• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/net/wireless/zd1211rw/
1/* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23#include <linux/netdevice.h>
24#include <linux/etherdevice.h>
25#include <linux/slab.h>
26#include <linux/usb.h>
27#include <linux/jiffies.h>
28#include <net/ieee80211_radiotap.h>
29
30#include "zd_def.h"
31#include "zd_chip.h"
32#include "zd_mac.h"
33#include "zd_rf.h"
34
35struct zd_reg_alpha2_map {
36	u32 reg;
37	char alpha2[2];
38};
39
40static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41	{ ZD_REGDOMAIN_FCC, "US" },
42	{ ZD_REGDOMAIN_IC, "CA" },
43	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44	{ ZD_REGDOMAIN_JAPAN, "JP" },
45	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
46	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
47	{ ZD_REGDOMAIN_SPAIN, "ES" },
48	{ ZD_REGDOMAIN_FRANCE, "FR" },
49};
50
51/* This table contains the hardware specific values for the modulation rates. */
52static const struct ieee80211_rate zd_rates[] = {
53	{ .bitrate = 10,
54	  .hw_value = ZD_CCK_RATE_1M, },
55	{ .bitrate = 20,
56	  .hw_value = ZD_CCK_RATE_2M,
57	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59	{ .bitrate = 55,
60	  .hw_value = ZD_CCK_RATE_5_5M,
61	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63	{ .bitrate = 110,
64	  .hw_value = ZD_CCK_RATE_11M,
65	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67	{ .bitrate = 60,
68	  .hw_value = ZD_OFDM_RATE_6M,
69	  .flags = 0 },
70	{ .bitrate = 90,
71	  .hw_value = ZD_OFDM_RATE_9M,
72	  .flags = 0 },
73	{ .bitrate = 120,
74	  .hw_value = ZD_OFDM_RATE_12M,
75	  .flags = 0 },
76	{ .bitrate = 180,
77	  .hw_value = ZD_OFDM_RATE_18M,
78	  .flags = 0 },
79	{ .bitrate = 240,
80	  .hw_value = ZD_OFDM_RATE_24M,
81	  .flags = 0 },
82	{ .bitrate = 360,
83	  .hw_value = ZD_OFDM_RATE_36M,
84	  .flags = 0 },
85	{ .bitrate = 480,
86	  .hw_value = ZD_OFDM_RATE_48M,
87	  .flags = 0 },
88	{ .bitrate = 540,
89	  .hw_value = ZD_OFDM_RATE_54M,
90	  .flags = 0 },
91};
92
93/*
94 * Zydas retry rates table. Each line is listed in the same order as
95 * in zd_rates[] and contains all the rate used when a packet is sent
96 * starting with a given rates. Let's consider an example :
97 *
98 * "11 Mbits : 4, 3, 2, 1, 0" means :
99 * - packet is sent using 4 different rates
100 * - 1st rate is index 3 (ie 11 Mbits)
101 * - 2nd rate is index 2 (ie 5.5 Mbits)
102 * - 3rd rate is index 1 (ie 2 Mbits)
103 * - 4th rate is index 0 (ie 1 Mbits)
104 */
105
106static const struct tx_retry_rate zd_retry_rates[] = {
107	{ /*  1 Mbits */	1, { 0 }},
108	{ /*  2 Mbits */	2, { 1,  0 }},
109	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
110	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
111	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
112	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
113	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
114	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
115	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
116	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
117	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
118	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
119};
120
121static const struct ieee80211_channel zd_channels[] = {
122	{ .center_freq = 2412, .hw_value = 1 },
123	{ .center_freq = 2417, .hw_value = 2 },
124	{ .center_freq = 2422, .hw_value = 3 },
125	{ .center_freq = 2427, .hw_value = 4 },
126	{ .center_freq = 2432, .hw_value = 5 },
127	{ .center_freq = 2437, .hw_value = 6 },
128	{ .center_freq = 2442, .hw_value = 7 },
129	{ .center_freq = 2447, .hw_value = 8 },
130	{ .center_freq = 2452, .hw_value = 9 },
131	{ .center_freq = 2457, .hw_value = 10 },
132	{ .center_freq = 2462, .hw_value = 11 },
133	{ .center_freq = 2467, .hw_value = 12 },
134	{ .center_freq = 2472, .hw_value = 13 },
135	{ .center_freq = 2484, .hw_value = 14 },
136};
137
138static void housekeeping_init(struct zd_mac *mac);
139static void housekeeping_enable(struct zd_mac *mac);
140static void housekeeping_disable(struct zd_mac *mac);
141
142static int zd_reg2alpha2(u8 regdomain, char *alpha2)
143{
144	unsigned int i;
145	struct zd_reg_alpha2_map *reg_map;
146	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
147		reg_map = &reg_alpha2_map[i];
148		if (regdomain == reg_map->reg) {
149			alpha2[0] = reg_map->alpha2[0];
150			alpha2[1] = reg_map->alpha2[1];
151			return 0;
152		}
153	}
154	return 1;
155}
156
157int zd_mac_preinit_hw(struct ieee80211_hw *hw)
158{
159	int r;
160	u8 addr[ETH_ALEN];
161	struct zd_mac *mac = zd_hw_mac(hw);
162
163	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
164	if (r)
165		return r;
166
167	SET_IEEE80211_PERM_ADDR(hw, addr);
168
169	return 0;
170}
171
172int zd_mac_init_hw(struct ieee80211_hw *hw)
173{
174	int r;
175	struct zd_mac *mac = zd_hw_mac(hw);
176	struct zd_chip *chip = &mac->chip;
177	char alpha2[2];
178	u8 default_regdomain;
179
180	r = zd_chip_enable_int(chip);
181	if (r)
182		goto out;
183	r = zd_chip_init_hw(chip);
184	if (r)
185		goto disable_int;
186
187	ZD_ASSERT(!irqs_disabled());
188
189	r = zd_read_regdomain(chip, &default_regdomain);
190	if (r)
191		goto disable_int;
192	spin_lock_irq(&mac->lock);
193	mac->regdomain = mac->default_regdomain = default_regdomain;
194	spin_unlock_irq(&mac->lock);
195
196	/* We must inform the device that we are doing encryption/decryption in
197	 * software at the moment. */
198	r = zd_set_encryption_type(chip, ENC_SNIFFER);
199	if (r)
200		goto disable_int;
201
202	r = zd_reg2alpha2(mac->regdomain, alpha2);
203	if (r)
204		goto disable_int;
205
206	r = regulatory_hint(hw->wiphy, alpha2);
207disable_int:
208	zd_chip_disable_int(chip);
209out:
210	return r;
211}
212
213void zd_mac_clear(struct zd_mac *mac)
214{
215	flush_workqueue(zd_workqueue);
216	zd_chip_clear(&mac->chip);
217	ZD_ASSERT(!spin_is_locked(&mac->lock));
218	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
219}
220
221static int set_rx_filter(struct zd_mac *mac)
222{
223	unsigned long flags;
224	u32 filter = STA_RX_FILTER;
225
226	spin_lock_irqsave(&mac->lock, flags);
227	if (mac->pass_ctrl)
228		filter |= RX_FILTER_CTRL;
229	spin_unlock_irqrestore(&mac->lock, flags);
230
231	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
232}
233
234static int set_mc_hash(struct zd_mac *mac)
235{
236	struct zd_mc_hash hash;
237	zd_mc_clear(&hash);
238	return zd_chip_set_multicast_hash(&mac->chip, &hash);
239}
240
241static int zd_op_start(struct ieee80211_hw *hw)
242{
243	struct zd_mac *mac = zd_hw_mac(hw);
244	struct zd_chip *chip = &mac->chip;
245	struct zd_usb *usb = &chip->usb;
246	int r;
247
248	if (!usb->initialized) {
249		r = zd_usb_init_hw(usb);
250		if (r)
251			goto out;
252	}
253
254	r = zd_chip_enable_int(chip);
255	if (r < 0)
256		goto out;
257
258	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
259	if (r < 0)
260		goto disable_int;
261	r = set_rx_filter(mac);
262	if (r)
263		goto disable_int;
264	r = set_mc_hash(mac);
265	if (r)
266		goto disable_int;
267	r = zd_chip_switch_radio_on(chip);
268	if (r < 0)
269		goto disable_int;
270	r = zd_chip_enable_rxtx(chip);
271	if (r < 0)
272		goto disable_radio;
273	r = zd_chip_enable_hwint(chip);
274	if (r < 0)
275		goto disable_rxtx;
276
277	housekeeping_enable(mac);
278	return 0;
279disable_rxtx:
280	zd_chip_disable_rxtx(chip);
281disable_radio:
282	zd_chip_switch_radio_off(chip);
283disable_int:
284	zd_chip_disable_int(chip);
285out:
286	return r;
287}
288
289static void zd_op_stop(struct ieee80211_hw *hw)
290{
291	struct zd_mac *mac = zd_hw_mac(hw);
292	struct zd_chip *chip = &mac->chip;
293	struct sk_buff *skb;
294	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
295
296	/* The order here deliberately is a little different from the open()
297	 * method, since we need to make sure there is no opportunity for RX
298	 * frames to be processed by mac80211 after we have stopped it.
299	 */
300
301	zd_chip_disable_rxtx(chip);
302	housekeeping_disable(mac);
303	flush_workqueue(zd_workqueue);
304
305	zd_chip_disable_hwint(chip);
306	zd_chip_switch_radio_off(chip);
307	zd_chip_disable_int(chip);
308
309
310	while ((skb = skb_dequeue(ack_wait_queue)))
311		dev_kfree_skb_any(skb);
312}
313
314/**
315 * zd_mac_tx_status - reports tx status of a packet if required
316 * @hw - a &struct ieee80211_hw pointer
317 * @skb - a sk-buffer
318 * @flags: extra flags to set in the TX status info
319 * @ackssi: ACK signal strength
320 * @success - True for successful transmission of the frame
321 *
322 * This information calls ieee80211_tx_status_irqsafe() if required by the
323 * control information. It copies the control information into the status
324 * information.
325 *
326 * If no status information has been requested, the skb is freed.
327 */
328static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
329		      int ackssi, struct tx_status *tx_status)
330{
331	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
332	int i;
333	int success = 1, retry = 1;
334	int first_idx;
335	const struct tx_retry_rate *retries;
336
337	ieee80211_tx_info_clear_status(info);
338
339	if (tx_status) {
340		success = !tx_status->failure;
341		retry = tx_status->retry + success;
342	}
343
344	if (success) {
345		/* success */
346		info->flags |= IEEE80211_TX_STAT_ACK;
347	} else {
348		/* failure */
349		info->flags &= ~IEEE80211_TX_STAT_ACK;
350	}
351
352	first_idx = info->status.rates[0].idx;
353	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
354	retries = &zd_retry_rates[first_idx];
355	ZD_ASSERT(1 <= retry && retry <= retries->count);
356
357	info->status.rates[0].idx = retries->rate[0];
358	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
359
360	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
361		info->status.rates[i].idx = retries->rate[i];
362		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
363	}
364	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
365		info->status.rates[i].idx = retries->rate[retry - 1];
366		info->status.rates[i].count = 1; // (success ? 1:2);
367	}
368	if (i<IEEE80211_TX_MAX_RATES)
369		info->status.rates[i].idx = -1; /* terminate */
370
371	info->status.ack_signal = ackssi;
372	ieee80211_tx_status_irqsafe(hw, skb);
373}
374
375/**
376 * zd_mac_tx_failed - callback for failed frames
377 * @dev: the mac80211 wireless device
378 *
379 * This function is called if a frame couldn't be successfully
380 * transferred. The first frame from the tx queue, will be selected and
381 * reported as error to the upper layers.
382 */
383void zd_mac_tx_failed(struct urb *urb)
384{
385	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
386	struct zd_mac *mac = zd_hw_mac(hw);
387	struct sk_buff_head *q = &mac->ack_wait_queue;
388	struct sk_buff *skb;
389	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
390	unsigned long flags;
391	int success = !tx_status->failure;
392	int retry = tx_status->retry + success;
393	int found = 0;
394	int i, position = 0;
395
396	q = &mac->ack_wait_queue;
397	spin_lock_irqsave(&q->lock, flags);
398
399	skb_queue_walk(q, skb) {
400		struct ieee80211_hdr *tx_hdr;
401		struct ieee80211_tx_info *info;
402		int first_idx, final_idx;
403		const struct tx_retry_rate *retries;
404		u8 final_rate;
405
406		position ++;
407
408		/* if the hardware reports a failure and we had a 802.11 ACK
409		 * pending, then we skip the first skb when searching for a
410		 * matching frame */
411		if (tx_status->failure && mac->ack_pending &&
412		    skb_queue_is_first(q, skb)) {
413			continue;
414		}
415
416		tx_hdr = (struct ieee80211_hdr *)skb->data;
417
418		/* we skip all frames not matching the reported destination */
419		if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
420			continue;
421		}
422
423		/* we skip all frames not matching the reported final rate */
424
425		info = IEEE80211_SKB_CB(skb);
426		first_idx = info->status.rates[0].idx;
427		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
428		retries = &zd_retry_rates[first_idx];
429		if (retry <= 0 || retry > retries->count)
430			continue;
431
432		final_idx = retries->rate[retry - 1];
433		final_rate = zd_rates[final_idx].hw_value;
434
435		if (final_rate != tx_status->rate) {
436			continue;
437		}
438
439		found = 1;
440		break;
441	}
442
443	if (found) {
444		for (i=1; i<=position; i++) {
445			skb = __skb_dequeue(q);
446			zd_mac_tx_status(hw, skb,
447					 mac->ack_pending ? mac->ack_signal : 0,
448					 i == position ? tx_status : NULL);
449			mac->ack_pending = 0;
450		}
451	}
452
453	spin_unlock_irqrestore(&q->lock, flags);
454}
455
456/**
457 * zd_mac_tx_to_dev - callback for USB layer
458 * @skb: a &sk_buff pointer
459 * @error: error value, 0 if transmission successful
460 *
461 * Informs the MAC layer that the frame has successfully transferred to the
462 * device. If an ACK is required and the transfer to the device has been
463 * successful, the packets are put on the @ack_wait_queue with
464 * the control set removed.
465 */
466void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
467{
468	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
469	struct ieee80211_hw *hw = info->rate_driver_data[0];
470	struct zd_mac *mac = zd_hw_mac(hw);
471
472	ieee80211_tx_info_clear_status(info);
473
474	skb_pull(skb, sizeof(struct zd_ctrlset));
475	if (unlikely(error ||
476	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
477		ieee80211_tx_status_irqsafe(hw, skb);
478	} else {
479		struct sk_buff_head *q = &mac->ack_wait_queue;
480
481		skb_queue_tail(q, skb);
482		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
483			zd_mac_tx_status(hw, skb_dequeue(q),
484					 mac->ack_pending ? mac->ack_signal : 0,
485					 NULL);
486			mac->ack_pending = 0;
487		}
488	}
489}
490
491static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
492{
493	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
494	 * the zd-rate values.
495	 */
496	static const u8 rate_divisor[] = {
497		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
498		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
499		/* Bits must be doubled. */
500		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
501		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
502		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
503		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
504		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
505		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
506		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
507		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
508		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
509		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
510	};
511
512	u32 bits = (u32)tx_length * 8;
513	u32 divisor;
514
515	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
516	if (divisor == 0)
517		return -EINVAL;
518
519	switch (zd_rate) {
520	case ZD_CCK_RATE_5_5M:
521		bits = (2*bits) + 10; /* round up to the next integer */
522		break;
523	case ZD_CCK_RATE_11M:
524		if (service) {
525			u32 t = bits % 11;
526			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
527			if (0 < t && t <= 3) {
528				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
529			}
530		}
531		bits += 10; /* round up to the next integer */
532		break;
533	}
534
535	return bits/divisor;
536}
537
538static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
539	                   struct ieee80211_hdr *header,
540	                   struct ieee80211_tx_info *info)
541{
542	/*
543	 * CONTROL TODO:
544	 * - if backoff needed, enable bit 0
545	 * - if burst (backoff not needed) disable bit 0
546	 */
547
548	cs->control = 0;
549
550	/* First fragment */
551	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
552		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
553
554	/* No ACK expected (multicast, etc.) */
555	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
556		cs->control |= ZD_CS_NO_ACK;
557
558	/* PS-POLL */
559	if (ieee80211_is_pspoll(header->frame_control))
560		cs->control |= ZD_CS_PS_POLL_FRAME;
561
562	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
563		cs->control |= ZD_CS_RTS;
564
565	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
566		cs->control |= ZD_CS_SELF_CTS;
567
568}
569
570static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
571{
572	struct zd_mac *mac = zd_hw_mac(hw);
573	int r;
574	u32 tmp, j = 0;
575	/* 4 more bytes for tail CRC */
576	u32 full_len = beacon->len + 4;
577
578	r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
579	if (r < 0)
580		return r;
581	r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
582	if (r < 0)
583		return r;
584
585	while (tmp & 0x2) {
586		r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
587		if (r < 0)
588			return r;
589		if ((++j % 100) == 0) {
590			printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
591			if (j >= 500)  {
592				printk(KERN_ERR "Giving up beacon config.\n");
593				return -ETIMEDOUT;
594			}
595		}
596		msleep(1);
597	}
598
599	r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
600	if (r < 0)
601		return r;
602	if (zd_chip_is_zd1211b(&mac->chip)) {
603		r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
604		if (r < 0)
605			return r;
606	}
607
608	for (j = 0 ; j < beacon->len; j++) {
609		r = zd_iowrite32(&mac->chip, CR_BCN_FIFO,
610				*((u8 *)(beacon->data + j)));
611		if (r < 0)
612			return r;
613	}
614
615	for (j = 0; j < 4; j++) {
616		r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
617		if (r < 0)
618			return r;
619	}
620
621	r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
622	if (r < 0)
623		return r;
624
625	/* 802.11b/g 2.4G CCK 1Mb
626	 * 802.11a, not yet implemented, uses different values (see GPL vendor
627	 * driver)
628	 */
629	return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
630			(full_len << 19));
631}
632
633static int fill_ctrlset(struct zd_mac *mac,
634			struct sk_buff *skb)
635{
636	int r;
637	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
638	unsigned int frag_len = skb->len + FCS_LEN;
639	unsigned int packet_length;
640	struct ieee80211_rate *txrate;
641	struct zd_ctrlset *cs = (struct zd_ctrlset *)
642		skb_push(skb, sizeof(struct zd_ctrlset));
643	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
644
645	ZD_ASSERT(frag_len <= 0xffff);
646
647	txrate = ieee80211_get_tx_rate(mac->hw, info);
648
649	cs->modulation = txrate->hw_value;
650	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
651		cs->modulation = txrate->hw_value_short;
652
653	cs->tx_length = cpu_to_le16(frag_len);
654
655	cs_set_control(mac, cs, hdr, info);
656
657	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
658	ZD_ASSERT(packet_length <= 0xffff);
659	/* ZD1211B: Computing the length difference this way, gives us
660	 * flexibility to compute the packet length.
661	 */
662	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
663			packet_length - frag_len : packet_length);
664
665	/*
666	 * CURRENT LENGTH:
667	 * - transmit frame length in microseconds
668	 * - seems to be derived from frame length
669	 * - see Cal_Us_Service() in zdinlinef.h
670	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
671	 *  - bTxBurstEnable is never set in the vendor driver
672	 *
673	 * SERVICE:
674	 * - "for PLCP configuration"
675	 * - always 0 except in some situations at 802.11b 11M
676	 * - see line 53 of zdinlinef.h
677	 */
678	cs->service = 0;
679	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
680		                 le16_to_cpu(cs->tx_length));
681	if (r < 0)
682		return r;
683	cs->current_length = cpu_to_le16(r);
684	cs->next_frame_length = 0;
685
686	return 0;
687}
688
689/**
690 * zd_op_tx - transmits a network frame to the device
691 *
692 * @dev: mac80211 hardware device
693 * @skb: socket buffer
694 * @control: the control structure
695 *
696 * This function transmit an IEEE 802.11 network frame to the device. The
697 * control block of the skbuff will be initialized. If necessary the incoming
698 * mac80211 queues will be stopped.
699 */
700static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
701{
702	struct zd_mac *mac = zd_hw_mac(hw);
703	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
704	int r;
705
706	r = fill_ctrlset(mac, skb);
707	if (r)
708		goto fail;
709
710	info->rate_driver_data[0] = hw;
711
712	r = zd_usb_tx(&mac->chip.usb, skb);
713	if (r)
714		goto fail;
715	return 0;
716
717fail:
718	dev_kfree_skb(skb);
719	return 0;
720}
721
722/**
723 * filter_ack - filters incoming packets for acknowledgements
724 * @dev: the mac80211 device
725 * @rx_hdr: received header
726 * @stats: the status for the received packet
727 *
728 * This functions looks for ACK packets and tries to match them with the
729 * frames in the tx queue. If a match is found the frame will be dequeued and
730 * the upper layers is informed about the successful transmission. If
731 * mac80211 queues have been stopped and the number of frames still to be
732 * transmitted is low the queues will be opened again.
733 *
734 * Returns 1 if the frame was an ACK, 0 if it was ignored.
735 */
736static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
737		      struct ieee80211_rx_status *stats)
738{
739	struct zd_mac *mac = zd_hw_mac(hw);
740	struct sk_buff *skb;
741	struct sk_buff_head *q;
742	unsigned long flags;
743	int found = 0;
744	int i, position = 0;
745
746	if (!ieee80211_is_ack(rx_hdr->frame_control))
747		return 0;
748
749	q = &mac->ack_wait_queue;
750	spin_lock_irqsave(&q->lock, flags);
751	skb_queue_walk(q, skb) {
752		struct ieee80211_hdr *tx_hdr;
753
754		position ++;
755
756		if (mac->ack_pending && skb_queue_is_first(q, skb))
757		    continue;
758
759		tx_hdr = (struct ieee80211_hdr *)skb->data;
760		if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
761		{
762			found = 1;
763			break;
764		}
765	}
766
767	if (found) {
768		for (i=1; i<position; i++) {
769			skb = __skb_dequeue(q);
770			zd_mac_tx_status(hw, skb,
771					 mac->ack_pending ? mac->ack_signal : 0,
772					 NULL);
773			mac->ack_pending = 0;
774		}
775
776		mac->ack_pending = 1;
777		mac->ack_signal = stats->signal;
778	}
779
780	spin_unlock_irqrestore(&q->lock, flags);
781	return 1;
782}
783
784int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
785{
786	struct zd_mac *mac = zd_hw_mac(hw);
787	struct ieee80211_rx_status stats;
788	const struct rx_status *status;
789	struct sk_buff *skb;
790	int bad_frame = 0;
791	__le16 fc;
792	int need_padding;
793	int i;
794	u8 rate;
795
796	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
797	             FCS_LEN + sizeof(struct rx_status))
798		return -EINVAL;
799
800	memset(&stats, 0, sizeof(stats));
801
802	/* Note about pass_failed_fcs and pass_ctrl access below:
803	 * mac locking intentionally omitted here, as this is the only unlocked
804	 * reader and the only writer is configure_filter. Plus, if there were
805	 * any races accessing these variables, it wouldn't really matter.
806	 * If mac80211 ever provides a way for us to access filter flags
807	 * from outside configure_filter, we could improve on this. Also, this
808	 * situation may change once we implement some kind of DMA-into-skb
809	 * RX path. */
810
811	/* Caller has to ensure that length >= sizeof(struct rx_status). */
812	status = (struct rx_status *)
813		(buffer + (length - sizeof(struct rx_status)));
814	if (status->frame_status & ZD_RX_ERROR) {
815		if (mac->pass_failed_fcs &&
816				(status->frame_status & ZD_RX_CRC32_ERROR)) {
817			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
818			bad_frame = 1;
819		} else {
820			return -EINVAL;
821		}
822	}
823
824	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
825	stats.band = IEEE80211_BAND_2GHZ;
826	stats.signal = status->signal_strength;
827
828	rate = zd_rx_rate(buffer, status);
829
830	/* todo: return index in the big switches in zd_rx_rate instead */
831	for (i = 0; i < mac->band.n_bitrates; i++)
832		if (rate == mac->band.bitrates[i].hw_value)
833			stats.rate_idx = i;
834
835	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
836	buffer += ZD_PLCP_HEADER_SIZE;
837
838	/* Except for bad frames, filter each frame to see if it is an ACK, in
839	 * which case our internal TX tracking is updated. Normally we then
840	 * bail here as there's no need to pass ACKs on up to the stack, but
841	 * there is also the case where the stack has requested us to pass
842	 * control frames on up (pass_ctrl) which we must consider. */
843	if (!bad_frame &&
844			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
845			&& !mac->pass_ctrl)
846		return 0;
847
848	fc = get_unaligned((__le16*)buffer);
849	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
850
851	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
852	if (skb == NULL)
853		return -ENOMEM;
854	if (need_padding) {
855		/* Make sure the payload data is 4 byte aligned. */
856		skb_reserve(skb, 2);
857	}
858
859	memcpy(skb_put(skb, length), buffer, length);
860
861	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
862	ieee80211_rx_irqsafe(hw, skb);
863	return 0;
864}
865
866static int zd_op_add_interface(struct ieee80211_hw *hw,
867				struct ieee80211_vif *vif)
868{
869	struct zd_mac *mac = zd_hw_mac(hw);
870
871	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
872	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
873		return -EOPNOTSUPP;
874
875	switch (vif->type) {
876	case NL80211_IFTYPE_MONITOR:
877	case NL80211_IFTYPE_MESH_POINT:
878	case NL80211_IFTYPE_STATION:
879	case NL80211_IFTYPE_ADHOC:
880		mac->type = vif->type;
881		break;
882	default:
883		return -EOPNOTSUPP;
884	}
885
886	return zd_write_mac_addr(&mac->chip, vif->addr);
887}
888
889static void zd_op_remove_interface(struct ieee80211_hw *hw,
890				    struct ieee80211_vif *vif)
891{
892	struct zd_mac *mac = zd_hw_mac(hw);
893	mac->type = NL80211_IFTYPE_UNSPECIFIED;
894	zd_set_beacon_interval(&mac->chip, 0);
895	zd_write_mac_addr(&mac->chip, NULL);
896}
897
898static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
899{
900	struct zd_mac *mac = zd_hw_mac(hw);
901	struct ieee80211_conf *conf = &hw->conf;
902
903	return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
904}
905
906static void zd_process_intr(struct work_struct *work)
907{
908	u16 int_status;
909	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
910
911	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4));
912	if (int_status & INT_CFG_NEXT_BCN)
913		dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");
914	else
915		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
916
917	zd_chip_enable_hwint(&mac->chip);
918}
919
920
921static void set_multicast_hash_handler(struct work_struct *work)
922{
923	struct zd_mac *mac =
924		container_of(work, struct zd_mac, set_multicast_hash_work);
925	struct zd_mc_hash hash;
926
927	spin_lock_irq(&mac->lock);
928	hash = mac->multicast_hash;
929	spin_unlock_irq(&mac->lock);
930
931	zd_chip_set_multicast_hash(&mac->chip, &hash);
932}
933
934static void set_rx_filter_handler(struct work_struct *work)
935{
936	struct zd_mac *mac =
937		container_of(work, struct zd_mac, set_rx_filter_work);
938	int r;
939
940	dev_dbg_f(zd_mac_dev(mac), "\n");
941	r = set_rx_filter(mac);
942	if (r)
943		dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
944}
945
946static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
947				   struct netdev_hw_addr_list *mc_list)
948{
949	struct zd_mac *mac = zd_hw_mac(hw);
950	struct zd_mc_hash hash;
951	struct netdev_hw_addr *ha;
952
953	zd_mc_clear(&hash);
954
955	netdev_hw_addr_list_for_each(ha, mc_list) {
956		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
957		zd_mc_add_addr(&hash, ha->addr);
958	}
959
960	return hash.low | ((u64)hash.high << 32);
961}
962
963#define SUPPORTED_FIF_FLAGS \
964	(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
965	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
966static void zd_op_configure_filter(struct ieee80211_hw *hw,
967			unsigned int changed_flags,
968			unsigned int *new_flags,
969			u64 multicast)
970{
971	struct zd_mc_hash hash = {
972		.low = multicast,
973		.high = multicast >> 32,
974	};
975	struct zd_mac *mac = zd_hw_mac(hw);
976	unsigned long flags;
977
978	/* Only deal with supported flags */
979	changed_flags &= SUPPORTED_FIF_FLAGS;
980	*new_flags &= SUPPORTED_FIF_FLAGS;
981
982	/*
983	 * If multicast parameter (as returned by zd_op_prepare_multicast)
984	 * has changed, no bit in changed_flags is set. To handle this
985	 * situation, we do not return if changed_flags is 0. If we do so,
986	 * we will have some issue with IPv6 which uses multicast for link
987	 * layer address resolution.
988	 */
989	if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
990		zd_mc_add_all(&hash);
991
992	spin_lock_irqsave(&mac->lock, flags);
993	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
994	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
995	mac->multicast_hash = hash;
996	spin_unlock_irqrestore(&mac->lock, flags);
997
998	queue_work(zd_workqueue, &mac->set_multicast_hash_work);
999
1000	if (changed_flags & FIF_CONTROL)
1001		queue_work(zd_workqueue, &mac->set_rx_filter_work);
1002
1003	/* no handling required for FIF_OTHER_BSS as we don't currently
1004	 * do BSSID filtering */
1005}
1006
1007static void set_rts_cts_work(struct work_struct *work)
1008{
1009	struct zd_mac *mac =
1010		container_of(work, struct zd_mac, set_rts_cts_work);
1011	unsigned long flags;
1012	unsigned int short_preamble;
1013
1014	mutex_lock(&mac->chip.mutex);
1015
1016	spin_lock_irqsave(&mac->lock, flags);
1017	mac->updating_rts_rate = 0;
1018	short_preamble = mac->short_preamble;
1019	spin_unlock_irqrestore(&mac->lock, flags);
1020
1021	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1022	mutex_unlock(&mac->chip.mutex);
1023}
1024
1025static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1026				   struct ieee80211_vif *vif,
1027				   struct ieee80211_bss_conf *bss_conf,
1028				   u32 changes)
1029{
1030	struct zd_mac *mac = zd_hw_mac(hw);
1031	unsigned long flags;
1032	int associated;
1033
1034	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1035
1036	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1037	    mac->type == NL80211_IFTYPE_ADHOC) {
1038		associated = true;
1039		if (changes & BSS_CHANGED_BEACON) {
1040			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1041
1042			if (beacon) {
1043				zd_mac_config_beacon(hw, beacon);
1044				kfree_skb(beacon);
1045			}
1046		}
1047
1048		if (changes & BSS_CHANGED_BEACON_ENABLED) {
1049			u32 interval;
1050
1051			if (bss_conf->enable_beacon)
1052				interval = BCN_MODE_IBSS |
1053						bss_conf->beacon_int;
1054			else
1055				interval = 0;
1056
1057			zd_set_beacon_interval(&mac->chip, interval);
1058		}
1059	} else
1060		associated = is_valid_ether_addr(bss_conf->bssid);
1061
1062	spin_lock_irq(&mac->lock);
1063	mac->associated = associated;
1064	spin_unlock_irq(&mac->lock);
1065
1066	/* TODO: do hardware bssid filtering */
1067
1068	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1069		spin_lock_irqsave(&mac->lock, flags);
1070		mac->short_preamble = bss_conf->use_short_preamble;
1071		if (!mac->updating_rts_rate) {
1072			mac->updating_rts_rate = 1;
1073			queue_work(zd_workqueue, &mac->set_rts_cts_work);
1074		}
1075		spin_unlock_irqrestore(&mac->lock, flags);
1076	}
1077}
1078
1079static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
1080{
1081	struct zd_mac *mac = zd_hw_mac(hw);
1082	return zd_chip_get_tsf(&mac->chip);
1083}
1084
1085static const struct ieee80211_ops zd_ops = {
1086	.tx			= zd_op_tx,
1087	.start			= zd_op_start,
1088	.stop			= zd_op_stop,
1089	.add_interface		= zd_op_add_interface,
1090	.remove_interface	= zd_op_remove_interface,
1091	.config			= zd_op_config,
1092	.prepare_multicast	= zd_op_prepare_multicast,
1093	.configure_filter	= zd_op_configure_filter,
1094	.bss_info_changed	= zd_op_bss_info_changed,
1095	.get_tsf		= zd_op_get_tsf,
1096};
1097
1098struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1099{
1100	struct zd_mac *mac;
1101	struct ieee80211_hw *hw;
1102
1103	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1104	if (!hw) {
1105		dev_dbg_f(&intf->dev, "out of memory\n");
1106		return NULL;
1107	}
1108
1109	mac = zd_hw_mac(hw);
1110
1111	memset(mac, 0, sizeof(*mac));
1112	spin_lock_init(&mac->lock);
1113	mac->hw = hw;
1114
1115	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1116
1117	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1118	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1119	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1120	mac->band.bitrates = mac->rates;
1121	mac->band.n_channels = ARRAY_SIZE(zd_channels);
1122	mac->band.channels = mac->channels;
1123
1124	hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1125
1126	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1127		    IEEE80211_HW_SIGNAL_UNSPEC;
1128
1129	hw->wiphy->interface_modes =
1130		BIT(NL80211_IFTYPE_MESH_POINT) |
1131		BIT(NL80211_IFTYPE_STATION) |
1132		BIT(NL80211_IFTYPE_ADHOC);
1133
1134	hw->max_signal = 100;
1135	hw->queues = 1;
1136	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1137
1138	/*
1139	 * Tell mac80211 that we support multi rate retries
1140	 */
1141	hw->max_rates = IEEE80211_TX_MAX_RATES;
1142	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
1143
1144	skb_queue_head_init(&mac->ack_wait_queue);
1145	mac->ack_pending = 0;
1146
1147	zd_chip_init(&mac->chip, hw, intf);
1148	housekeeping_init(mac);
1149	INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
1150	INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
1151	INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
1152	INIT_WORK(&mac->process_intr, zd_process_intr);
1153
1154	SET_IEEE80211_DEV(hw, &intf->dev);
1155	return hw;
1156}
1157
1158#define LINK_LED_WORK_DELAY HZ
1159
1160static void link_led_handler(struct work_struct *work)
1161{
1162	struct zd_mac *mac =
1163		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1164	struct zd_chip *chip = &mac->chip;
1165	int is_associated;
1166	int r;
1167
1168	spin_lock_irq(&mac->lock);
1169	is_associated = mac->associated;
1170	spin_unlock_irq(&mac->lock);
1171
1172	r = zd_chip_control_leds(chip,
1173		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1174	if (r)
1175		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1176
1177	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1178		           LINK_LED_WORK_DELAY);
1179}
1180
1181static void housekeeping_init(struct zd_mac *mac)
1182{
1183	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1184}
1185
1186static void housekeeping_enable(struct zd_mac *mac)
1187{
1188	dev_dbg_f(zd_mac_dev(mac), "\n");
1189	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1190			   0);
1191}
1192
1193static void housekeeping_disable(struct zd_mac *mac)
1194{
1195	dev_dbg_f(zd_mac_dev(mac), "\n");
1196	cancel_rearming_delayed_workqueue(zd_workqueue,
1197		&mac->housekeeping.link_led_work);
1198	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1199}
1200