• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/net/wireless/rt2x00/
1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
4	<http://rt2x00.serialmonkey.com>
5
6	This program is free software; you can redistribute it and/or modify
7	it under the terms of the GNU General Public License as published by
8	the Free Software Foundation; either version 2 of the License, or
9	(at your option) any later version.
10
11	This program is distributed in the hope that it will be useful,
12	but WITHOUT ANY WARRANTY; without even the implied warranty of
13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14	GNU General Public License for more details.
15
16	You should have received a copy of the GNU General Public License
17	along with this program; if not, write to the
18	Free Software Foundation, Inc.,
19	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22/*
23	Module: rt2x00lib
24	Abstract: rt2x00 queue specific routines.
25 */
26
27#include <linux/slab.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/dma-mapping.h>
31
32#include "rt2x00.h"
33#include "rt2x00lib.h"
34
35struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
36					struct queue_entry *entry)
37{
38	struct sk_buff *skb;
39	struct skb_frame_desc *skbdesc;
40	unsigned int frame_size;
41	unsigned int head_size = 0;
42	unsigned int tail_size = 0;
43
44	/*
45	 * The frame size includes descriptor size, because the
46	 * hardware directly receive the frame into the skbuffer.
47	 */
48	frame_size = entry->queue->data_size + entry->queue->desc_size;
49
50	/*
51	 * The payload should be aligned to a 4-byte boundary,
52	 * this means we need at least 3 bytes for moving the frame
53	 * into the correct offset.
54	 */
55	head_size = 4;
56
57	/*
58	 * For IV/EIV/ICV assembly we must make sure there is
59	 * at least 8 bytes bytes available in headroom for IV/EIV
60	 * and 8 bytes for ICV data as tailroon.
61	 */
62	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
63		head_size += 8;
64		tail_size += 8;
65	}
66
67	/*
68	 * Allocate skbuffer.
69	 */
70	skb = dev_alloc_skb(frame_size + head_size + tail_size);
71	if (!skb)
72		return NULL;
73
74	/*
75	 * Make sure we not have a frame with the requested bytes
76	 * available in the head and tail.
77	 */
78	skb_reserve(skb, head_size);
79	skb_put(skb, frame_size);
80
81	/*
82	 * Populate skbdesc.
83	 */
84	skbdesc = get_skb_frame_desc(skb);
85	memset(skbdesc, 0, sizeof(*skbdesc));
86	skbdesc->entry = entry;
87
88	if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
89		skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
90						  skb->data,
91						  skb->len,
92						  DMA_FROM_DEVICE);
93		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
94	}
95
96	return skb;
97}
98
99void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
100{
101	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
102
103	skbdesc->skb_dma =
104	    dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
105	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
106}
107EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
108
109void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
110{
111	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
112
113	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
114		dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
115				 DMA_FROM_DEVICE);
116		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
117	}
118
119	if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120		dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
121				 DMA_TO_DEVICE);
122		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
123	}
124}
125EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
126
127void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
128{
129	if (!skb)
130		return;
131
132	rt2x00queue_unmap_skb(rt2x00dev, skb);
133	dev_kfree_skb_any(skb);
134}
135
136void rt2x00queue_align_frame(struct sk_buff *skb)
137{
138	unsigned int frame_length = skb->len;
139	unsigned int align = ALIGN_SIZE(skb, 0);
140
141	if (!align)
142		return;
143
144	skb_push(skb, align);
145	memmove(skb->data, skb->data + align, frame_length);
146	skb_trim(skb, frame_length);
147}
148
149void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
150{
151	unsigned int frame_length = skb->len;
152	unsigned int align = ALIGN_SIZE(skb, header_length);
153
154	if (!align)
155		return;
156
157	skb_push(skb, align);
158	memmove(skb->data, skb->data + align, frame_length);
159	skb_trim(skb, frame_length);
160}
161
162void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
163{
164	unsigned int payload_length = skb->len - header_length;
165	unsigned int header_align = ALIGN_SIZE(skb, 0);
166	unsigned int payload_align = ALIGN_SIZE(skb, header_length);
167	unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
168
169	/*
170	 * Adjust the header alignment if the payload needs to be moved more
171	 * than the header.
172	 */
173	if (payload_align > header_align)
174		header_align += 4;
175
176	/* There is nothing to do if no alignment is needed */
177	if (!header_align)
178		return;
179
180	/* Reserve the amount of space needed in front of the frame */
181	skb_push(skb, header_align);
182
183	/*
184	 * Move the header.
185	 */
186	memmove(skb->data, skb->data + header_align, header_length);
187
188	/* Move the payload, if present and if required */
189	if (payload_length && payload_align)
190		memmove(skb->data + header_length + l2pad,
191			skb->data + header_length + l2pad + payload_align,
192			payload_length);
193
194	/* Trim the skb to the correct size */
195	skb_trim(skb, header_length + l2pad + payload_length);
196}
197
198void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
199{
200	unsigned int l2pad = L2PAD_SIZE(header_length);
201
202	if (!l2pad)
203		return;
204
205	memmove(skb->data + l2pad, skb->data, header_length);
206	skb_pull(skb, l2pad);
207}
208
209static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
210						 struct txentry_desc *txdesc)
211{
212	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
213	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
214	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
215	unsigned long irqflags;
216
217	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
218	    unlikely(!tx_info->control.vif))
219		return;
220
221	spin_lock_irqsave(&intf->seqlock, irqflags);
222
223	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
224		intf->seqno += 0x10;
225	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
226	hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
227
228	spin_unlock_irqrestore(&intf->seqlock, irqflags);
229
230	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
231}
232
233static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
234						  struct txentry_desc *txdesc,
235						  const struct rt2x00_rate *hwrate)
236{
237	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
238	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
239	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
240	unsigned int data_length;
241	unsigned int duration;
242	unsigned int residual;
243
244	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
245	data_length = entry->skb->len + 4;
246	data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
247
248	/*
249	 * PLCP setup
250	 * Length calculation depends on OFDM/CCK rate.
251	 */
252	txdesc->signal = hwrate->plcp;
253	txdesc->service = 0x04;
254
255	if (hwrate->flags & DEV_RATE_OFDM) {
256		txdesc->length_high = (data_length >> 6) & 0x3f;
257		txdesc->length_low = data_length & 0x3f;
258	} else {
259		/*
260		 * Convert length to microseconds.
261		 */
262		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
263		duration = GET_DURATION(data_length, hwrate->bitrate);
264
265		if (residual != 0) {
266			duration++;
267
268			/*
269			 * Check if we need to set the Length Extension
270			 */
271			if (hwrate->bitrate == 110 && residual <= 30)
272				txdesc->service |= 0x80;
273		}
274
275		txdesc->length_high = (duration >> 8) & 0xff;
276		txdesc->length_low = duration & 0xff;
277
278		/*
279		 * When preamble is enabled we should set the
280		 * preamble bit for the signal.
281		 */
282		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
283			txdesc->signal |= 0x08;
284	}
285}
286
287static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
288					     struct txentry_desc *txdesc)
289{
290	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
291	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
292	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
293	struct ieee80211_rate *rate =
294	    ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
295	const struct rt2x00_rate *hwrate;
296
297	memset(txdesc, 0, sizeof(*txdesc));
298
299	/*
300	 * Initialize information from queue
301	 */
302	txdesc->queue = entry->queue->qid;
303	txdesc->cw_min = entry->queue->cw_min;
304	txdesc->cw_max = entry->queue->cw_max;
305	txdesc->aifs = entry->queue->aifs;
306
307	/*
308	 * Header and frame information.
309	 */
310	txdesc->length = entry->skb->len;
311	txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
312
313	/*
314	 * Check whether this frame is to be acked.
315	 */
316	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
317		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
318
319	/*
320	 * Check if this is a RTS/CTS frame
321	 */
322	if (ieee80211_is_rts(hdr->frame_control) ||
323	    ieee80211_is_cts(hdr->frame_control)) {
324		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
325		if (ieee80211_is_rts(hdr->frame_control))
326			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
327		else
328			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
329		if (tx_info->control.rts_cts_rate_idx >= 0)
330			rate =
331			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
332	}
333
334	/*
335	 * Determine retry information.
336	 */
337	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
338	if (txdesc->retry_limit >= rt2x00dev->long_retry)
339		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
340
341	/*
342	 * Check if more fragments are pending
343	 */
344	if (ieee80211_has_morefrags(hdr->frame_control)) {
345		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
346		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
347	}
348
349	/*
350	 * Check if more frames (!= fragments) are pending
351	 */
352	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
353		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
354
355	/*
356	 * Beacons and probe responses require the tsf timestamp
357	 * to be inserted into the frame, except for a frame that has been injected
358	 * through a monitor interface. This latter is needed for testing a
359	 * monitor interface.
360	 */
361	if ((ieee80211_is_beacon(hdr->frame_control) ||
362	    ieee80211_is_probe_resp(hdr->frame_control)) &&
363	    (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
364		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
365
366	/*
367	 * Determine with what IFS priority this frame should be send.
368	 * Set ifs to IFS_SIFS when the this is not the first fragment,
369	 * or this fragment came after RTS/CTS.
370	 */
371	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
372	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
373		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
374		txdesc->ifs = IFS_BACKOFF;
375	} else
376		txdesc->ifs = IFS_SIFS;
377
378	/*
379	 * Determine rate modulation.
380	 */
381	hwrate = rt2x00_get_rate(rate->hw_value);
382	txdesc->rate_mode = RATE_MODE_CCK;
383	if (hwrate->flags & DEV_RATE_OFDM)
384		txdesc->rate_mode = RATE_MODE_OFDM;
385
386	/*
387	 * Apply TX descriptor handling by components
388	 */
389	rt2x00crypto_create_tx_descriptor(entry, txdesc);
390	rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
391	rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
392	rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
393}
394
395static int rt2x00queue_write_tx_data(struct queue_entry *entry,
396				     struct txentry_desc *txdesc)
397{
398	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
399
400	/*
401	 * This should not happen, we already checked the entry
402	 * was ours. When the hardware disagrees there has been
403	 * a queue corruption!
404	 */
405	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
406		     rt2x00dev->ops->lib->get_entry_state(entry))) {
407		ERROR(rt2x00dev,
408		      "Corrupt queue %d, accessing entry which is not ours.\n"
409		      "Please file bug report to %s.\n",
410		      entry->queue->qid, DRV_PROJECT);
411		return -EINVAL;
412	}
413
414	/*
415	 * Add the requested extra tx headroom in front of the skb.
416	 */
417	skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
418	memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
419
420	/*
421	 * Call the driver's write_tx_data function, if it exists.
422	 */
423	if (rt2x00dev->ops->lib->write_tx_data)
424		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
425
426	/*
427	 * Map the skb to DMA.
428	 */
429	if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
430		rt2x00queue_map_txskb(rt2x00dev, entry->skb);
431
432	return 0;
433}
434
435static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
436					    struct txentry_desc *txdesc)
437{
438	struct data_queue *queue = entry->queue;
439	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
440
441	rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
442
443	/*
444	 * All processing on the frame has been completed, this means
445	 * it is now ready to be dumped to userspace through debugfs.
446	 */
447	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
448}
449
450static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
451				      struct txentry_desc *txdesc)
452{
453	struct data_queue *queue = entry->queue;
454	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
455
456	/*
457	 * Check if we need to kick the queue, there are however a few rules
458	 *	1) Don't kick unless this is the last in frame in a burst.
459	 *	   When the burst flag is set, this frame is always followed
460	 *	   by another frame which in some way are related to eachother.
461	 *	   This is true for fragments, RTS or CTS-to-self frames.
462	 *	2) Rule 1 can be broken when the available entries
463	 *	   in the queue are less then a certain threshold.
464	 */
465	if (rt2x00queue_threshold(queue) ||
466	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
467		rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
468}
469
470int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
471			       bool local)
472{
473	struct ieee80211_tx_info *tx_info;
474	struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
475	struct txentry_desc txdesc;
476	struct skb_frame_desc *skbdesc;
477	u8 rate_idx, rate_flags;
478
479	if (unlikely(rt2x00queue_full(queue)))
480		return -ENOBUFS;
481
482	if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
483		ERROR(queue->rt2x00dev,
484		      "Arrived at non-free entry in the non-full queue %d.\n"
485		      "Please file bug report to %s.\n",
486		      queue->qid, DRV_PROJECT);
487		return -EINVAL;
488	}
489
490	/*
491	 * Copy all TX descriptor information into txdesc,
492	 * after that we are free to use the skb->cb array
493	 * for our information.
494	 */
495	entry->skb = skb;
496	rt2x00queue_create_tx_descriptor(entry, &txdesc);
497
498	/*
499	 * All information is retrieved from the skb->cb array,
500	 * now we should claim ownership of the driver part of that
501	 * array, preserving the bitrate index and flags.
502	 */
503	tx_info = IEEE80211_SKB_CB(skb);
504	rate_idx = tx_info->control.rates[0].idx;
505	rate_flags = tx_info->control.rates[0].flags;
506	skbdesc = get_skb_frame_desc(skb);
507	memset(skbdesc, 0, sizeof(*skbdesc));
508	skbdesc->entry = entry;
509	skbdesc->tx_rate_idx = rate_idx;
510	skbdesc->tx_rate_flags = rate_flags;
511
512	if (local)
513		skbdesc->flags |= SKBDESC_NOT_MAC80211;
514
515	/*
516	 * When hardware encryption is supported, and this frame
517	 * is to be encrypted, we should strip the IV/EIV data from
518	 * the frame so we can provide it to the driver separately.
519	 */
520	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
521	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
522		if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
523			rt2x00crypto_tx_copy_iv(skb, &txdesc);
524		else
525			rt2x00crypto_tx_remove_iv(skb, &txdesc);
526	}
527
528	/*
529	 * When DMA allocation is required we should guarentee to the
530	 * driver that the DMA is aligned to a 4-byte boundary.
531	 * However some drivers require L2 padding to pad the payload
532	 * rather then the header. This could be a requirement for
533	 * PCI and USB devices, while header alignment only is valid
534	 * for PCI devices.
535	 */
536	if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
537		rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
538	else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
539		rt2x00queue_align_frame(entry->skb);
540
541	/*
542	 * It could be possible that the queue was corrupted and this
543	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
544	 * this frame will simply be dropped.
545	 */
546	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
547		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
548		entry->skb = NULL;
549		return -EIO;
550	}
551
552	set_bit(ENTRY_DATA_PENDING, &entry->flags);
553
554	rt2x00queue_index_inc(queue, Q_INDEX);
555	rt2x00queue_write_tx_descriptor(entry, &txdesc);
556	rt2x00queue_kick_tx_queue(entry, &txdesc);
557
558	return 0;
559}
560
561int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
562			      struct ieee80211_vif *vif,
563			      const bool enable_beacon)
564{
565	struct rt2x00_intf *intf = vif_to_intf(vif);
566	struct skb_frame_desc *skbdesc;
567	struct txentry_desc txdesc;
568
569	if (unlikely(!intf->beacon))
570		return -ENOBUFS;
571
572	mutex_lock(&intf->beacon_skb_mutex);
573
574	/*
575	 * Clean up the beacon skb.
576	 */
577	rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
578	intf->beacon->skb = NULL;
579
580	if (!enable_beacon) {
581		rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
582		mutex_unlock(&intf->beacon_skb_mutex);
583		return 0;
584	}
585
586	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
587	if (!intf->beacon->skb) {
588		mutex_unlock(&intf->beacon_skb_mutex);
589		return -ENOMEM;
590	}
591
592	/*
593	 * Copy all TX descriptor information into txdesc,
594	 * after that we are free to use the skb->cb array
595	 * for our information.
596	 */
597	rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
598
599	/*
600	 * Fill in skb descriptor
601	 */
602	skbdesc = get_skb_frame_desc(intf->beacon->skb);
603	memset(skbdesc, 0, sizeof(*skbdesc));
604	skbdesc->entry = intf->beacon;
605
606	/*
607	 * Send beacon to hardware and enable beacon genaration..
608	 */
609	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
610
611	mutex_unlock(&intf->beacon_skb_mutex);
612
613	return 0;
614}
615
616struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
617					 const enum data_queue_qid queue)
618{
619	int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
620
621	if (queue == QID_RX)
622		return rt2x00dev->rx;
623
624	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
625		return &rt2x00dev->tx[queue];
626
627	if (!rt2x00dev->bcn)
628		return NULL;
629
630	if (queue == QID_BEACON)
631		return &rt2x00dev->bcn[0];
632	else if (queue == QID_ATIM && atim)
633		return &rt2x00dev->bcn[1];
634
635	return NULL;
636}
637EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
638
639struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
640					  enum queue_index index)
641{
642	struct queue_entry *entry;
643	unsigned long irqflags;
644
645	if (unlikely(index >= Q_INDEX_MAX)) {
646		ERROR(queue->rt2x00dev,
647		      "Entry requested from invalid index type (%d)\n", index);
648		return NULL;
649	}
650
651	spin_lock_irqsave(&queue->lock, irqflags);
652
653	entry = &queue->entries[queue->index[index]];
654
655	spin_unlock_irqrestore(&queue->lock, irqflags);
656
657	return entry;
658}
659EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
660
661void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
662{
663	unsigned long irqflags;
664
665	if (unlikely(index >= Q_INDEX_MAX)) {
666		ERROR(queue->rt2x00dev,
667		      "Index change on invalid index type (%d)\n", index);
668		return;
669	}
670
671	spin_lock_irqsave(&queue->lock, irqflags);
672
673	queue->index[index]++;
674	if (queue->index[index] >= queue->limit)
675		queue->index[index] = 0;
676
677	if (index == Q_INDEX) {
678		queue->length++;
679		queue->last_index = jiffies;
680	} else if (index == Q_INDEX_DONE) {
681		queue->length--;
682		queue->count++;
683		queue->last_index_done = jiffies;
684	}
685
686	spin_unlock_irqrestore(&queue->lock, irqflags);
687}
688
689static void rt2x00queue_reset(struct data_queue *queue)
690{
691	unsigned long irqflags;
692
693	spin_lock_irqsave(&queue->lock, irqflags);
694
695	queue->count = 0;
696	queue->length = 0;
697	queue->last_index = jiffies;
698	queue->last_index_done = jiffies;
699	memset(queue->index, 0, sizeof(queue->index));
700
701	spin_unlock_irqrestore(&queue->lock, irqflags);
702}
703
704void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
705{
706	struct data_queue *queue;
707
708	txall_queue_for_each(rt2x00dev, queue)
709		rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
710}
711
712void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
713{
714	struct data_queue *queue;
715	unsigned int i;
716
717	queue_for_each(rt2x00dev, queue) {
718		rt2x00queue_reset(queue);
719
720		for (i = 0; i < queue->limit; i++) {
721			queue->entries[i].flags = 0;
722
723			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
724		}
725	}
726}
727
728static int rt2x00queue_alloc_entries(struct data_queue *queue,
729				     const struct data_queue_desc *qdesc)
730{
731	struct queue_entry *entries;
732	unsigned int entry_size;
733	unsigned int i;
734
735	rt2x00queue_reset(queue);
736
737	queue->limit = qdesc->entry_num;
738	queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
739	queue->data_size = qdesc->data_size;
740	queue->desc_size = qdesc->desc_size;
741
742	/*
743	 * Allocate all queue entries.
744	 */
745	entry_size = sizeof(*entries) + qdesc->priv_size;
746	entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
747	if (!entries)
748		return -ENOMEM;
749
750#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
751	( ((char *)(__base)) + ((__limit) * (__esize)) + \
752	    ((__index) * (__psize)) )
753
754	for (i = 0; i < queue->limit; i++) {
755		entries[i].flags = 0;
756		entries[i].queue = queue;
757		entries[i].skb = NULL;
758		entries[i].entry_idx = i;
759		entries[i].priv_data =
760		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
761					    sizeof(*entries), qdesc->priv_size);
762	}
763
764#undef QUEUE_ENTRY_PRIV_OFFSET
765
766	queue->entries = entries;
767
768	return 0;
769}
770
771static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
772				  struct data_queue *queue)
773{
774	unsigned int i;
775
776	if (!queue->entries)
777		return;
778
779	for (i = 0; i < queue->limit; i++) {
780		if (queue->entries[i].skb)
781			rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
782	}
783}
784
785static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
786				    struct data_queue *queue)
787{
788	unsigned int i;
789	struct sk_buff *skb;
790
791	for (i = 0; i < queue->limit; i++) {
792		skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
793		if (!skb)
794			return -ENOMEM;
795		queue->entries[i].skb = skb;
796	}
797
798	return 0;
799}
800
801int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
802{
803	struct data_queue *queue;
804	int status;
805
806	status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
807	if (status)
808		goto exit;
809
810	tx_queue_for_each(rt2x00dev, queue) {
811		status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
812		if (status)
813			goto exit;
814	}
815
816	status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
817	if (status)
818		goto exit;
819
820	if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
821		status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
822						   rt2x00dev->ops->atim);
823		if (status)
824			goto exit;
825	}
826
827	status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
828	if (status)
829		goto exit;
830
831	return 0;
832
833exit:
834	ERROR(rt2x00dev, "Queue entries allocation failed.\n");
835
836	rt2x00queue_uninitialize(rt2x00dev);
837
838	return status;
839}
840
841void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
842{
843	struct data_queue *queue;
844
845	rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
846
847	queue_for_each(rt2x00dev, queue) {
848		kfree(queue->entries);
849		queue->entries = NULL;
850	}
851}
852
853static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
854			     struct data_queue *queue, enum data_queue_qid qid)
855{
856	spin_lock_init(&queue->lock);
857
858	queue->rt2x00dev = rt2x00dev;
859	queue->qid = qid;
860	queue->txop = 0;
861	queue->aifs = 2;
862	queue->cw_min = 5;
863	queue->cw_max = 10;
864}
865
866int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
867{
868	struct data_queue *queue;
869	enum data_queue_qid qid;
870	unsigned int req_atim =
871	    !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
872
873	/*
874	 * We need the following queues:
875	 * RX: 1
876	 * TX: ops->tx_queues
877	 * Beacon: 1
878	 * Atim: 1 (if required)
879	 */
880	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
881
882	queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
883	if (!queue) {
884		ERROR(rt2x00dev, "Queue allocation failed.\n");
885		return -ENOMEM;
886	}
887
888	/*
889	 * Initialize pointers
890	 */
891	rt2x00dev->rx = queue;
892	rt2x00dev->tx = &queue[1];
893	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
894
895	/*
896	 * Initialize queue parameters.
897	 * RX: qid = QID_RX
898	 * TX: qid = QID_AC_BE + index
899	 * TX: cw_min: 2^5 = 32.
900	 * TX: cw_max: 2^10 = 1024.
901	 * BCN: qid = QID_BEACON
902	 * ATIM: qid = QID_ATIM
903	 */
904	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
905
906	qid = QID_AC_BE;
907	tx_queue_for_each(rt2x00dev, queue)
908		rt2x00queue_init(rt2x00dev, queue, qid++);
909
910	rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
911	if (req_atim)
912		rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
913
914	return 0;
915}
916
917void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
918{
919	kfree(rt2x00dev->rx);
920	rt2x00dev->rx = NULL;
921	rt2x00dev->tx = NULL;
922	rt2x00dev->bcn = NULL;
923}
924