• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/net/wimax/i2400m/
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 *   * Redistributions of source code must retain the above copyright
13 *     notice, this list of conditions and the following disclaimer.
14 *   * Redistributions in binary form must reproduce the above copyright
15 *     notice, this list of conditions and the following disclaimer in
16 *     the documentation and/or other materials provided with the
17 *     distribution.
18 *   * Neither the name of Intel Corporation nor the names of its
19 *     contributors may be used to endorse or promote products derived
20 *     from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 *  - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 *  - Use skb_clone(), break up processing in chunks
40 *  - Split transport/device specific
41 *  - Make buffer size dynamic to exert less memory pressure
42 *  - RX reorder support
43 *
44 * This handles the RX path.
45 *
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
49 *
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
54 *
55 * PROTOCOL FORMAT
56 *
57 * The format of the buffer is:
58 *
59 * HEADER                      (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0        (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
62 * ...
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0                   (raw bytes)
65 * PAYLOAD 1
66 * ...
67 * PAYLOAD N
68 *
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
71 *
72 * DATA PACKETS
73 *
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
76 *
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
81 *
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
84 *
85 * DATA RX REORDERING
86 *
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
90 * the radio traffic.
91 *
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
96 *
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
100 *
101 *  - reset queue: send all queued packets to the OS
102 *
103 *  - queue: queue a packet
104 *
105 *  - update ws: update the queue's window start and deliver queued
106 *    packets that meet the criteria
107 *
108 *  - queue & update ws: queue a packet, update the window start and
109 *    deliver queued packets that meet the criteria
110 *
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
113 *
114 * See the i2400m_roq_*() functions for details.
115 *
116 * ROADMAP
117 *
118 * i2400m_rx
119 *   i2400m_rx_msg_hdr_check
120 *   i2400m_rx_pl_descr_check
121 *   i2400m_rx_payload
122 *     i2400m_net_rx
123 *     i2400m_rx_edata
124 *       i2400m_net_erx
125 *       i2400m_roq_reset
126 *         i2400m_net_erx
127 *       i2400m_roq_queue
128 *         __i2400m_roq_queue
129 *       i2400m_roq_update_ws
130 *         __i2400m_roq_update_ws
131 *           i2400m_net_erx
132 *       i2400m_roq_queue_update_ws
133 *         __i2400m_roq_queue
134 *         __i2400m_roq_update_ws
135 *           i2400m_net_erx
136 *     i2400m_rx_ctl
137 *       i2400m_msg_size_check
138 *       i2400m_report_hook_work    [in a workqueue]
139 *         i2400m_report_hook
140 *       wimax_msg_to_user
141 *       i2400m_rx_ctl_ack
142 *         wimax_msg_to_user_alloc
143 *     i2400m_rx_trace
144 *       i2400m_msg_size_check
145 *       wimax_msg
146 */
147#include <linux/slab.h>
148#include <linux/kernel.h>
149#include <linux/if_arp.h>
150#include <linux/netdevice.h>
151#include <linux/workqueue.h>
152#include "i2400m.h"
153
154
155#define D_SUBMODULE rx
156#include "debug-levels.h"
157
158static int i2400m_rx_reorder_disabled;	/* 0 (rx reorder enabled) by default */
159module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
160MODULE_PARM_DESC(rx_reorder_disabled,
161		 "If true, RX reordering will be disabled.");
162
163struct i2400m_report_hook_args {
164	struct sk_buff *skb_rx;
165	const struct i2400m_l3l4_hdr *l3l4_hdr;
166	size_t size;
167	struct list_head list_node;
168};
169
170
171/*
172 * Execute i2400m_report_hook in a workqueue
173 *
174 * Goes over the list of queued reports in i2400m->rx_reports and
175 * processes them.
176 *
177 * NOTE: refcounts on i2400m are not needed because we flush the
178 *     workqueue this runs on (i2400m->work_queue) before destroying
179 *     i2400m.
180 */
181void i2400m_report_hook_work(struct work_struct *ws)
182{
183	struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
184	struct device *dev = i2400m_dev(i2400m);
185	struct i2400m_report_hook_args *args, *args_next;
186	LIST_HEAD(list);
187	unsigned long flags;
188
189	while (1) {
190		spin_lock_irqsave(&i2400m->rx_lock, flags);
191		list_splice_init(&i2400m->rx_reports, &list);
192		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
193		if (list_empty(&list))
194			break;
195		else
196			d_printf(1, dev, "processing queued reports\n");
197		list_for_each_entry_safe(args, args_next, &list, list_node) {
198			d_printf(2, dev, "processing queued report %p\n", args);
199			i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
200			kfree_skb(args->skb_rx);
201			list_del(&args->list_node);
202			kfree(args);
203		}
204	}
205}
206
207
208/*
209 * Flush the list of queued reports
210 */
211static
212void i2400m_report_hook_flush(struct i2400m *i2400m)
213{
214	struct device *dev = i2400m_dev(i2400m);
215	struct i2400m_report_hook_args *args, *args_next;
216	LIST_HEAD(list);
217	unsigned long flags;
218
219	d_printf(1, dev, "flushing queued reports\n");
220	spin_lock_irqsave(&i2400m->rx_lock, flags);
221	list_splice_init(&i2400m->rx_reports, &list);
222	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
223	list_for_each_entry_safe(args, args_next, &list, list_node) {
224		d_printf(2, dev, "flushing queued report %p\n", args);
225		kfree_skb(args->skb_rx);
226		list_del(&args->list_node);
227		kfree(args);
228	}
229}
230
231
232/*
233 * Queue a report for later processing
234 *
235 * @i2400m: device descriptor
236 * @skb_rx: skb that contains the payload (for reference counting)
237 * @l3l4_hdr: pointer to the control
238 * @size: size of the message
239 */
240static
241void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
242			      const void *l3l4_hdr, size_t size)
243{
244	struct device *dev = i2400m_dev(i2400m);
245	unsigned long flags;
246	struct i2400m_report_hook_args *args;
247
248	args = kzalloc(sizeof(*args), GFP_NOIO);
249	if (args) {
250		args->skb_rx = skb_get(skb_rx);
251		args->l3l4_hdr = l3l4_hdr;
252		args->size = size;
253		spin_lock_irqsave(&i2400m->rx_lock, flags);
254		list_add_tail(&args->list_node, &i2400m->rx_reports);
255		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
256		d_printf(2, dev, "queued report %p\n", args);
257		rmb();		/* see i2400m->ready's documentation  */
258		if (likely(i2400m->ready))	/* only send if up */
259			queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
260	} else  {
261		if (printk_ratelimit())
262			dev_err(dev, "%s:%u: Can't allocate %zu B\n",
263				__func__, __LINE__, sizeof(*args));
264	}
265}
266
267
268/*
269 * Process an ack to a command
270 *
271 * @i2400m: device descriptor
272 * @payload: pointer to message
273 * @size: size of the message
274 *
275 * Pass the acknodledgment (in an skb) to the thread that is waiting
276 * for it in i2400m->msg_completion.
277 *
278 * We need to coordinate properly with the thread waiting for the
279 * ack. Check if it is waiting or if it is gone. We loose the spinlock
280 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
281 * but this is not so speed critical).
282 */
283static
284void i2400m_rx_ctl_ack(struct i2400m *i2400m,
285		       const void *payload, size_t size)
286{
287	struct device *dev = i2400m_dev(i2400m);
288	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
289	unsigned long flags;
290	struct sk_buff *ack_skb;
291
292	/* Anyone waiting for an answer? */
293	spin_lock_irqsave(&i2400m->rx_lock, flags);
294	if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
295		dev_err(dev, "Huh? reply to command with no waiters\n");
296		goto error_no_waiter;
297	}
298	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
299
300	ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
301
302	/* Check waiter didn't time out waiting for the answer... */
303	spin_lock_irqsave(&i2400m->rx_lock, flags);
304	if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
305		d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
306		goto error_waiter_cancelled;
307	}
308	if (IS_ERR(ack_skb))
309		dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
310	i2400m->ack_skb = ack_skb;
311	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
312	complete(&i2400m->msg_completion);
313	return;
314
315error_waiter_cancelled:
316	if (!IS_ERR(ack_skb))
317		kfree_skb(ack_skb);
318error_no_waiter:
319	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
320}
321
322
323/*
324 * Receive and process a control payload
325 *
326 * @i2400m: device descriptor
327 * @skb_rx: skb that contains the payload (for reference counting)
328 * @payload: pointer to message
329 * @size: size of the message
330 *
331 * There are two types of control RX messages: reports (asynchronous,
332 * like your every day interrupts) and 'acks' (reponses to a command,
333 * get or set request).
334 *
335 * If it is a report, we run hooks on it (to extract information for
336 * things we need to do in the driver) and then pass it over to the
337 * WiMAX stack to send it to user space.
338 *
339 * NOTE: report processing is done in a workqueue specific to the
340 *     generic driver, to avoid deadlocks in the system.
341 *
342 * If it is not a report, it is an ack to a previously executed
343 * command, set or get, so wake up whoever is waiting for it from
344 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
345 *
346 * Note that the sizes we pass to other functions from here are the
347 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
348 * verified in _msg_size_check() that they are congruent.
349 *
350 * For reports: We can't clone the original skb where the data is
351 * because we need to send this up via netlink; netlink has to add
352 * headers and we can't overwrite what's preceeding the payload...as
353 * it is another message. So we just dup them.
354 */
355static
356void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
357		   const void *payload, size_t size)
358{
359	int result;
360	struct device *dev = i2400m_dev(i2400m);
361	const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
362	unsigned msg_type;
363
364	result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
365	if (result < 0) {
366		dev_err(dev, "HW BUG? device sent a bad message: %d\n",
367			result);
368		goto error_check;
369	}
370	msg_type = le16_to_cpu(l3l4_hdr->type);
371	d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
372		 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
373		 msg_type, size);
374	d_dump(2, dev, l3l4_hdr, size);
375	if (msg_type & I2400M_MT_REPORT_MASK) {
376		/*
377		 * Process each report
378		 *
379		 * - has to be ran serialized as well
380		 *
381		 * - the handling might force the execution of
382		 *   commands. That might cause reentrancy issues with
383		 *   bus-specific subdrivers and workqueues, so the we
384		 *   run it in a separate workqueue.
385		 *
386		 * - when the driver is not yet ready to handle them,
387		 *   they are queued and at some point the queue is
388		 *   restarted [NOTE: we can't queue SKBs directly, as
389		 *   this might be a piece of a SKB, not the whole
390		 *   thing, and this is cheaper than cloning the
391		 *   SKB].
392		 *
393		 * Note we don't do refcounting for the device
394		 * structure; this is because before destroying
395		 * 'i2400m', we make sure to flush the
396		 * i2400m->work_queue, so there are no issues.
397		 */
398		i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
399		if (unlikely(i2400m->trace_msg_from_user))
400			wimax_msg(&i2400m->wimax_dev, "echo",
401				  l3l4_hdr, size, GFP_KERNEL);
402		result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
403				   GFP_KERNEL);
404		if (result < 0)
405			dev_err(dev, "error sending report to userspace: %d\n",
406				result);
407	} else		/* an ack to a CMD, GET or SET */
408		i2400m_rx_ctl_ack(i2400m, payload, size);
409error_check:
410	return;
411}
412
413
414/*
415 * Receive and send up a trace
416 *
417 * @i2400m: device descriptor
418 * @skb_rx: skb that contains the trace (for reference counting)
419 * @payload: pointer to trace message inside the skb
420 * @size: size of the message
421 *
422 * THe i2400m might produce trace information (diagnostics) and we
423 * send them through a different kernel-to-user pipe (to avoid
424 * clogging it).
425 *
426 * As in i2400m_rx_ctl(), we can't clone the original skb where the
427 * data is because we need to send this up via netlink; netlink has to
428 * add headers and we can't overwrite what's preceeding the
429 * payload...as it is another message. So we just dup them.
430 */
431static
432void i2400m_rx_trace(struct i2400m *i2400m,
433		     const void *payload, size_t size)
434{
435	int result;
436	struct device *dev = i2400m_dev(i2400m);
437	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
438	const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
439	unsigned msg_type;
440
441	result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
442	if (result < 0) {
443		dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
444			result);
445		goto error_check;
446	}
447	msg_type = le16_to_cpu(l3l4_hdr->type);
448	d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
449		 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
450		 msg_type, size);
451	d_dump(2, dev, l3l4_hdr, size);
452	result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
453	if (result < 0)
454		dev_err(dev, "error sending trace to userspace: %d\n",
455			result);
456error_check:
457	return;
458}
459
460
461/*
462 * Reorder queue data stored on skb->cb while the skb is queued in the
463 * reorder queues.
464 */
465struct i2400m_roq_data {
466	unsigned sn;		/* Serial number for the skb */
467	enum i2400m_cs cs;	/* packet type for the skb */
468};
469
470
471/*
472 * ReOrder Queue
473 *
474 * @ws: Window Start; sequence number where the current window start
475 *     is for this queue
476 * @queue: the skb queue itself
477 * @log: circular ring buffer used to log information about the
478 *     reorder process in this queue that can be displayed in case of
479 *     error to help diagnose it.
480 *
481 * This is the head for a list of skbs. In the skb->cb member of the
482 * skb when queued here contains a 'struct i2400m_roq_data' were we
483 * store the sequence number (sn) and the cs (packet type) coming from
484 * the RX payload header from the device.
485 */
486struct i2400m_roq
487{
488	unsigned ws;
489	struct sk_buff_head queue;
490	struct i2400m_roq_log *log;
491};
492
493
494static
495void __i2400m_roq_init(struct i2400m_roq *roq)
496{
497	roq->ws = 0;
498	skb_queue_head_init(&roq->queue);
499}
500
501
502static
503unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
504{
505	return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
506		/ sizeof(*roq);
507}
508
509
510/*
511 * Normalize a sequence number based on the queue's window start
512 *
513 * nsn = (sn - ws) % 2048
514 *
515 * Note that if @sn < @roq->ws, we still need a positive number; %'s
516 * sign is implementation specific, so we normalize it by adding 2048
517 * to bring it to be positive.
518 */
519static
520unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
521{
522	int r;
523	r =  ((int) sn - (int) roq->ws) % 2048;
524	if (r < 0)
525		r += 2048;
526	return r;
527}
528
529
530/*
531 * Circular buffer to keep the last N reorder operations
532 *
533 * In case something fails, dumb then to try to come up with what
534 * happened.
535 */
536enum {
537	I2400M_ROQ_LOG_LENGTH = 32,
538};
539
540struct i2400m_roq_log {
541	struct i2400m_roq_log_entry {
542		enum i2400m_ro_type type;
543		unsigned ws, count, sn, nsn, new_ws;
544	} entry[I2400M_ROQ_LOG_LENGTH];
545	unsigned in, out;
546};
547
548
549/* Print a log entry */
550static
551void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
552				unsigned e_index,
553				struct i2400m_roq_log_entry *e)
554{
555	struct device *dev = i2400m_dev(i2400m);
556
557	switch(e->type) {
558	case I2400M_RO_TYPE_RESET:
559		dev_err(dev, "q#%d reset           ws %u cnt %u sn %u/%u"
560			" - new nws %u\n",
561			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
562		break;
563	case I2400M_RO_TYPE_PACKET:
564		dev_err(dev, "q#%d queue           ws %u cnt %u sn %u/%u\n",
565			index, e->ws, e->count, e->sn, e->nsn);
566		break;
567	case I2400M_RO_TYPE_WS:
568		dev_err(dev, "q#%d update_ws       ws %u cnt %u sn %u/%u"
569			" - new nws %u\n",
570			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
571		break;
572	case I2400M_RO_TYPE_PACKET_WS:
573		dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
574			" - new nws %u\n",
575			index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
576		break;
577	default:
578		dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
579			index, e_index, e->type);
580		break;
581	}
582}
583
584
585static
586void i2400m_roq_log_add(struct i2400m *i2400m,
587			struct i2400m_roq *roq, enum i2400m_ro_type type,
588			unsigned ws, unsigned count, unsigned sn,
589			unsigned nsn, unsigned new_ws)
590{
591	struct i2400m_roq_log_entry *e;
592	unsigned cnt_idx;
593	int index = __i2400m_roq_index(i2400m, roq);
594
595	/* if we run out of space, we eat from the end */
596	if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
597		roq->log->out++;
598	cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
599	e = &roq->log->entry[cnt_idx];
600
601	e->type = type;
602	e->ws = ws;
603	e->count = count;
604	e->sn = sn;
605	e->nsn = nsn;
606	e->new_ws = new_ws;
607
608	if (d_test(1))
609		i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
610}
611
612
613/* Dump all the entries in the FIFO and reinitialize it */
614static
615void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
616{
617	unsigned cnt, cnt_idx;
618	struct i2400m_roq_log_entry *e;
619	int index = __i2400m_roq_index(i2400m, roq);
620
621	BUG_ON(roq->log->out > roq->log->in);
622	for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
623		cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
624		e = &roq->log->entry[cnt_idx];
625		i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
626		memset(e, 0, sizeof(*e));
627	}
628	roq->log->in = roq->log->out = 0;
629}
630
631
632/*
633 * Backbone for the queuing of an skb (by normalized sequence number)
634 *
635 * @i2400m: device descriptor
636 * @roq: reorder queue where to add
637 * @skb: the skb to add
638 * @sn: the sequence number of the skb
639 * @nsn: the normalized sequence number of the skb (pre-computed by the
640 *     caller from the @sn and @roq->ws).
641 *
642 * We try first a couple of quick cases:
643 *
644 *   - the queue is empty
645 *   - the skb would be appended to the queue
646 *
647 * These will be the most common operations.
648 *
649 * If these fail, then we have to do a sorted insertion in the queue,
650 * which is the slowest path.
651 *
652 * We don't have to acquire a reference count as we are going to own it.
653 */
654static
655void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
656			struct sk_buff *skb, unsigned sn, unsigned nsn)
657{
658	struct device *dev = i2400m_dev(i2400m);
659	struct sk_buff *skb_itr;
660	struct i2400m_roq_data *roq_data_itr, *roq_data;
661	unsigned nsn_itr;
662
663	d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
664		  i2400m, roq, skb, sn, nsn);
665
666	roq_data = (struct i2400m_roq_data *) &skb->cb;
667	BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
668	roq_data->sn = sn;
669	d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
670		 roq, roq->ws, nsn, roq_data->sn);
671
672	/* Queues will be empty on not-so-bad environments, so try
673	 * that first */
674	if (skb_queue_empty(&roq->queue)) {
675		d_printf(2, dev, "ERX: roq %p - first one\n", roq);
676		__skb_queue_head(&roq->queue, skb);
677		goto out;
678	}
679	/* Now try append, as most of the operations will be that */
680	skb_itr = skb_peek_tail(&roq->queue);
681	roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
682	nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
683	/* NSN bounds assumed correct (checked when it was queued) */
684	if (nsn >= nsn_itr) {
685		d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
686			 roq, skb_itr, nsn_itr, roq_data_itr->sn);
687		__skb_queue_tail(&roq->queue, skb);
688		goto out;
689	}
690	/* None of the fast paths option worked. Iterate to find the
691	 * right spot where to insert the packet; we know the queue is
692	 * not empty, so we are not the first ones; we also know we
693	 * are not going to be the last ones. The list is sorted, so
694	 * we have to insert before the the first guy with an nsn_itr
695	 * greater that our nsn. */
696	skb_queue_walk(&roq->queue, skb_itr) {
697		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
698		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
699		/* NSN bounds assumed correct (checked when it was queued) */
700		if (nsn_itr > nsn) {
701			d_printf(2, dev, "ERX: roq %p - queued before %p "
702				 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
703				 roq_data_itr->sn);
704			__skb_queue_before(&roq->queue, skb_itr, skb);
705			goto out;
706		}
707	}
708	/* If we get here, that is VERY bad -- print info to help
709	 * diagnose and crash it */
710	dev_err(dev, "SW BUG? failed to insert packet\n");
711	dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
712		roq, roq->ws, skb, nsn, roq_data->sn);
713	skb_queue_walk(&roq->queue, skb_itr) {
714		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
715		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
716		/* NSN bounds assumed correct (checked when it was queued) */
717		dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
718			roq, skb_itr, nsn_itr, roq_data_itr->sn);
719	}
720	BUG();
721out:
722	d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
723		i2400m, roq, skb, sn, nsn);
724}
725
726
727/*
728 * Backbone for the update window start operation
729 *
730 * @i2400m: device descriptor
731 * @roq: Reorder queue
732 * @sn: New sequence number
733 *
734 * Updates the window start of a queue; when doing so, it must deliver
735 * to the networking stack all the queued skb's whose normalized
736 * sequence number is lower than the new normalized window start.
737 */
738static
739unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
740				unsigned sn)
741{
742	struct device *dev = i2400m_dev(i2400m);
743	struct sk_buff *skb_itr, *tmp_itr;
744	struct i2400m_roq_data *roq_data_itr;
745	unsigned new_nws, nsn_itr;
746
747	new_nws = __i2400m_roq_nsn(roq, sn);
748	/*
749	 * For type 2(update_window_start) rx messages, there is no
750	 * need to check if the normalized sequence number is greater 1023.
751	 * Simply insert and deliver all packets to the host up to the
752	 * window start.
753	 */
754	skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
755		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
756		nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
757		/* NSN bounds assumed correct (checked when it was queued) */
758		if (nsn_itr < new_nws) {
759			d_printf(2, dev, "ERX: roq %p - release skb %p "
760				 "(nsn %u/%u new nws %u)\n",
761				 roq, skb_itr, nsn_itr, roq_data_itr->sn,
762				 new_nws);
763			__skb_unlink(skb_itr, &roq->queue);
764			i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
765		}
766		else
767			break;	/* rest of packets all nsn_itr > nws */
768	}
769	roq->ws = sn;
770	return new_nws;
771}
772
773
774/*
775 * Reset a queue
776 *
777 * @i2400m: device descriptor
778 * @cin: Queue Index
779 *
780 * Deliver all the packets and reset the window-start to zero. Name is
781 * kind of misleading.
782 */
783static
784void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
785{
786	struct device *dev = i2400m_dev(i2400m);
787	struct sk_buff *skb_itr, *tmp_itr;
788	struct i2400m_roq_data *roq_data_itr;
789
790	d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
791	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
792			     roq->ws, skb_queue_len(&roq->queue),
793			     ~0, ~0, 0);
794	skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
795		roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
796		d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
797			 roq, skb_itr, roq_data_itr->sn);
798		__skb_unlink(skb_itr, &roq->queue);
799		i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
800	}
801	roq->ws = 0;
802	d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
803}
804
805
806/*
807 * Queue a packet
808 *
809 * @i2400m: device descriptor
810 * @cin: Queue Index
811 * @skb: containing the packet data
812 * @fbn: First block number of the packet in @skb
813 * @lbn: Last block number of the packet in @skb
814 *
815 * The hardware is asking the driver to queue a packet for later
816 * delivery to the networking stack.
817 */
818static
819void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
820		      struct sk_buff * skb, unsigned lbn)
821{
822	struct device *dev = i2400m_dev(i2400m);
823	unsigned nsn, len;
824
825	d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
826		  i2400m, roq, skb, lbn);
827	len = skb_queue_len(&roq->queue);
828	nsn = __i2400m_roq_nsn(roq, lbn);
829	if (unlikely(nsn >= 1024)) {
830		dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
831			nsn, lbn, roq->ws);
832		i2400m_roq_log_dump(i2400m, roq);
833		i2400m_reset(i2400m, I2400M_RT_WARM);
834	} else {
835		__i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
836		i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
837				     roq->ws, len, lbn, nsn, ~0);
838	}
839	d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
840		i2400m, roq, skb, lbn);
841}
842
843
844/*
845 * Update the window start in a reorder queue and deliver all skbs
846 * with a lower window start
847 *
848 * @i2400m: device descriptor
849 * @roq: Reorder queue
850 * @sn: New sequence number
851 */
852static
853void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
854			  unsigned sn)
855{
856	struct device *dev = i2400m_dev(i2400m);
857	unsigned old_ws, nsn, len;
858
859	d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
860	old_ws = roq->ws;
861	len = skb_queue_len(&roq->queue);
862	nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
863	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
864			     old_ws, len, sn, nsn, roq->ws);
865	d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
866}
867
868
869/*
870 * Queue a packet and update the window start
871 *
872 * @i2400m: device descriptor
873 * @cin: Queue Index
874 * @skb: containing the packet data
875 * @fbn: First block number of the packet in @skb
876 * @sn: Last block number of the packet in @skb
877 *
878 * Note that unlike i2400m_roq_update_ws(), which sets the new window
879 * start to @sn, in here we'll set it to @sn + 1.
880 */
881static
882void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
883				struct sk_buff * skb, unsigned sn)
884{
885	struct device *dev = i2400m_dev(i2400m);
886	unsigned nsn, old_ws, len;
887
888	d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
889		  i2400m, roq, skb, sn);
890	len = skb_queue_len(&roq->queue);
891	nsn = __i2400m_roq_nsn(roq, sn);
892	/*
893	 * For type 3(queue_update_window_start) rx messages, there is no
894	 * need to check if the normalized sequence number is greater 1023.
895	 * Simply insert and deliver all packets to the host up to the
896	 * window start.
897	 */
898	old_ws = roq->ws;
899	/* If the queue is empty, don't bother as we'd queue
900	 * it and immediately unqueue it -- just deliver it.
901	 */
902	if (len == 0) {
903		struct i2400m_roq_data *roq_data;
904		roq_data = (struct i2400m_roq_data *) &skb->cb;
905		i2400m_net_erx(i2400m, skb, roq_data->cs);
906	} else
907		__i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
908
909	__i2400m_roq_update_ws(i2400m, roq, sn + 1);
910	i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
911			   old_ws, len, sn, nsn, roq->ws);
912
913	d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
914		i2400m, roq, skb, sn);
915}
916
917
918/*
919 * This routine destroys the memory allocated for rx_roq, when no
920 * other thread is accessing it. Access to rx_roq is refcounted by
921 * rx_roq_refcount, hence memory allocated must be destroyed when
922 * rx_roq_refcount becomes zero. This routine gets executed when
923 * rx_roq_refcount becomes zero.
924 */
925void i2400m_rx_roq_destroy(struct kref *ref)
926{
927	unsigned itr;
928	struct i2400m *i2400m
929			= container_of(ref, struct i2400m, rx_roq_refcount);
930	for (itr = 0; itr < I2400M_RO_CIN + 1; itr++)
931		__skb_queue_purge(&i2400m->rx_roq[itr].queue);
932	kfree(i2400m->rx_roq[0].log);
933	kfree(i2400m->rx_roq);
934	i2400m->rx_roq = NULL;
935}
936
937/*
938 * Receive and send up an extended data packet
939 *
940 * @i2400m: device descriptor
941 * @skb_rx: skb that contains the extended data packet
942 * @single_last: 1 if the payload is the only one or the last one of
943 *     the skb.
944 * @payload: pointer to the packet's data inside the skb
945 * @size: size of the payload
946 *
947 * Starting in v1.4 of the i2400m's firmware, the device can send data
948 * packets to the host in an extended format that; this incudes a 16
949 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
950 * we can fake ethernet headers for ethernet device emulation without
951 * having to copy packets around.
952 *
953 * This function handles said path.
954 *
955 *
956 * Receive and send up an extended data packet that requires no reordering
957 *
958 * @i2400m: device descriptor
959 * @skb_rx: skb that contains the extended data packet
960 * @single_last: 1 if the payload is the only one or the last one of
961 *     the skb.
962 * @payload: pointer to the packet's data (past the actual extended
963 *     data payload header).
964 * @size: size of the payload
965 *
966 * Pass over to the networking stack a data packet that might have
967 * reordering requirements.
968 *
969 * This needs to the decide if the skb in which the packet is
970 * contained can be reused or if it needs to be cloned. Then it has to
971 * be trimmed in the edges so that the beginning is the space for eth
972 * header and then pass it to i2400m_net_erx() for the stack
973 *
974 * Assumes the caller has verified the sanity of the payload (size,
975 * etc) already.
976 */
977static
978void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
979		     unsigned single_last, const void *payload, size_t size)
980{
981	struct device *dev = i2400m_dev(i2400m);
982	const struct i2400m_pl_edata_hdr *hdr = payload;
983	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
984	struct sk_buff *skb;
985	enum i2400m_cs cs;
986	u32 reorder;
987	unsigned ro_needed, ro_type, ro_cin, ro_sn;
988	struct i2400m_roq *roq;
989	struct i2400m_roq_data *roq_data;
990	unsigned long flags;
991
992	BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
993
994	d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
995		  "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
996	if (size < sizeof(*hdr)) {
997		dev_err(dev, "ERX: HW BUG? message with short header (%zu "
998			"vs %zu bytes expected)\n", size, sizeof(*hdr));
999		goto error;
1000	}
1001
1002	if (single_last) {
1003		skb = skb_get(skb_rx);
1004		d_printf(3, dev, "ERX: skb %p reusing\n", skb);
1005	} else {
1006		skb = skb_clone(skb_rx, GFP_KERNEL);
1007		if (skb == NULL) {
1008			dev_err(dev, "ERX: no memory to clone skb\n");
1009			net_dev->stats.rx_dropped++;
1010			goto error_skb_clone;
1011		}
1012		d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
1013	}
1014	/* now we have to pull and trim so that the skb points to the
1015	 * beginning of the IP packet; the netdev part will add the
1016	 * ethernet header as needed - we know there is enough space
1017	 * because we checked in i2400m_rx_edata(). */
1018	skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
1019	skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1020
1021	reorder = le32_to_cpu(hdr->reorder);
1022	ro_needed = reorder & I2400M_RO_NEEDED;
1023	cs = hdr->cs;
1024	if (ro_needed) {
1025		ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1026		ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1027		ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1028
1029		spin_lock_irqsave(&i2400m->rx_lock, flags);
1030		if (i2400m->rx_roq == NULL) {
1031			kfree_skb(skb);	/* rx_roq is already destroyed */
1032			spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1033			goto error;
1034		}
1035		roq = &i2400m->rx_roq[ro_cin];
1036		kref_get(&i2400m->rx_roq_refcount);
1037		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1038
1039		roq_data = (struct i2400m_roq_data *) &skb->cb;
1040		roq_data->sn = ro_sn;
1041		roq_data->cs = cs;
1042		d_printf(2, dev, "ERX: reorder needed: "
1043			 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1044			 ro_type, ro_cin, roq->ws, ro_sn,
1045			 __i2400m_roq_nsn(roq, ro_sn), size);
1046		d_dump(2, dev, payload, size);
1047		switch(ro_type) {
1048		case I2400M_RO_TYPE_RESET:
1049			i2400m_roq_reset(i2400m, roq);
1050			kfree_skb(skb);	/* no data here */
1051			break;
1052		case I2400M_RO_TYPE_PACKET:
1053			i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1054			break;
1055		case I2400M_RO_TYPE_WS:
1056			i2400m_roq_update_ws(i2400m, roq, ro_sn);
1057			kfree_skb(skb);	/* no data here */
1058			break;
1059		case I2400M_RO_TYPE_PACKET_WS:
1060			i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1061			break;
1062		default:
1063			dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1064		}
1065
1066		spin_lock_irqsave(&i2400m->rx_lock, flags);
1067		kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1068		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1069	}
1070	else
1071		i2400m_net_erx(i2400m, skb, cs);
1072error_skb_clone:
1073error:
1074	d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1075		"size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1076}
1077
1078
1079/*
1080 * Act on a received payload
1081 *
1082 * @i2400m: device instance
1083 * @skb_rx: skb where the transaction was received
1084 * @single_last: 1 this is the only payload or the last one (so the
1085 *     skb can be reused instead of cloned).
1086 * @pld: payload descriptor
1087 * @payload: payload data
1088 *
1089 * Upon reception of a payload, look at its guts in the payload
1090 * descriptor and decide what to do with it. If it is a single payload
1091 * skb or if the last skb is a data packet, the skb will be referenced
1092 * and modified (so it doesn't have to be cloned).
1093 */
1094static
1095void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1096		       unsigned single_last, const struct i2400m_pld *pld,
1097		       const void *payload)
1098{
1099	struct device *dev = i2400m_dev(i2400m);
1100	size_t pl_size = i2400m_pld_size(pld);
1101	enum i2400m_pt pl_type = i2400m_pld_type(pld);
1102
1103	d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1104		 pl_type, pl_size);
1105	d_dump(8, dev, payload, pl_size);
1106
1107	switch (pl_type) {
1108	case I2400M_PT_DATA:
1109		d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1110		i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1111		break;
1112	case I2400M_PT_CTRL:
1113		i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1114		break;
1115	case I2400M_PT_TRACE:
1116		i2400m_rx_trace(i2400m, payload, pl_size);
1117		break;
1118	case I2400M_PT_EDATA:
1119		d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1120		i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1121		break;
1122	default:	/* Anything else shouldn't come to the host */
1123		if (printk_ratelimit())
1124			dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1125				pl_type);
1126	}
1127}
1128
1129
1130/*
1131 * Check a received transaction's message header
1132 *
1133 * @i2400m: device descriptor
1134 * @msg_hdr: message header
1135 * @buf_size: size of the received buffer
1136 *
1137 * Check that the declarations done by a RX buffer message header are
1138 * sane and consistent with the amount of data that was received.
1139 */
1140static
1141int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1142			    const struct i2400m_msg_hdr *msg_hdr,
1143			    size_t buf_size)
1144{
1145	int result = -EIO;
1146	struct device *dev = i2400m_dev(i2400m);
1147	if (buf_size < sizeof(*msg_hdr)) {
1148		dev_err(dev, "RX: HW BUG? message with short header (%zu "
1149			"vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1150		goto error;
1151	}
1152	if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1153		dev_err(dev, "RX: HW BUG? message received with unknown "
1154			"barker 0x%08x (buf_size %zu bytes)\n",
1155			le32_to_cpu(msg_hdr->barker), buf_size);
1156		goto error;
1157	}
1158	if (msg_hdr->num_pls == 0) {
1159		dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1160		goto error;
1161	}
1162	if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1163		dev_err(dev, "RX: HW BUG? message contains more payload "
1164			"than maximum; ignoring.\n");
1165		goto error;
1166	}
1167	result = 0;
1168error:
1169	return result;
1170}
1171
1172
1173/*
1174 * Check a payload descriptor against the received data
1175 *
1176 * @i2400m: device descriptor
1177 * @pld: payload descriptor
1178 * @pl_itr: offset (in bytes) in the received buffer the payload is
1179 *          located
1180 * @buf_size: size of the received buffer
1181 *
1182 * Given a payload descriptor (part of a RX buffer), check it is sane
1183 * and that the data it declares fits in the buffer.
1184 */
1185static
1186int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1187			      const struct i2400m_pld *pld,
1188			      size_t pl_itr, size_t buf_size)
1189{
1190	int result = -EIO;
1191	struct device *dev = i2400m_dev(i2400m);
1192	size_t pl_size = i2400m_pld_size(pld);
1193	enum i2400m_pt pl_type = i2400m_pld_type(pld);
1194
1195	if (pl_size > i2400m->bus_pl_size_max) {
1196		dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1197			"bigger than maximum %zu; ignoring message\n",
1198			pl_itr, pl_size, i2400m->bus_pl_size_max);
1199		goto error;
1200	}
1201	if (pl_itr + pl_size > buf_size) {	/* enough? */
1202		dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1203			"goes beyond the received buffer "
1204			"size (%zu bytes); ignoring message\n",
1205			pl_itr, pl_size, buf_size);
1206		goto error;
1207	}
1208	if (pl_type >= I2400M_PT_ILLEGAL) {
1209		dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1210			"ignoring message\n", pl_type);
1211		goto error;
1212	}
1213	result = 0;
1214error:
1215	return result;
1216}
1217
1218
1219/**
1220 * i2400m_rx - Receive a buffer of data from the device
1221 *
1222 * @i2400m: device descriptor
1223 * @skb: skbuff where the data has been received
1224 *
1225 * Parse in a buffer of data that contains an RX message sent from the
1226 * device. See the file header for the format. Run all checks on the
1227 * buffer header, then run over each payload's descriptors, verify
1228 * their consistency and act on each payload's contents.  If
1229 * everything is successful, update the device's statistics.
1230 *
1231 * Note: You need to set the skb to contain only the length of the
1232 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1233 *
1234 * Returns:
1235 *
1236 * 0 if ok, < 0 errno on error
1237 *
1238 * If ok, this function owns now the skb and the caller DOESN'T have
1239 * to run kfree_skb() on it. However, on error, the caller still owns
1240 * the skb and it is responsible for releasing it.
1241 */
1242int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1243{
1244	int i, result;
1245	struct device *dev = i2400m_dev(i2400m);
1246	const struct i2400m_msg_hdr *msg_hdr;
1247	size_t pl_itr, pl_size;
1248	unsigned long flags;
1249	unsigned num_pls, single_last, skb_len;
1250
1251	skb_len = skb->len;
1252	d_fnstart(4, dev, "(i2400m %p skb %p [size %u])\n",
1253		  i2400m, skb, skb_len);
1254	result = -EIO;
1255	msg_hdr = (void *) skb->data;
1256	result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb_len);
1257	if (result < 0)
1258		goto error_msg_hdr_check;
1259	result = -EIO;
1260	num_pls = le16_to_cpu(msg_hdr->num_pls);
1261	pl_itr = sizeof(*msg_hdr) +	/* Check payload descriptor(s) */
1262		num_pls * sizeof(msg_hdr->pld[0]);
1263	pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1264	if (pl_itr > skb_len) {	/* got all the payload descriptors? */
1265		dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1266			"%u payload descriptors (%zu each, total %zu)\n",
1267			skb_len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1268		goto error_pl_descr_short;
1269	}
1270	/* Walk each payload payload--check we really got it */
1271	for (i = 0; i < num_pls; i++) {
1272		pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1273		result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1274						  pl_itr, skb_len);
1275		if (result < 0)
1276			goto error_pl_descr_check;
1277		single_last = num_pls == 1 || i == num_pls - 1;
1278		i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1279				  skb->data + pl_itr);
1280		pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1281		cond_resched();		/* Don't monopolize */
1282	}
1283	kfree_skb(skb);
1284	/* Update device statistics */
1285	spin_lock_irqsave(&i2400m->rx_lock, flags);
1286	i2400m->rx_pl_num += i;
1287	if (i > i2400m->rx_pl_max)
1288		i2400m->rx_pl_max = i;
1289	if (i < i2400m->rx_pl_min)
1290		i2400m->rx_pl_min = i;
1291	i2400m->rx_num++;
1292	i2400m->rx_size_acc += skb_len;
1293	if (skb_len < i2400m->rx_size_min)
1294		i2400m->rx_size_min = skb_len;
1295	if (skb_len > i2400m->rx_size_max)
1296		i2400m->rx_size_max = skb_len;
1297	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1298error_pl_descr_check:
1299error_pl_descr_short:
1300error_msg_hdr_check:
1301	d_fnend(4, dev, "(i2400m %p skb %p [size %u]) = %d\n",
1302		i2400m, skb, skb_len, result);
1303	return result;
1304}
1305EXPORT_SYMBOL_GPL(i2400m_rx);
1306
1307
1308void i2400m_unknown_barker(struct i2400m *i2400m,
1309			   const void *buf, size_t size)
1310{
1311	struct device *dev = i2400m_dev(i2400m);
1312	char prefix[64];
1313	const __le32 *barker = buf;
1314	dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1315		"dropping %zu bytes\n", le32_to_cpu(*barker), size);
1316	snprintf(prefix, sizeof(prefix), "%s %s: ",
1317		 dev_driver_string(dev), dev_name(dev));
1318	if (size > 64) {
1319		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1320			       8, 4, buf, 64, 0);
1321		printk(KERN_ERR "%s... (only first 64 bytes "
1322		       "dumped)\n", prefix);
1323	} else
1324		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1325			       8, 4, buf, size, 0);
1326}
1327EXPORT_SYMBOL(i2400m_unknown_barker);
1328
1329
1330/*
1331 * Initialize the RX queue and infrastructure
1332 *
1333 * This sets up all the RX reordering infrastructures, which will not
1334 * be used if reordering is not enabled or if the firmware does not
1335 * support it. The device is told to do reordering in
1336 * i2400m_dev_initialize(), where it also looks at the value of the
1337 * i2400m->rx_reorder switch before taking a decission.
1338 *
1339 * Note we allocate the roq queues in one chunk and the actual logging
1340 * support for it (logging) in another one and then we setup the
1341 * pointers from the first to the last.
1342 */
1343int i2400m_rx_setup(struct i2400m *i2400m)
1344{
1345	int result = 0;
1346	struct device *dev = i2400m_dev(i2400m);
1347
1348	i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1349	if (i2400m->rx_reorder) {
1350		unsigned itr;
1351		size_t size;
1352		struct i2400m_roq_log *rd;
1353
1354		result = -ENOMEM;
1355
1356		size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1357		i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1358		if (i2400m->rx_roq == NULL) {
1359			dev_err(dev, "RX: cannot allocate %zu bytes for "
1360				"reorder queues\n", size);
1361			goto error_roq_alloc;
1362		}
1363
1364		size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1365		rd = kzalloc(size, GFP_KERNEL);
1366		if (rd == NULL) {
1367			dev_err(dev, "RX: cannot allocate %zu bytes for "
1368				"reorder queues log areas\n", size);
1369			result = -ENOMEM;
1370			goto error_roq_log_alloc;
1371		}
1372
1373		for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1374			__i2400m_roq_init(&i2400m->rx_roq[itr]);
1375			i2400m->rx_roq[itr].log = &rd[itr];
1376		}
1377		kref_init(&i2400m->rx_roq_refcount);
1378	}
1379	return 0;
1380
1381error_roq_log_alloc:
1382	kfree(i2400m->rx_roq);
1383error_roq_alloc:
1384	return result;
1385}
1386
1387
1388/* Tear down the RX queue and infrastructure */
1389void i2400m_rx_release(struct i2400m *i2400m)
1390{
1391	unsigned long flags;
1392
1393	if (i2400m->rx_reorder) {
1394		spin_lock_irqsave(&i2400m->rx_lock, flags);
1395		kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1396		spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1397	}
1398	/* at this point, nothing can be received... */
1399	i2400m_report_hook_flush(i2400m);
1400}
1401