc.h>
33#include <scsi/fc_encode.h>
34
35#include "fc_libfc.h"
36
37u16	fc_cpu_mask;		/* cpu mask for possible cpus */
38EXPORT_SYMBOL(fc_cpu_mask);
39static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
40static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
41struct workqueue_struct *fc_exch_workqueue;
42
43/*
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
46 *
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48 *
49 * fc_exch_mgr holds the exchange state for an N port
50 *
51 * fc_exch holds state for one exchange and links to its active sequence.
52 *
53 * fc_seq holds the state for an individual sequence.
54 */
55
56/**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index:	  Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock:	  Exch pool lock
61 * @ex_list:	  List of exchanges
62 *
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
66 */
67struct fc_exch_pool {
68	u16		 next_index;
69	u16		 total_exches;
70	spinlock_t	 lock;
71	struct list_head ex_list;
72};
73
74/**
75 * struct fc_exch_mgr - The Exchange Manager (EM).
76 * @class:	    Default class for new sequences
77 * @kref:	    Reference counter
78 * @min_xid:	    Minimum exchange ID
79 * @max_xid:	    Maximum exchange ID
80 * @ep_pool:	    Reserved exchange pointers
81 * @pool_max_index: Max exch array index in exch pool
82 * @pool:	    Per cpu exch pool
83 * @stats:	    Statistics structure
84 *
85 * This structure is the center for creating exchanges and sequences.
86 * It manages the allocation of exchange IDs.
87 */
88struct fc_exch_mgr {
89	enum fc_class	class;
90	struct kref	kref;
91	u16		min_xid;
92	u16		max_xid;
93	mempool_t	*ep_pool;
94	u16		pool_max_index;
95	struct fc_exch_pool *pool;
96
97	struct {
98		atomic_t no_free_exch;
99		atomic_t no_free_exch_xid;
100		atomic_t xid_not_found;
101		atomic_t xid_busy;
102		atomic_t seq_not_found;
103		atomic_t non_bls_resp;
104	} stats;
105};
106#define	fc_seq_exch(sp) container_of(sp, struct fc_exch, seq)
107
108/**
109 * struct fc_exch_mgr_anchor - primary structure for list of EMs
110 * @ema_list: Exchange Manager Anchor list
111 * @mp:	      Exchange Manager associated with this anchor
112 * @match:    Routine to determine if this anchor's EM should be used
113 *
114 * When walking the list of anchors the match routine will be called
115 * for each anchor to determine if that EM should be used. The last
116 * anchor in the list will always match to handle any exchanges not
117 * handled by other EMs. The non-default EMs would be added to the
118 * anchor list by HW that provides FCoE offloads.
119 */
120struct fc_exch_mgr_anchor {
121	struct list_head ema_list;
122	struct fc_exch_mgr *mp;
123	bool (*match)(struct fc_frame *);
124};
125
126static void fc_exch_rrq(struct fc_exch *);
127static void fc_seq_ls_acc(struct fc_frame *);
128static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
129			  enum fc_els_rjt_explan);
130static void fc_exch_els_rec(struct fc_frame *);
131static void fc_exch_els_rrq(struct fc_frame *);
132
133
134/*
135 * Locking notes:
136 *
137 * The EM code run in a per-CPU worker thread.
138 *
139 * To protect against concurrency between a worker thread code and timers,
140 * sequence allocation and deallocation must be locked.
141 *  - exchange refcnt can be done atomicly without locks.
142 *  - sequence allocation must be locked by exch lock.
143 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
144 *    EM pool lock must be taken before the ex_lock.
145 */
146
147/*
148 * opcode names for debugging.
149 */
150static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
151
152/**
153 * fc_exch_name_lookup() - Lookup name by opcode
154 * @op:	       Opcode to be looked up
155 * @table:     Opcode/name table
156 * @max_index: Index not to be exceeded
157 *
158 * This routine is used to determine a human-readable string identifying
159 * a R_CTL opcode.
160 */
161static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
162					      unsigned int max_index)
163{
164	const char *name = NULL;
165
166	if (op < max_index)
167		name = table[op];
168	if (!name)
169		name = "unknown";
170	return name;
171}
172
173/**
174 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
175 * @op: The opcode to be looked up
176 */
177static const char *fc_exch_rctl_name(unsigned int op)
178{
179	return fc_exch_name_lookup(op, fc_exch_rctl_names,
180				   ARRAY_SIZE(fc_exch_rctl_names));
181}
182
183/**
184 * fc_exch_hold() - Increment an exchange's reference count
185 * @ep: Echange to be held
186 */
187static inline void fc_exch_hold(struct fc_exch *ep)
188{
189	atomic_inc(&ep->ex_refcnt);
190}
191
192/**
193 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
194 *			 and determine SOF and EOF.
195 * @ep:	   The exchange to that will use the header
196 * @fp:	   The frame whose header is to be modified
197 * @f_ctl: F_CTL bits that will be used for the frame header
198 *
199 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
200 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
201 */
202static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
203			      u32 f_ctl)
204{
205	struct fc_frame_header *fh = fc_frame_header_get(fp);
206	u16 fill;
207
208	fr_sof(fp) = ep->class;
209	if (ep->seq.cnt)
210		fr_sof(fp) = fc_sof_normal(ep->class);
211
212	if (f_ctl & FC_FC_END_SEQ) {
213		fr_eof(fp) = FC_EOF_T;
214		if (fc_sof_needs_ack(ep->class))
215			fr_eof(fp) = FC_EOF_N;
216		/*
217		 * From F_CTL.
218		 * The number of fill bytes to make the length a 4-byte
219		 * multiple is the low order 2-bits of the f_ctl.
220		 * The fill itself will have been cleared by the frame
221		 * allocation.
222		 * After this, the length will be even, as expected by
223		 * the transport.
224		 */
225		fill = fr_len(fp) & 3;
226		if (fill) {
227			fill = 4 - fill;
228			/* TODO, this may be a problem with fragmented skb */
229			skb_put(fp_skb(fp), fill);
230			hton24(fh->fh_f_ctl, f_ctl | fill);
231		}
232	} else {
233		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
234		fr_eof(fp) = FC_EOF_N;
235	}
236
237	/*
238	 * Initialize remainig fh fields
239	 * from fc_fill_fc_hdr
240	 */
241	fh->fh_ox_id = htons(ep->oxid);
242	fh->fh_rx_id = htons(ep->rxid);
243	fh->fh_seq_id = ep->seq.id;
244	fh->fh_seq_cnt = htons(ep->seq.cnt);
245}
246
247/**
248 * fc_exch_release() - Decrement an exchange's reference count
249 * @ep: Exchange to be released
250 *
251 * If the reference count reaches zero and the exchange is complete,
252 * it is freed.
253 */
254static void fc_exch_release(struct fc_exch *ep)
255{
256	struct fc_exch_mgr *mp;
257
258	if (atomic_dec_and_test(&ep->ex_refcnt)) {
259		mp = ep->em;
260		if (ep->destructor)
261			ep->destructor(&ep->seq, ep->arg);
262		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
263		mempool_free(ep, mp->ep_pool);
264	}
265}
266
267/**
268 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
269 * @ep: The exchange that is complete
270 */
271static int fc_exch_done_locked(struct fc_exch *ep)
272{
273	int rc = 1;
274
275	/*
276	 * We must check for completion in case there are two threads
277	 * tyring to complete this. But the rrq code will reuse the
278	 * ep, and in that case we only clear the resp and set it as
279	 * complete, so it can be reused by the timer to send the rrq.
280	 */
281	ep->resp = NULL;
282	if (ep->state & FC_EX_DONE)
283		return rc;
284	ep->esb_stat |= ESB_ST_COMPLETE;
285
286	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
287		ep->state |= FC_EX_DONE;
288		if (cancel_delayed_work(&ep->timeout_work))
289			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
290		rc = 0;
291	}
292	return rc;
293}
294
295/**
296 * fc_exch_ptr_get() - Return an exchange from an exchange pool
297 * @pool:  Exchange Pool to get an exchange from
298 * @index: Index of the exchange within the pool
299 *
300 * Use the index to get an exchange from within an exchange pool. exches
301 * will point to an array of exchange pointers. The index will select
302 * the exchange within the array.
303 */
304static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
305					      u16 index)
306{
307	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
308	return exches[index];
309}
310
311/**
312 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
313 * @pool:  The pool to assign the exchange to
314 * @index: The index in the pool where the exchange will be assigned
315 * @ep:	   The exchange to assign to the pool
316 */
317static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
318				   struct fc_exch *ep)
319{
320	((struct fc_exch **)(pool + 1))[index] = ep;
321}
322
323/**
324 * fc_exch_delete() - Delete an exchange
325 * @ep: The exchange to be deleted
326 */
327static void fc_exch_delete(struct fc_exch *ep)
328{
329	struct fc_exch_pool *pool;
330
331	pool = ep->pool;
332	spin_lock_bh(&pool->lock);
333	WARN_ON(pool->total_exches <= 0);
334	pool->total_exches--;
335	fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order,
336			NULL);
337	list_del(&ep->ex_list);
338	spin_unlock_bh(&pool->lock);
339	fc_exch_release(ep);	/* drop hold for exch in mp */
340}
341
342/**
343 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
344 *				the exchange lock held
345 * @ep:		The exchange whose timer will start
346 * @timer_msec: The timeout period
347 *
348 * Used for upper level protocols to time out the exchange.
349 * The timer is cancelled when it fires or when the exchange completes.
350 */
351static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
352					    unsigned int timer_msec)
353{
354	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
355		return;
356
357	FC_EXCH_DBG(ep, "Exchange timer armed\n");
358
359	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
360			       msecs_to_jiffies(timer_msec)))
361		fc_exch_hold(ep);		/* hold for timer */
362}
363
364/**
365 * fc_exch_timer_set() - Lock the exchange and set the timer
366 * @ep:		The exchange whose timer will start
367 * @timer_msec: The timeout period
368 */
369static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
370{
371	spin_lock_bh(&ep->ex_lock);
372	fc_exch_timer_set_locked(ep, timer_msec);
373	spin_unlock_bh(&ep->ex_lock);
374}
375
376/**
377 * fc_seq_send() - Send a frame using existing sequence/exchange pair
378 * @lport: The local port that the exchange will be sent on
379 * @sp:	   The sequence to be sent
380 * @fp:	   The frame to be sent on the exchange
381 */
382static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
383		       struct fc_frame *fp)
384{
385	struct fc_exch *ep;
386	struct fc_frame_header *fh = fc_frame_header_get(fp);
387	int error;
388	u32 f_ctl;
389
390	ep = fc_seq_exch(sp);
391	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
392
393	f_ctl = ntoh24(fh->fh_f_ctl);
394	fc_exch_setup_hdr(ep, fp, f_ctl);
395	fr_encaps(fp) = ep->encaps;
396
397	/*
398	 * update sequence count if this frame is carrying
399	 * multiple FC frames when sequence offload is enabled
400	 * by LLD.
401	 */
402	if (fr_max_payload(fp))
403		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
404					fr_max_payload(fp));
405	else
406		sp->cnt++;
407
408	/*
409	 * Send the frame.
410	 */
411	error = lport->tt.frame_send(lport, fp);
412
413	/*
414	 * Update the exchange and sequence flags,
415	 * assuming all frames for the sequence have been sent.
416	 * We can only be called to send once for each sequence.
417	 */
418	spin_lock_bh(&ep->ex_lock);
419	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
420	if (f_ctl & FC_FC_SEQ_INIT)
421		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
422	spin_unlock_bh(&ep->ex_lock);
423	return error;
424}
425
426/**
427 * fc_seq_alloc() - Allocate a sequence for a given exchange
428 * @ep:	    The exchange to allocate a new sequence for
429 * @seq_id: The sequence ID to be used
430 *
431 * We don't support multiple originated sequences on the same exchange.
432 * By implication, any previously originated sequence on this exchange
433 * is complete, and we reallocate the same sequence.
434 */
435static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
436{
437	struct fc_seq *sp;
438
439	sp = &ep->seq;
440	sp->ssb_stat = 0;
441	sp->cnt = 0;
442	sp->id = seq_id;
443	return sp;
444}
445
446/**
447 * fc_seq_start_next_locked() - Allocate a new sequence on the same
448 *				exchange as the supplied sequence
449 * @sp: The sequence/exchange to get a new sequence for
450 */
451static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
452{
453	struct fc_exch *ep = fc_seq_exch(sp);
454
455	sp = fc_seq_alloc(ep, ep->seq_id++);
456	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
457		    ep->f_ctl, sp->id);
458	return sp;
459}
460
461/**
462 * fc_seq_start_next() - Lock the exchange and get a new sequence
463 *			 for a given sequence/exchange pair
464 * @sp: The sequence/exchange to get a new exchange for
465 */
466static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
467{
468	struct fc_exch *ep = fc_seq_exch(sp);
469
470	spin_lock_bh(&ep->ex_lock);
471	sp = fc_seq_start_next_locked(sp);
472	spin_unlock_bh(&ep->ex_lock);
473
474	return sp;
475}
476
477/**
478 * fc_seq_exch_abort() - Abort an exchange and sequence
479 * @req_sp:	The sequence to be aborted
480 * @timer_msec: The period of time to wait before aborting
481 *
482 * Generally called because of a timeout or an abort from the upper layer.
483 */
484static int fc_seq_exch_abort(const struct fc_seq *req_sp,
485			     unsigned int timer_msec)
486{
487	struct fc_seq *sp;
488	struct fc_exch *ep;
489	struct fc_frame *fp;
490	int error;
491
492	ep = fc_seq_exch(req_sp);
493
494	spin_lock_bh(&ep->ex_lock);
495	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
496	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
497		spin_unlock_bh(&ep->ex_lock);
498		return -ENXIO;
499	}
500
501	/*
502	 * Send the abort on a new sequence if possible.
503	 */
504	sp = fc_seq_start_next_locked(&ep->seq);
505	if (!sp) {
506		spin_unlock_bh(&ep->ex_lock);
507		return -ENOMEM;
508	}
509
510	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
511	if (timer_msec)
512		fc_exch_timer_set_locked(ep, timer_msec);
513	spin_unlock_bh(&ep->ex_lock);
514
515	/*
516	 * If not logged into the fabric, don't send ABTS but leave
517	 * sequence active until next timeout.
518	 */
519	if (!ep->sid)
520		return 0;
521
522	/*
523	 * Send an abort for the sequence that timed out.
524	 */
525	fp = fc_frame_alloc(ep->lp, 0);
526	if (fp) {
527		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
528			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
529		error = fc_seq_send(ep->lp, sp, fp);
530	} else
531		error = -ENOBUFS;
532	return error;
533}
534
535/**
536 * fc_exch_timeout() - Handle exchange timer expiration
537 * @work: The work_struct identifying the exchange that timed out
538 */
539static void fc_exch_timeout(struct work_struct *work)
540{
541	struct fc_exch *ep = container_of(work, struct fc_exch,
542					  timeout_work.work);
543	struct fc_seq *sp = &ep->seq;
544	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
545	void *arg;
546	u32 e_stat;
547	int rc = 1;
548
549	FC_EXCH_DBG(ep, "Exchange timed out\n");
550
551	spin_lock_bh(&ep->ex_lock);
552	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
553		goto unlock;
554
555	e_stat = ep->esb_stat;
556	if (e_stat & ESB_ST_COMPLETE) {
557		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
558		spin_unlock_bh(&ep->ex_lock);
559		if (e_stat & ESB_ST_REC_QUAL)
560			fc_exch_rrq(ep);
561		goto done;
562	} else {
563		resp = ep->resp;
564		arg = ep->arg;
565		ep->resp = NULL;
566		if (e_stat & ESB_ST_ABNORMAL)
567			rc = fc_exch_done_locked(ep);
568		spin_unlock_bh(&ep->ex_lock);
569		if (!rc)
570			fc_exch_delete(ep);
571		if (resp)
572			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
573		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
574		goto done;
575	}
576unlock:
577	spin_unlock_bh(&ep->ex_lock);
578done:
579	/*
580	 * This release matches the hold taken when the timer was set.
581	 */
582	fc_exch_release(ep);
583}
584
585/**
586 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
587 * @lport: The local port that the exchange is for
588 * @mp:	   The exchange manager that will allocate the exchange
589 *
590 * Returns pointer to allocated fc_exch with exch lock held.
591 */
592static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
593					struct fc_exch_mgr *mp)
594{
595	struct fc_exch *ep;
596	unsigned int cpu;
597	u16 index;
598	struct fc_exch_pool *pool;
599
600	/* allocate memory for exchange */
601	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
602	if (!ep) {
603		atomic_inc(&mp->stats.no_free_exch);
604		goto out;
605	}
606	memset(ep, 0, sizeof(*ep));
607
608	cpu = get_cpu();
609	pool = per_cpu_ptr(mp->pool, cpu);
610	spin_lock_bh(&pool->lock);
611	put_cpu();
612	index = pool->next_index;
613	/* allocate new exch from pool */
614	while (fc_exch_ptr_get(pool, index)) {
615		index = index == mp->pool_max_index ? 0 : index + 1;
616		if (index == pool->next_index)
617			goto err;
618	}
619	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
620
621	fc_exch_hold(ep);	/* hold for exch in mp */
622	spin_lock_init(&ep->ex_lock);
623	/*
624	 * Hold exch lock for caller to prevent fc_exch_reset()
625	 * from releasing exch	while fc_exch_alloc() caller is
626	 * still working on exch.
627	 */
628	spin_lock_bh(&ep->ex_lock);
629
630	fc_exch_ptr_set(pool, index, ep);
631	list_add_tail(&ep->ex_list, &pool->ex_list);
632	fc_seq_alloc(ep, ep->seq_id++);
633	pool->total_exches++;
634	spin_unlock_bh(&pool->lock);
635
636	/*
637	 *  update exchange
638	 */
639	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
640	ep->em = mp;
641	ep->pool = pool;
642	ep->lp = lport;
643	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
644	ep->rxid = FC_XID_UNKNOWN;
645	ep->class = mp->class;
646	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
647out:
648	return ep;
649err:
650	spin_unlock_bh(&pool->lock);
651	atomic_inc(&mp->stats.no_free_exch_xid);
652	mempool_free(ep, mp->ep_pool);
653	return NULL;
654}
655
656/**
657 * fc_exch_alloc() - Allocate an exchange from an EM on a
658 *		     local port's list of EMs.
659 * @lport: The local port that will own the exchange
660 * @fp:	   The FC frame that the exchange will be for
661 *
662 * This function walks the list of exchange manager(EM)
663 * anchors to select an EM for a new exchange allocation. The
664 * EM is selected when a NULL match function pointer is encountered
665 * or when a call to a match function returns true.
666 */
667static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
668					    struct fc_frame *fp)
669{
670	struct fc_exch_mgr_anchor *ema;
671
672	list_for_each_entry(ema, &lport->ema_list, ema_list)
673		if (!ema->match || ema->match(fp))
674			return fc_exch_em_alloc(lport, ema->mp);
675	return NULL;
676}
677
678/**
679 * fc_exch_find() - Lookup and hold an exchange
680 * @mp:	 The exchange manager to lookup the exchange from
681 * @xid: The XID of the exchange to look up
682 */
683static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
684{
685	struct fc_exch_pool *pool;
686	struct fc_exch *ep = NULL;
687
688	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
689		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
690		spin_lock_bh(&pool->lock);
691		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
692		if (ep) {
693			fc_exch_hold(ep);
694			WARN_ON(ep->xid != xid);
695		}
696		spin_unlock_bh(&pool->lock);
697	}
698	return ep;
699}
700
701
702/**
703 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
704 *		    the memory allocated for the related objects may be freed.
705 * @sp: The sequence that has completed
706 */
707static void fc_exch_done(struct fc_seq *sp)
708{
709	struct fc_exch *ep = fc_seq_exch(sp);
710	int rc;
711
712	spin_lock_bh(&ep->ex_lock);
713	rc = fc_exch_done_locked(ep);
714	spin_unlock_bh(&ep->ex_lock);
715	if (!rc)
716		fc_exch_delete(ep);
717}
718
719/**
720 * fc_exch_resp() - Allocate a new exchange for a response frame
721 * @lport: The local port that the exchange was for
722 * @mp:	   The exchange manager to allocate the exchange from
723 * @fp:	   The response frame
724 *
725 * Sets the responder ID in the frame header.
726 */
727static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
728				    struct fc_exch_mgr *mp,
729				    struct fc_frame *fp)
730{
731	struct fc_exch *ep;
732	struct fc_frame_header *fh;
733
734	ep = fc_exch_alloc(lport, fp);
735	if (ep) {
736		ep->class = fc_frame_class(fp);
737
738		/*
739		 * Set EX_CTX indicating we're responding on this exchange.
740		 */
741		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
742		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
743		fh = fc_frame_header_get(fp);
744		ep->sid = ntoh24(fh->fh_d_id);
745		ep->did = ntoh24(fh->fh_s_id);
746		ep->oid = ep->did;
747
748		/*
749		 * Allocated exchange has placed the XID in the
750		 * originator field. Move it to the responder field,
751		 * and set the originator XID from the frame.
752		 */
753		ep->rxid = ep->xid;
754		ep->oxid = ntohs(fh->fh_ox_id);
755		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
756		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
757			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
758
759		fc_exch_hold(ep);	/* hold for caller */
760		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
761	}
762	return ep;
763}
764
765/**
766 * fc_seq_lookup_recip() - Find a sequence where the other end
767 *			   originated the sequence
768 * @lport: The local port that the frame was sent to
769 * @mp:	   The Exchange Manager to lookup the exchange from
770 * @fp:	   The frame associated with the sequence we're looking for
771 *
772 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
773 * on the ep that should be released by the caller.
774 */
775static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
776						 struct fc_exch_mgr *mp,
777						 struct fc_frame *fp)
778{
779	struct fc_frame_header *fh = fc_frame_header_get(fp);
780	struct fc_exch *ep = NULL;
781	struct fc_seq *sp = NULL;
782	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
783	u32 f_ctl;
784	u16 xid;
785
786	f_ctl = ntoh24(fh->fh_f_ctl);
787	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
788
789	/*
790	 * Lookup or create the exchange if we will be creating the sequence.
791	 */
792	if (f_ctl & FC_FC_EX_CTX) {
793		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
794		ep = fc_exch_find(mp, xid);
795		if (!ep) {
796			atomic_inc(&mp->stats.xid_not_found);
797			reject = FC_RJT_OX_ID;
798			goto out;
799		}
800		if (ep->rxid == FC_XID_UNKNOWN)
801			ep->rxid = ntohs(fh->fh_rx_id);
802		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
803			reject = FC_RJT_OX_ID;
804			goto rel;
805		}
806	} else {
807		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
808
809		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
810		    fc_frame_payload_op(fp) == ELS_TEST) {
811			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
812			xid = FC_XID_UNKNOWN;
813		}
814
815		/*
816		 * new sequence - find the exchange
817		 */
818		ep = fc_exch_find(mp, xid);
819		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
820			if (ep) {
821				atomic_inc(&mp->stats.xid_busy);
822				reject = FC_RJT_RX_ID;
823				goto rel;
824			}
825			ep = fc_exch_resp(lport, mp, fp);
826			if (!ep) {
827				reject = FC_RJT_EXCH_EST;
828				goto out;
829			}
830			xid = ep->xid;	/* get our XID */
831		} else if (!ep) {
832			atomic_inc(&mp->stats.xid_not_found);
833			reject = FC_RJT_RX_ID;	/* XID not found */
834			goto out;
835		}
836	}
837
838	/*
839	 * At this point, we have the exchange held.
840	 * Find or create the sequence.
841	 */
842	if (fc_sof_is_init(fr_sof(fp))) {
843		sp = &ep->seq;
844		sp->ssb_stat |= SSB_ST_RESP;
845		sp->id = fh->fh_seq_id;
846	} else {
847		sp = &ep->seq;
848		if (sp->id != fh->fh_seq_id) {
849			atomic_inc(&mp->stats.seq_not_found);
850			reject = FC_RJT_SEQ_ID;	/* sequence/exch should exist */
851			goto rel;
852		}
853	}
854	WARN_ON(ep != fc_seq_exch(sp));
855
856	if (f_ctl & FC_FC_SEQ_INIT)
857		ep->esb_stat |= ESB_ST_SEQ_INIT;
858
859	fr_seq(fp) = sp;
860out:
861	return reject;
862rel:
863	fc_exch_done(&ep->seq);
864	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
865	return reject;
866}
867
868/**
869 * fc_seq_lookup_orig() - Find a sequence where this end
870 *			  originated the sequence
871 * @mp:	   The Exchange Manager to lookup the exchange from
872 * @fp:	   The frame associated with the sequence we're looking for
873 *
874 * Does not hold the sequence for the caller.
875 */
876static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
877					 struct fc_frame *fp)
878{
879	struct fc_frame_header *fh = fc_frame_header_get(fp);
880	struct fc_exch *ep;
881	struct fc_seq *sp = NULL;
882	u32 f_ctl;
883	u16 xid;
884
885	f_ctl = ntoh24(fh->fh_f_ctl);
886	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
887	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
888	ep = fc_exch_find(mp, xid);
889	if (!ep)
890		return NULL;
891	if (ep->seq.id == fh->fh_seq_id) {
892		/*
893		 * Save the RX_ID if we didn't previously know it.
894		 */
895		sp = &ep->seq;
896		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
897		    ep->rxid == FC_XID_UNKNOWN) {
898			ep->rxid = ntohs(fh->fh_rx_id);
899		}
900	}
901	fc_exch_release(ep);
902	return sp;
903}
904
905/**
906 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
907 * @ep:	     The exchange to set the addresses for
908 * @orig_id: The originator's ID
909 * @resp_id: The responder's ID
910 *
911 * Note this must be done before the first sequence of the exchange is sent.
912 */
913static void fc_exch_set_addr(struct fc_exch *ep,
914			     u32 orig_id, u32 resp_id)
915{
916	ep->oid = orig_id;
917	if (ep->esb_stat & ESB_ST_RESP) {
918		ep->sid = resp_id;
919		ep->did = orig_id;
920	} else {
921		ep->sid = orig_id;
922		ep->did = resp_id;
923	}
924}
925
926/**
927 * fc_seq_els_rsp_send() - Send an ELS response using infomation from
928 *			   the existing sequence/exchange.
929 * @fp:	      The received frame
930 * @els_cmd:  The ELS command to be sent
931 * @els_data: The ELS data to be sent
932 *
933 * The received frame is not freed.
934 */
935static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
936				struct fc_seq_els_data *els_data)
937{
938	switch (els_cmd) {
939	case ELS_LS_RJT:
940		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
941		break;
942	case ELS_LS_ACC:
943		fc_seq_ls_acc(fp);
944		break;
945	case ELS_RRQ:
946		fc_exch_els_rrq(fp);
947		break;
948	case ELS_REC:
949		fc_exch_els_rec(fp);
950		break;
951	default:
952		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
953	}
954}
955
956/**
957 * fc_seq_send_last() - Send a sequence that is the last in the exchange
958 * @sp:	     The sequence that is to be sent
959 * @fp:	     The frame that will be sent on the sequence
960 * @rctl:    The R_CTL information to be sent
961 * @fh_type: The frame header type
962 */
963static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
964			     enum fc_rctl rctl, enum fc_fh_type fh_type)
965{
966	u32 f_ctl;
967	struct fc_exch *ep = fc_seq_exch(sp);
968
969	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
970	f_ctl |= ep->f_ctl;
971	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
972	fc_seq_send(ep->lp, sp, fp);
973}
974
975/**
976 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
977 * @sp:	   The sequence to send the ACK on
978 * @rx_fp: The received frame that is being acknoledged
979 *
980 * Send ACK_1 (or equiv.) indicating we received something.
981 */
982static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
983{
984	struct fc_frame *fp;
985	struct fc_frame_header *rx_fh;
986	struct fc_frame_header *fh;
987	struct fc_exch *ep = fc_seq_exch(sp);
988	struct fc_lport *lport = ep->lp;
989	unsigned int f_ctl;
990
991	/*
992	 * Don't send ACKs for class 3.
993	 */
994	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
995		fp = fc_frame_alloc(lport, 0);
996		if (!fp)
997			return;
998
999		fh = fc_frame_header_get(fp);
1000		fh->fh_r_ctl = FC_RCTL_ACK_1;
1001		fh->fh_type = FC_TYPE_BLS;
1002
1003		/*
1004		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1005		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1006		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1007		 * Last ACK uses bits 7-6 (continue sequence),
1008		 * bits 5-4 are meaningful (what kind of ACK to use).
1009		 */
1010		rx_fh = fc_frame_header_get(rx_fp);
1011		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1012		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1013			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1014			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1015			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1016		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1017		hton24(fh->fh_f_ctl, f_ctl);
1018
1019		fc_exch_setup_hdr(ep, fp, f_ctl);
1020		fh->fh_seq_id = rx_fh->fh_seq_id;
1021		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1022		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1023
1024		fr_sof(fp) = fr_sof(rx_fp);
1025		if (f_ctl & FC_FC_END_SEQ)
1026			fr_eof(fp) = FC_EOF_T;
1027		else
1028			fr_eof(fp) = FC_EOF_N;
1029
1030		lport->tt.frame_send(lport, fp);
1031	}
1032}
1033
1034/**
1035 * fc_exch_send_ba_rjt() - Send BLS Reject
1036 * @rx_fp:  The frame being rejected
1037 * @reason: The reason the frame is being rejected
1038 * @explan: The explaination for the rejection
1039 *
1040 * This is for rejecting BA_ABTS only.
1041 */
1042static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1043				enum fc_ba_rjt_reason reason,
1044				enum fc_ba_rjt_explan explan)
1045{
1046	struct fc_frame *fp;
1047	struct fc_frame_header *rx_fh;
1048	struct fc_frame_header *fh;
1049	struct fc_ba_rjt *rp;
1050	struct fc_lport *lport;
1051	unsigned int f_ctl;
1052
1053	lport = fr_dev(rx_fp);
1054	fp = fc_frame_alloc(lport, sizeof(*rp));
1055	if (!fp)
1056		return;
1057	fh = fc_frame_header_get(fp);
1058	rx_fh = fc_frame_header_get(rx_fp);
1059
1060	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1061
1062	rp = fc_frame_payload_get(fp, sizeof(*rp));
1063	rp->br_reason = reason;
1064	rp->br_explan = explan;
1065
1066	/*
1067	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1068	 */
1069	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1070	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1071	fh->fh_ox_id = rx_fh->fh_ox_id;
1072	fh->fh_rx_id = rx_fh->fh_rx_id;
1073	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1074	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1075	fh->fh_type = FC_TYPE_BLS;
1076
1077	/*
1078	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1079	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1080	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1081	 * Last ACK uses bits 7-6 (continue sequence),
1082	 * bits 5-4 are meaningful (what kind of ACK to use).
1083	 * Always set LAST_SEQ, END_SEQ.
1084	 */
1085	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1086	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1087		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1088		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1089	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1090	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1091	f_ctl &= ~FC_FC_FIRST_SEQ;
1092	hton24(fh->fh_f_ctl, f_ctl);
1093
1094	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1095	fr_eof(fp) = FC_EOF_T;
1096	if (fc_sof_needs_ack(fr_sof(fp)))
1097		fr_eof(fp) = FC_EOF_N;
1098
1099	lport->tt.frame_send(lport, fp);
1100}
1101
1102/**
1103 * fc_exch_recv_abts() - Handle an incoming ABTS
1104 * @ep:	   The exchange the abort was on
1105 * @rx_fp: The ABTS frame
1106 *
1107 * This would be for target mode usually, but could be due to lost
1108 * FCP transfer ready, confirm or RRQ. We always handle this as an
1109 * exchange abort, ignoring the parameter.
1110 */
1111static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1112{
1113	struct fc_frame *fp;
1114	struct fc_ba_acc *ap;
1115	struct fc_frame_header *fh;
1116	struct fc_seq *sp;
1117
1118	if (!ep)
1119		goto reject;
1120	spin_lock_bh(&ep->ex_lock);
1121	if (ep->esb_stat & ESB_ST_COMPLETE) {
1122		spin_unlock_bh(&ep->ex_lock);
1123		goto reject;
1124	}
1125	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1126		fc_exch_hold(ep);		/* hold for REC_QUAL */
1127	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1128	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1129
1130	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1131	if (!fp) {
1132		spin_unlock_bh(&ep->ex_lock);
1133		goto free;
1134	}
1135	fh = fc_frame_header_get(fp);
1136	ap = fc_frame_payload_get(fp, sizeof(*ap));
1137	memset(ap, 0, sizeof(*ap));
1138	sp = &ep->seq;
1139	ap->ba_high_seq_cnt = htons(0xffff);
1140	if (sp->ssb_stat & SSB_ST_RESP) {
1141		ap->ba_seq_id = sp->id;
1142		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1143		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1144		ap->ba_low_seq_cnt = htons(sp->cnt);
1145	}
1146	sp = fc_seq_start_next_locked(sp);
1147	spin_unlock_bh(&ep->ex_lock);
1148	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1149	fc_frame_free(rx_fp);
1150	return;
1151
1152reject:
1153	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1154free:
1155	fc_frame_free(rx_fp);
1156}
1157
1158/**
1159 * fc_seq_assign() - Assign exchange and sequence for incoming request
1160 * @lport: The local port that received the request
1161 * @fp:    The request frame
1162 *
1163 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1164 */
1165static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1166{
1167	struct fc_exch_mgr_anchor *ema;
1168
1169	WARN_ON(lport != fr_dev(fp));
1170	WARN_ON(fr_seq(fp));
1171	fr_seq(fp) = NULL;
1172
1173	list_for_each_entry(ema, &lport->ema_list, ema_list)
1174		if ((!ema->match || ema->match(fp)) &&
1175		    fc_seq_lookup_recip(lport, ema->mp, fp) != FC_RJT_NONE)
1176			break;
1177	return fr_seq(fp);
1178}
1179
1180/**
1181 * fc_exch_recv_req() - Handler for an incoming request
1182 * @lport: The local port that received the request
1183 * @mp:	   The EM that the exchange is on
1184 * @fp:	   The request frame
1185 *
1186 * This is used when the other end is originating the exchange
1187 * and the sequence.
1188 */
1189static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1190			     struct fc_frame *fp)
1191{
1192	struct fc_frame_header *fh = fc_frame_header_get(fp);
1193	struct fc_seq *sp = NULL;
1194	struct fc_exch *ep = NULL;
1195	enum fc_pf_rjt_reason reject;
1196
1197	/* We can have the wrong fc_lport at this point with NPIV, which is a
1198	 * problem now that we know a new exchange needs to be allocated
1199	 */
1200	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1201	if (!lport) {
1202		fc_frame_free(fp);
1203		return;
1204	}
1205	fr_dev(fp) = lport;
1206
1207	BUG_ON(fr_seq(fp));
1208
1209	/*
1210	 * If the RX_ID is 0xffff, don't allocate an exchange.
1211	 * The upper-level protocol may request one later, if needed.
1212	 */
1213	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1214		return lport->tt.lport_recv(lport, fp);
1215
1216	reject = fc_seq_lookup_recip(lport, mp, fp);
1217	if (reject == FC_RJT_NONE) {
1218		sp = fr_seq(fp);	/* sequence will be held */
1219		ep = fc_seq_exch(sp);
1220		fc_seq_send_ack(sp, fp);
1221		ep->encaps = fr_encaps(fp);
1222
1223		/*
1224		 * Call the receive function.
1225		 *
1226		 * The receive function may allocate a new sequence
1227		 * over the old one, so we shouldn't change the
1228		 * sequence after this.
1229		 *
1230		 * The frame will be freed by the receive function.
1231		 * If new exch resp handler is valid then call that
1232		 * first.
1233		 */
1234		if (ep->resp)
1235			ep->resp(sp, fp, ep->arg);
1236		else
1237			lport->tt.lport_recv(lport, fp);
1238		fc_exch_release(ep);	/* release from lookup */
1239	} else {
1240		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1241			     reject);
1242		fc_frame_free(fp);
1243	}
1244}
1245
1246/**
1247 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1248 *			     end is the originator of the sequence that is a
1249 *			     response to our initial exchange
1250 * @mp: The EM that the exchange is on
1251 * @fp: The response frame
1252 */
1253static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1254{
1255	struct fc_frame_header *fh = fc_frame_header_get(fp);
1256	struct fc_seq *sp;
1257	struct fc_exch *ep;
1258	enum fc_sof sof;
1259	u32 f_ctl;
1260	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1261	void *ex_resp_arg;
1262	int rc;
1263
1264	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1265	if (!ep) {
1266		atomic_inc(&mp->stats.xid_not_found);
1267		goto out;
1268	}
1269	if (ep->esb_stat & ESB_ST_COMPLETE) {
1270		atomic_inc(&mp->stats.xid_not_found);
1271		goto out;
1272	}
1273	if (ep->rxid == FC_XID_UNKNOWN)
1274		ep->rxid = ntohs(fh->fh_rx_id);
1275	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1276		atomic_inc(&mp->stats.xid_not_found);
1277		goto rel;
1278	}
1279	if (ep->did != ntoh24(fh->fh_s_id) &&
1280	    ep->did != FC_FID_FLOGI) {
1281		atomic_inc(&mp->stats.xid_not_found);
1282		goto rel;
1283	}
1284	sof = fr_sof(fp);
1285	sp = &ep->seq;
1286	if (fc_sof_is_init(sof)) {
1287		sp->ssb_stat |= SSB_ST_RESP;
1288		sp->id = fh->fh_seq_id;
1289	} else if (sp->id != fh->fh_seq_id) {
1290		atomic_inc(&mp->stats.seq_not_found);
1291		goto rel;
1292	}
1293
1294	f_ctl = ntoh24(fh->fh_f_ctl);
1295	fr_seq(fp) = sp;
1296	if (f_ctl & FC_FC_SEQ_INIT)
1297		ep->esb_stat |= ESB_ST_SEQ_INIT;
1298
1299	if (fc_sof_needs_ack(sof))
1300		fc_seq_send_ack(sp, fp);
1301	resp = ep->resp;
1302	ex_resp_arg = ep->arg;
1303
1304	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1305	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1306	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1307		spin_lock_bh(&ep->ex_lock);
1308		rc = fc_exch_done_locked(ep);
1309		WARN_ON(fc_seq_exch(sp) != ep);
1310		spin_unlock_bh(&ep->ex_lock);
1311		if (!rc)
1312			fc_exch_delete(ep);
1313	}
1314
1315	/*
1316	 * Call the receive function.
1317	 * The sequence is held (has a refcnt) for us,
1318	 * but not for the receive function.
1319	 *
1320	 * The receive function may allocate a new sequence
1321	 * over the old one, so we shouldn't change the
1322	 * sequence after this.
1323	 *
1324	 * The frame will be freed by the receive function.
1325	 * If new exch resp handler is valid then call that
1326	 * first.
1327	 */
1328	if (resp)
1329		resp(sp, fp, ex_resp_arg);
1330	else
1331		fc_frame_free(fp);
1332	fc_exch_release(ep);
1333	return;
1334rel:
1335	fc_exch_release(ep);
1336out:
1337	fc_frame_free(fp);
1338}
1339
1340/**
1341 * fc_exch_recv_resp() - Handler for a sequence where other end is
1342 *			 responding to our sequence
1343 * @mp: The EM that the exchange is on
1344 * @fp: The response frame
1345 */
1346static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1347{
1348	struct fc_seq *sp;
1349
1350	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1351
1352	if (!sp)
1353		atomic_inc(&mp->stats.xid_not_found);
1354	else
1355		atomic_inc(&mp->stats.non_bls_resp);
1356
1357	fc_frame_free(fp);
1358}
1359
1360/**
1361 * fc_exch_abts_resp() - Handler for a response to an ABT
1362 * @ep: The exchange that the frame is on
1363 * @fp: The response frame
1364 *
1365 * This response would be to an ABTS cancelling an exchange or sequence.
1366 * The response can be either BA_ACC or BA_RJT
1367 */
1368static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1369{
1370	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1371	void *ex_resp_arg;
1372	struct fc_frame_header *fh;
1373	struct fc_ba_acc *ap;
1374	struct fc_seq *sp;
1375	u16 low;
1376	u16 high;
1377	int rc = 1, has_rec = 0;
1378
1379	fh = fc_frame_header_get(fp);
1380	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1381		    fc_exch_rctl_name(fh->fh_r_ctl));
1382
1383	if (cancel_delayed_work_sync(&ep->timeout_work))
1384		fc_exch_release(ep);	/* release from pending timer hold */
1385
1386	spin_lock_bh(&ep->ex_lock);
1387	switch (fh->fh_r_ctl) {
1388	case FC_RCTL_BA_ACC:
1389		ap = fc_frame_payload_get(fp, sizeof(*ap));
1390		if (!ap)
1391			break;
1392
1393		/*
1394		 * Decide whether to establish a Recovery Qualifier.
1395		 * We do this if there is a non-empty SEQ_CNT range and
1396		 * SEQ_ID is the same as the one we aborted.
1397		 */
1398		low = ntohs(ap->ba_low_seq_cnt);
1399		high = ntohs(ap->ba_high_seq_cnt);
1400		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1401		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1402		     ap->ba_seq_id == ep->seq_id) && low != high) {
1403			ep->esb_stat |= ESB_ST_REC_QUAL;
1404			fc_exch_hold(ep);  /* hold for recovery qualifier */
1405			has_rec = 1;
1406		}
1407		break;
1408	case FC_RCTL_BA_RJT:
1409		break;
1410	default:
1411		break;
1412	}
1413
1414	resp = ep->resp;
1415	ex_resp_arg = ep->arg;
1416
1417	/* do we need to do some other checks here. Can we reuse more of
1418	 * fc_exch_recv_seq_resp
1419	 */
1420	sp = &ep->seq;
1421	/*
1422	 * do we want to check END_SEQ as well as LAST_SEQ here?
1423	 */
1424	if (ep->fh_type != FC_TYPE_FCP &&
1425	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1426		rc = fc_exch_done_locked(ep);
1427	spin_unlock_bh(&ep->ex_lock);
1428	if (!rc)
1429		fc_exch_delete(ep);
1430
1431	if (resp)
1432		resp(sp, fp, ex_resp_arg);
1433	else
1434		fc_frame_free(fp);
1435
1436	if (has_rec)
1437		fc_exch_timer_set(ep, ep->r_a_tov);
1438
1439}
1440
1441/**
1442 * fc_exch_recv_bls() - Handler for a BLS sequence
1443 * @mp: The EM that the exchange is on
1444 * @fp: The request frame
1445 *
1446 * The BLS frame is always a sequence initiated by the remote side.
1447 * We may be either the originator or recipient of the exchange.
1448 */
1449static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1450{
1451	struct fc_frame_header *fh;
1452	struct fc_exch *ep;
1453	u32 f_ctl;
1454
1455	fh = fc_frame_header_get(fp);
1456	f_ctl = ntoh24(fh->fh_f_ctl);
1457	fr_seq(fp) = NULL;
1458
1459	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1460			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1461	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1462		spin_lock_bh(&ep->ex_lock);
1463		ep->esb_stat |= ESB_ST_SEQ_INIT;
1464		spin_unlock_bh(&ep->ex_lock);
1465	}
1466	if (f_ctl & FC_FC_SEQ_CTX) {
1467		/*
1468		 * A response to a sequence we initiated.
1469		 * This should only be ACKs for class 2 or F.
1470		 */
1471		switch (fh->fh_r_ctl) {
1472		case FC_RCTL_ACK_1:
1473		case FC_RCTL_ACK_0:
1474			break;
1475		default:
1476			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1477				    fh->fh_r_ctl,
1478				    fc_exch_rctl_name(fh->fh_r_ctl));
1479			break;
1480		}
1481		fc_frame_free(fp);
1482	} else {
1483		switch (fh->fh_r_ctl) {
1484		case FC_RCTL_BA_RJT:
1485		case FC_RCTL_BA_ACC:
1486			if (ep)
1487				fc_exch_abts_resp(ep, fp);
1488			else
1489				fc_frame_free(fp);
1490			break;
1491		case FC_RCTL_BA_ABTS:
1492			fc_exch_recv_abts(ep, fp);
1493			break;
1494		default:			/* ignore junk */
1495			fc_frame_free(fp);
1496			break;
1497		}
1498	}
1499	if (ep)
1500		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1501}
1502
1503/**
1504 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1505 * @rx_fp: The received frame, not freed here.
1506 *
1507 * If this fails due to allocation or transmit congestion, assume the
1508 * originator will repeat the sequence.
1509 */
1510static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1511{
1512	struct fc_lport *lport;
1513	struct fc_els_ls_acc *acc;
1514	struct fc_frame *fp;
1515
1516	lport = fr_dev(rx_fp);
1517	fp = fc_frame_alloc(lport, sizeof(*acc));
1518	if (!fp)
1519		return;
1520	acc = fc_frame_payload_get(fp, sizeof(*acc));
1521	memset(acc, 0, sizeof(*acc));
1522	acc->la_cmd = ELS_LS_ACC;
1523	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1524	lport->tt.frame_send(lport, fp);
1525}
1526
1527/**
1528 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1529 * @rx_fp: The received frame, not freed here.
1530 * @reason: The reason the sequence is being rejected
1531 * @explan: The explanation for the rejection
1532 *
1533 * If this fails due to allocation or transmit congestion, assume the
1534 * originator will repeat the sequence.
1535 */
1536static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1537			  enum fc_els_rjt_explan explan)
1538{
1539	struct fc_lport *lport;
1540	struct fc_els_ls_rjt *rjt;
1541	struct fc_frame *fp;
1542
1543	lport = fr_dev(rx_fp);
1544	fp = fc_frame_alloc(lport, sizeof(*rjt));
1545	if (!fp)
1546		return;
1547	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1548	memset(rjt, 0, sizeof(*rjt));
1549	rjt->er_cmd = ELS_LS_RJT;
1550	rjt->er_reason = reason;
1551	rjt->er_explan = explan;
1552	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1553	lport->tt.frame_send(lport, fp);
1554}
1555
1556/**
1557 * fc_exch_reset() - Reset an exchange
1558 * @ep: The exchange to be reset
1559 */
1560static void fc_exch_reset(struct fc_exch *ep)
1561{
1562	struct fc_seq *sp;
1563	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1564	void *arg;
1565	int rc = 1;
1566
1567	spin_lock_bh(&ep->ex_lock);
1568	ep->state |= FC_EX_RST_CLEANUP;
1569	if (cancel_delayed_work(&ep->timeout_work))
1570		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1571	resp = ep->resp;
1572	ep->resp = NULL;
1573	if (ep->esb_stat & ESB_ST_REC_QUAL)
1574		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1575	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1576	arg = ep->arg;
1577	sp = &ep->seq;
1578	rc = fc_exch_done_locked(ep);
1579	spin_unlock_bh(&ep->ex_lock);
1580	if (!rc)
1581		fc_exch_delete(ep);
1582
1583	if (resp)
1584		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1585}
1586
1587/**
1588 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1589 * @lport: The local port that the exchange pool is on
1590 * @pool:  The exchange pool to be reset
1591 * @sid:   The source ID
1592 * @did:   The destination ID
1593 *
1594 * Resets a per cpu exches pool, releasing all of its sequences
1595 * and exchanges. If sid is non-zero then reset only exchanges
1596 * we sourced from the local port's FID. If did is non-zero then
1597 * only reset exchanges destined for the local port's FID.
1598 */
1599static void fc_exch_pool_reset(struct fc_lport *lport,
1600			       struct fc_exch_pool *pool,
1601			       u32 sid, u32 did)
1602{
1603	struct fc_exch *ep;
1604	struct fc_exch *next;
1605
1606	spin_lock_bh(&pool->lock);
1607restart:
1608	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1609		if ((lport == ep->lp) &&
1610		    (sid == 0 || sid == ep->sid) &&
1611		    (did == 0 || did == ep->did)) {
1612			fc_exch_hold(ep);
1613			spin_unlock_bh(&pool->lock);
1614
1615			fc_exch_reset(ep);
1616
1617			fc_exch_release(ep);
1618			spin_lock_bh(&pool->lock);
1619
1620			/*
1621			 * must restart loop incase while lock
1622			 * was down multiple eps were released.
1623			 */
1624			goto restart;
1625		}
1626	}
1627	spin_unlock_bh(&pool->lock);
1628}
1629
1630/**
1631 * fc_exch_mgr_reset() - Reset all EMs of a local port
1632 * @lport: The local port whose EMs are to be reset
1633 * @sid:   The source ID
1634 * @did:   The destination ID
1635 *
1636 * Reset all EMs associated with a given local port. Release all
1637 * sequences and exchanges. If sid is non-zero then reset only the
1638 * exchanges sent from the local port's FID. If did is non-zero then
1639 * reset only exchanges destined for the local port's FID.
1640 */
1641void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1642{
1643	struct fc_exch_mgr_anchor *ema;
1644	unsigned int cpu;
1645
1646	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1647		for_each_possible_cpu(cpu)
1648			fc_exch_pool_reset(lport,
1649					   per_cpu_ptr(ema->mp->pool, cpu),
1650					   sid, did);
1651	}
1652}
1653EXPORT_SYMBOL(fc_exch_mgr_reset);
1654
1655/**
1656 * fc_exch_lookup() - find an exchange
1657 * @lport: The local port
1658 * @xid: The exchange ID
1659 *
1660 * Returns exchange pointer with hold for caller, or NULL if not found.
1661 */
1662static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1663{
1664	struct fc_exch_mgr_anchor *ema;
1665
1666	list_for_each_entry(ema, &lport->ema_list, ema_list)
1667		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1668			return fc_exch_find(ema->mp, xid);
1669	return NULL;
1670}
1671
1672/**
1673 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1674 * @rfp: The REC frame, not freed here.
1675 *
1676 * Note that the requesting port may be different than the S_ID in the request.
1677 */
1678static void fc_exch_els_rec(struct fc_frame *rfp)
1679{
1680	struct fc_lport *lport;
1681	struct fc_frame *fp;
1682	struct fc_exch *ep;
1683	struct fc_els_rec *rp;
1684	struct fc_els_rec_acc *acc;
1685	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1686	enum fc_els_rjt_explan explan;
1687	u32 sid;
1688	u16 rxid;
1689	u16 oxid;
1690
1691	lport = fr_dev(rfp);
1692	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1693	explan = ELS_EXPL_INV_LEN;
1694	if (!rp)
1695		goto reject;
1696	sid = ntoh24(rp->rec_s_id);
1697	rxid = ntohs(rp->rec_rx_id);
1698	oxid = ntohs(rp->rec_ox_id);
1699
1700	ep = fc_exch_lookup(lport,
1701			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1702	explan = ELS_EXPL_OXID_RXID;
1703	if (!ep)
1704		goto reject;
1705	if (ep->oid != sid || oxid != ep->oxid)
1706		goto rel;
1707	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1708		goto rel;
1709	fp = fc_frame_alloc(lport, sizeof(*acc));
1710	if (!fp)
1711		goto out;
1712
1713	acc = fc_frame_payload_get(fp, sizeof(*acc));
1714	memset(acc, 0, sizeof(*acc));
1715	acc->reca_cmd = ELS_LS_ACC;
1716	acc->reca_ox_id = rp->rec_ox_id;
1717	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1718	acc->reca_rx_id = htons(ep->rxid);
1719	if (ep->sid == ep->oid)
1720		hton24(acc->reca_rfid, ep->did);
1721	else
1722		hton24(acc->reca_rfid, ep->sid);
1723	acc->reca_fc4value = htonl(ep->seq.rec_data);
1724	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1725						 ESB_ST_SEQ_INIT |
1726						 ESB_ST_COMPLETE));
1727	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1728	lport->tt.frame_send(lport, fp);
1729out:
1730	fc_exch_release(ep);
1731	return;
1732
1733rel:
1734	fc_exch_release(ep);
1735reject:
1736	fc_seq_ls_rjt(rfp, reason, explan);
1737}
1738
1739/**
1740 * fc_exch_rrq_resp() - Handler for RRQ responses
1741 * @sp:	 The sequence that the RRQ is on
1742 * @fp:	 The RRQ frame
1743 * @arg: The exchange that the RRQ is on
1744 *
1745 * TODO: fix error handler.
1746 */
1747static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1748{
1749	struct fc_exch *aborted_ep = arg;
1750	unsigned int op;
1751
1752	if (IS_ERR(fp)) {
1753		int err = PTR_ERR(fp);
1754
1755		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1756			goto cleanup;
1757		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1758			    "frame error %d\n", err);
1759		return;
1760	}
1761
1762	op = fc_frame_payload_op(fp);
1763	fc_frame_free(fp);
1764
1765	switch (op) {
1766	case ELS_LS_RJT:
1767		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1768		/* fall through */
1769	case ELS_LS_ACC:
1770		goto cleanup;
1771	default:
1772		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1773			    "for RRQ", op);
1774		return;
1775	}
1776
1777cleanup:
1778	fc_exch_done(&aborted_ep->seq);
1779	/* drop hold for rec qual */
1780	fc_exch_release(aborted_ep);
1781}
1782
1783
1784/**
1785 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1786 * @lport:	The local port to send the frame on
1787 * @fp:		The frame to be sent
1788 * @resp:	The response handler for this request
1789 * @destructor: The destructor for the exchange
1790 * @arg:	The argument to be passed to the response handler
1791 * @timer_msec: The timeout period for the exchange
1792 *
1793 * The frame pointer with some of the header's fields must be
1794 * filled before calling this routine, those fields are:
1795 *
1796 * - routing control
1797 * - FC port did
1798 * - FC port sid
1799 * - FC header type
1800 * - frame control
1801 * - parameter or relative offset
1802 */
1803static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1804				       struct fc_frame *fp,
1805				       void (*resp)(struct fc_seq *,
1806						    struct fc_frame *fp,
1807						    void *arg),
1808				       void (*destructor)(struct fc_seq *,
1809							  void *),
1810				       void *arg, u32 timer_msec)
1811{
1812	struct fc_exch *ep;
1813	struct fc_seq *sp = NULL;
1814	struct fc_frame_header *fh;
1815	int rc = 1;
1816
1817	ep = fc_exch_alloc(lport, fp);
1818	if (!ep) {
1819		fc_frame_free(fp);
1820		return NULL;
1821	}
1822	ep->esb_stat |= ESB_ST_SEQ_INIT;
1823	fh = fc_frame_header_get(fp);
1824	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1825	ep->resp = resp;
1826	ep->destructor = destructor;
1827	ep->arg = arg;
1828	ep->r_a_tov = FC_DEF_R_A_TOV;
1829	ep->lp = lport;
1830	sp = &ep->seq;
1831
1832	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1833	ep->f_ctl = ntoh24(fh->fh_f_ctl);
1834	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1835	sp->cnt++;
1836
1837	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1838		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1839
1840	if (unlikely(lport->tt.frame_send(lport, fp)))
1841		goto err;
1842
1843	if (timer_msec)
1844		fc_exch_timer_set_locked(ep, timer_msec);
1845	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
1846
1847	if (ep->f_ctl & FC_FC_SEQ_INIT)
1848		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1849	spin_unlock_bh(&ep->ex_lock);
1850	return sp;
1851err:
1852	rc = fc_exch_done_locked(ep);
1853	spin_unlock_bh(&ep->ex_lock);
1854	if (!rc)
1855		fc_exch_delete(ep);
1856	return NULL;
1857}
1858
1859/**
1860 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
1861 * @ep: The exchange to send the RRQ on
1862 *
1863 * This tells the remote port to stop blocking the use of
1864 * the exchange and the seq_cnt range.
1865 */
1866static void fc_exch_rrq(struct fc_exch *ep)
1867{
1868	struct fc_lport *lport;
1869	struct fc_els_rrq *rrq;
1870	struct fc_frame *fp;
1871	u32 did;
1872
1873	lport = ep->lp;
1874
1875	fp = fc_frame_alloc(lport, sizeof(*rrq));
1876	if (!fp)
1877		goto retry;
1878
1879	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1880	memset(rrq, 0, sizeof(*rrq));
1881	rrq->rrq_cmd = ELS_RRQ;
1882	hton24(rrq->rrq_s_id, ep->sid);
1883	rrq->rrq_ox_id = htons(ep->oxid);
1884	rrq->rrq_rx_id = htons(ep->rxid);
1885
1886	did = ep->did;
1887	if (ep->esb_stat & ESB_ST_RESP)
1888		did = ep->sid;
1889
1890	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1891		       lport->port_id, FC_TYPE_ELS,
1892		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1893
1894	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
1895			     lport->e_d_tov))
1896		return;
1897
1898retry:
1899	spin_lock_bh(&ep->ex_lock);
1900	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
1901		spin_unlock_bh(&ep->ex_lock);
1902		/* drop hold for rec qual */
1903		fc_exch_release(ep);
1904		return;
1905	}
1906	ep->esb_stat |= ESB_ST_REC_QUAL;
1907	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1908	spin_unlock_bh(&ep->ex_lock);
1909}
1910
1911/**
1912 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
1913 * @fp: The RRQ frame, not freed here.
1914 */
1915static void fc_exch_els_rrq(struct fc_frame *fp)
1916{
1917	struct fc_lport *lport;
1918	struct fc_exch *ep = NULL;	/* request or subject exchange */
1919	struct fc_els_rrq *rp;
1920	u32 sid;
1921	u16 xid;
1922	enum fc_els_rjt_explan explan;
1923
1924	lport = fr_dev(fp);
1925	rp = fc_frame_payload_get(fp, sizeof(*rp));
1926	explan = ELS_EXPL_INV_LEN;
1927	if (!rp)
1928		goto reject;
1929
1930	/*
1931	 * lookup subject exchange.
1932	 */
1933	sid = ntoh24(rp->rrq_s_id);		/* subject source */
1934	xid = fc_host_port_id(lport->host) == sid ?
1935			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
1936	ep = fc_exch_lookup(lport, xid);
1937	explan = ELS_EXPL_OXID_RXID;
1938	if (!ep)
1939		goto reject;
1940	spin_lock_bh(&ep->ex_lock);
1941	if (ep->oxid != ntohs(rp->rrq_ox_id))
1942		goto unlock_reject;
1943	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
1944	    ep->rxid != FC_XID_UNKNOWN)
1945		goto unlock_reject;
1946	explan = ELS_EXPL_SID;
1947	if (ep->sid != sid)
1948		goto unlock_reject;
1949
1950	/*
1951	 * Clear Recovery Qualifier state, and cancel timer if complete.
1952	 */
1953	if (ep->esb_stat & ESB_ST_REC_QUAL) {
1954		ep->esb_stat &= ~ESB_ST_REC_QUAL;
1955		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
1956	}
1957	if (ep->esb_stat & ESB_ST_COMPLETE) {
1958		if (cancel_delayed_work(&ep->timeout_work))
1959			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
1960	}
1961
1962	spin_unlock_bh(&ep->ex_lock);
1963
1964	/*
1965	 * Send LS_ACC.
1966	 */
1967	fc_seq_ls_acc(fp);
1968	goto out;
1969
1970unlock_reject:
1971	spin_unlock_bh(&ep->ex_lock);
1972reject:
1973	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
1974out:
1975	if (ep)
1976		fc_exch_release(ep);	/* drop hold from fc_exch_find */
1977}
1978
1979/**
1980 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
1981 * @lport: The local port to add the exchange manager to
1982 * @mp:	   The exchange manager to be added to the local port
1983 * @match: The match routine that indicates when this EM should be used
1984 */
1985struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
1986					   struct fc_exch_mgr *mp,
1987					   bool (*match)(struct fc_frame *))
1988{
1989	struct fc_exch_mgr_anchor *ema;
1990
1991	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
1992	if (!ema)
1993		return ema;
1994
1995	ema->mp = mp;
1996	ema->match = match;
1997	/* add EM anchor to EM anchors list */
1998	list_add_tail(&ema->ema_list, &lport->ema_list);
1999	kref_get(&mp->kref);
2000	return ema;
2001}
2002EXPORT_SYMBOL(fc_exch_mgr_add);
2003
2004/**
2005 * fc_exch_mgr_destroy() - Destroy an exchange manager
2006 * @kref: The reference to the EM to be destroyed
2007 */
2008static void fc_exch_mgr_destroy(struct kref *kref)
2009{
2010	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2011
2012	mempool_destroy(mp->ep_pool);
2013	free_percpu(mp->pool);
2014	kfree(mp);
2015}
2016
2017/**
2018 * fc_exch_mgr_del() - Delete an EM from a local port's list
2019 * @ema: The exchange manager anchor identifying the EM to be deleted
2020 */
2021void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2022{
2023	/* remove EM anchor from EM anchors list */
2024	list_del(&ema->ema_list);
2025	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2026	kfree(ema);
2027}
2028EXPORT_SYMBOL(fc_exch_mgr_del);
2029
2030/**
2031 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2032 * @src: Source lport to clone exchange managers from
2033 * @dst: New lport that takes references to all the exchange managers
2034 */
2035int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2036{
2037	struct fc_exch_mgr_anchor *ema, *tmp;
2038
2039	list_for_each_entry(ema, &src->ema_list, ema_list) {
2040		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2041			goto err;
2042	}
2043	return 0;
2044err:
2045	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2046		fc_exch_mgr_del(ema);
2047	return -ENOMEM;
2048}
2049
2050/**
2051 * fc_exch_mgr_alloc() - Allocate an exchange manager
2052 * @lport:   The local port that the new EM will be associated with
2053 * @class:   The default FC class for new exchanges
2054 * @min_xid: The minimum XID for exchanges from the new EM
2055 * @max_xid: The maximum XID for exchanges from the new EM
2056 * @match:   The match routine for the new EM
2057 */
2058struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2059				      enum fc_class class,
2060				      u16 min_xid, u16 max_xid,
2061				      bool (*match)(struct fc_frame *))
2062{
2063	struct fc_exch_mgr *mp;
2064	u16 pool_exch_range;
2065	size_t pool_size;
2066	unsigned int cpu;
2067	struct fc_exch_pool *pool;
2068
2069	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2070	    (min_xid & fc_cpu_mask) != 0) {
2071		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2072			     min_xid, max_xid);
2073		return NULL;
2074	}
2075
2076	/*
2077	 * allocate memory for EM
2078	 */
2079	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2080	if (!mp)
2081		return NULL;
2082
2083	mp->class = class;
2084	/* adjust em exch xid range for offload */
2085	mp->min_xid = min_xid;
2086	mp->max_xid = max_xid;
2087
2088	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2089	if (!mp->ep_pool)
2090		goto free_mp;
2091
2092	/*
2093	 * Setup per cpu exch pool with entire exchange id range equally
2094	 * divided across all cpus. The exch pointers array memory is
2095	 * allocated for exch range per pool.
2096	 */
2097	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2098	mp->pool_max_index = pool_exch_range - 1;
2099
2100	/*
2101	 * Allocate and initialize per cpu exch pool
2102	 */
2103	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2104	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2105	if (!mp->pool)
2106		goto free_mempool;
2107	for_each_possible_cpu(cpu) {
2108		pool = per_cpu_ptr(mp->pool, cpu);
2109		spin_lock_init(&pool->lock);
2110		INIT_LIST_HEAD(&pool->ex_list);
2111	}
2112
2113	kref_init(&mp->kref);
2114	if (!fc_exch_mgr_add(lport, mp, match)) {
2115		free_percpu(mp->pool);
2116		goto free_mempool;
2117	}
2118
2119	/*
2120	 * Above kref_init() sets mp->kref to 1 and then
2121	 * call to fc_exch_mgr_add incremented mp->kref again,
2122	 * so adjust that extra increment.
2123	 */
2124	kref_put(&mp->kref, fc_exch_mgr_destroy);
2125	return mp;
2126
2127free_mempool:
2128	mempool_destroy(mp->ep_pool);
2129free_mp:
2130	kfree(mp);
2131	return NULL;
2132}
2133EXPORT_SYMBOL(fc_exch_mgr_alloc);
2134
2135/**
2136 * fc_exch_mgr_free() - Free all exchange managers on a local port
2137 * @lport: The local port whose EMs are to be freed
2138 */
2139void fc_exch_mgr_free(struct fc_lport *lport)
2140{
2141	struct fc_exch_mgr_anchor *ema, *next;
2142
2143	flush_workqueue(fc_exch_workqueue);
2144	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2145		fc_exch_mgr_del(ema);
2146}
2147EXPORT_SYMBOL(fc_exch_mgr_free);
2148
2149/**
2150 * fc_exch_recv() - Handler for received frames
2151 * @lport: The local port the frame was received on
2152 * @fp:	   The received frame
2153 */
2154void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2155{
2156	struct fc_frame_header *fh = fc_frame_header_get(fp);
2157	struct fc_exch_mgr_anchor *ema;
2158	u32 f_ctl, found = 0;
2159	u16 oxid;
2160
2161	/* lport lock ? */
2162	if (!lport || lport->state == LPORT_ST_DISABLED) {
2163		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2164			     "has not been initialized correctly\n");
2165		fc_frame_free(fp);
2166		return;
2167	}
2168
2169	f_ctl = ntoh24(fh->fh_f_ctl);
2170	oxid = ntohs(fh->fh_ox_id);
2171	if (f_ctl & FC_FC_EX_CTX) {
2172		list_for_each_entry(ema, &lport->ema_list, ema_list) {
2173			if ((oxid >= ema->mp->min_xid) &&
2174			    (oxid <= ema->mp->max_xid)) {
2175				found = 1;
2176				break;
2177			}
2178		}
2179
2180		if (!found) {
2181			FC_LPORT_DBG(lport, "Received response for out "
2182				     "of range oxid:%hx\n", oxid);
2183			fc_frame_free(fp);
2184			return;
2185		}
2186	} else
2187		ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list);
2188
2189	/*
2190	 * If frame is marked invalid, just drop it.
2191	 */
2192	switch (fr_eof(fp)) {
2193	case FC_EOF_T:
2194		if (f_ctl & FC_FC_END_SEQ)
2195			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2196		/* fall through */
2197	case FC_EOF_N:
2198		if (fh->fh_type == FC_TYPE_BLS)
2199			fc_exch_recv_bls(ema->mp, fp);
2200		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2201			 FC_FC_EX_CTX)
2202			fc_exch_recv_seq_resp(ema->mp, fp);
2203		else if (f_ctl & FC_FC_SEQ_CTX)
2204			fc_exch_recv_resp(ema->mp, fp);
2205		else	/* no EX_CTX and no SEQ_CTX */
2206			fc_exch_recv_req(lport, ema->mp, fp);
2207		break;
2208	default:
2209		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2210			     fr_eof(fp));
2211		fc_frame_free(fp);
2212	}
2213}
2214EXPORT_SYMBOL(fc_exch_recv);
2215
2216/**
2217 * fc_exch_init() - Initialize the exchange layer for a local port
2218 * @lport: The local port to initialize the exchange layer for
2219 */
2220int fc_exch_init(struct fc_lport *lport)
2221{
2222	if (!lport->tt.seq_start_next)
2223		lport->tt.seq_start_next = fc_seq_start_next;
2224
2225	if (!lport->tt.exch_seq_send)
2226		lport->tt.exch_seq_send = fc_exch_seq_send;
2227
2228	if (!lport->tt.seq_send)
2229		lport->tt.seq_send = fc_seq_send;
2230
2231	if (!lport->tt.seq_els_rsp_send)
2232		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2233
2234	if (!lport->tt.exch_done)
2235		lport->tt.exch_done = fc_exch_done;
2236
2237	if (!lport->tt.exch_mgr_reset)
2238		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2239
2240	if (!lport->tt.seq_exch_abort)
2241		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2242
2243	if (!lport->tt.seq_assign)
2244		lport->tt.seq_assign = fc_seq_assign;
2245
2246	return 0;
2247}
2248EXPORT_SYMBOL(fc_exch_init);
2249
2250/**
2251 * fc_setup_exch_mgr() - Setup an exchange manager
2252 */
2253int fc_setup_exch_mgr()
2254{
2255	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2256					 0, SLAB_HWCACHE_ALIGN, NULL);
2257	if (!fc_em_cachep)
2258		return -ENOMEM;
2259
2260	/*
2261	 * Initialize fc_cpu_mask and fc_cpu_order. The
2262	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2263	 * to order of 2's * power and order is stored
2264	 * in fc_cpu_order as this is later required in
2265	 * mapping between an exch id and exch array index
2266	 * in per cpu exch pool.
2267	 *
2268	 * This round up is required to align fc_cpu_mask
2269	 * to exchange id's lower bits such that all incoming
2270	 * frames of an exchange gets delivered to the same
2271	 * cpu on which exchange originated by simple bitwise
2272	 * AND operation between fc_cpu_mask and exchange id.
2273	 */
2274	fc_cpu_mask = 1;
2275	fc_cpu_order = 0;
2276	while (fc_cpu_mask < nr_cpu_ids) {
2277		fc_cpu_mask <<= 1;
2278		fc_cpu_order++;
2279	}
2280	fc_cpu_mask--;
2281
2282	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2283	if (!fc_exch_workqueue)
2284		return -ENOMEM;
2285	return 0;
2286}
2287
2288/**
2289 * fc_destroy_exch_mgr() - Destroy an exchange manager
2290 */
2291void fc_destroy_exch_mgr()
2292{
2293	destroy_workqueue(fc_exch_workqueue);
2294	kmem_cache_destroy(fc_em_cachep);
2295}
2296