• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/net/atlx/
1/*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47#include <asm/atomic.h>
48#include <asm/byteorder.h>
49
50#include <linux/compiler.h>
51#include <linux/crc32.h>
52#include <linux/delay.h>
53#include <linux/dma-mapping.h>
54#include <linux/etherdevice.h>
55#include <linux/hardirq.h>
56#include <linux/if_ether.h>
57#include <linux/if_vlan.h>
58#include <linux/in.h>
59#include <linux/interrupt.h>
60#include <linux/ip.h>
61#include <linux/irqflags.h>
62#include <linux/irqreturn.h>
63#include <linux/jiffies.h>
64#include <linux/mii.h>
65#include <linux/module.h>
66#include <linux/moduleparam.h>
67#include <linux/net.h>
68#include <linux/netdevice.h>
69#include <linux/pci.h>
70#include <linux/pci_ids.h>
71#include <linux/pm.h>
72#include <linux/skbuff.h>
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/string.h>
76#include <linux/tcp.h>
77#include <linux/timer.h>
78#include <linux/types.h>
79#include <linux/workqueue.h>
80
81#include <net/checksum.h>
82
83#include "atl1.h"
84
85#define ATLX_DRIVER_VERSION "2.1.3"
86MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, \
87Chris Snook <csnook@redhat.com>, Jay Cliburn <jcliburn@gmail.com>");
88MODULE_LICENSE("GPL");
89MODULE_VERSION(ATLX_DRIVER_VERSION);
90
91/* Temporary hack for merging atl1 and atl2 */
92#include "atlx.c"
93
94/*
95 * This is the only thing that needs to be changed to adjust the
96 * maximum number of ports that the driver can manage.
97 */
98#define ATL1_MAX_NIC 4
99
100#define OPTION_UNSET    -1
101#define OPTION_DISABLED 0
102#define OPTION_ENABLED  1
103
104#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
105
106/*
107 * Interrupt Moderate Timer in units of 2 us
108 *
109 * Valid Range: 10-65535
110 *
111 * Default Value: 100 (200us)
112 */
113static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
114static unsigned int num_int_mod_timer;
115module_param_array_named(int_mod_timer, int_mod_timer, int,
116	&num_int_mod_timer, 0);
117MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
118
119#define DEFAULT_INT_MOD_CNT	100	/* 200us */
120#define MAX_INT_MOD_CNT		65000
121#define MIN_INT_MOD_CNT		50
122
123struct atl1_option {
124	enum { enable_option, range_option, list_option } type;
125	char *name;
126	char *err;
127	int def;
128	union {
129		struct {	/* range_option info */
130			int min;
131			int max;
132		} r;
133		struct {	/* list_option info */
134			int nr;
135			struct atl1_opt_list {
136				int i;
137				char *str;
138			} *p;
139		} l;
140	} arg;
141};
142
143static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
144	struct pci_dev *pdev)
145{
146	if (*value == OPTION_UNSET) {
147		*value = opt->def;
148		return 0;
149	}
150
151	switch (opt->type) {
152	case enable_option:
153		switch (*value) {
154		case OPTION_ENABLED:
155			dev_info(&pdev->dev, "%s enabled\n", opt->name);
156			return 0;
157		case OPTION_DISABLED:
158			dev_info(&pdev->dev, "%s disabled\n", opt->name);
159			return 0;
160		}
161		break;
162	case range_option:
163		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
164			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
165				*value);
166			return 0;
167		}
168		break;
169	case list_option:{
170			int i;
171			struct atl1_opt_list *ent;
172
173			for (i = 0; i < opt->arg.l.nr; i++) {
174				ent = &opt->arg.l.p[i];
175				if (*value == ent->i) {
176					if (ent->str[0] != '\0')
177						dev_info(&pdev->dev, "%s\n",
178							ent->str);
179					return 0;
180				}
181			}
182		}
183		break;
184
185	default:
186		break;
187	}
188
189	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
190		opt->name, *value, opt->err);
191	*value = opt->def;
192	return -1;
193}
194
195/*
196 * atl1_check_options - Range Checking for Command Line Parameters
197 * @adapter: board private structure
198 *
199 * This routine checks all command line parameters for valid user
200 * input.  If an invalid value is given, or if no user specified
201 * value exists, a default value is used.  The final value is stored
202 * in a variable in the adapter structure.
203 */
204static void __devinit atl1_check_options(struct atl1_adapter *adapter)
205{
206	struct pci_dev *pdev = adapter->pdev;
207	int bd = adapter->bd_number;
208	if (bd >= ATL1_MAX_NIC) {
209		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
210		dev_notice(&pdev->dev, "using defaults for all values\n");
211	}
212	{			/* Interrupt Moderate Timer */
213		struct atl1_option opt = {
214			.type = range_option,
215			.name = "Interrupt Moderator Timer",
216			.err = "using default of "
217				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
218			.def = DEFAULT_INT_MOD_CNT,
219			.arg = {.r = {.min = MIN_INT_MOD_CNT,
220					.max = MAX_INT_MOD_CNT} }
221		};
222		int val;
223		if (num_int_mod_timer > bd) {
224			val = int_mod_timer[bd];
225			atl1_validate_option(&val, &opt, pdev);
226			adapter->imt = (u16) val;
227		} else
228			adapter->imt = (u16) (opt.def);
229	}
230}
231
232/*
233 * atl1_pci_tbl - PCI Device ID Table
234 */
235static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
236	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
237	/* required last entry */
238	{0,}
239};
240MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
241
242static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
243	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
244
245static int debug = -1;
246module_param(debug, int, 0);
247MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
248
249/*
250 * Reset the transmit and receive units; mask and clear all interrupts.
251 * hw - Struct containing variables accessed by shared code
252 * return : 0  or  idle status (if error)
253 */
254static s32 atl1_reset_hw(struct atl1_hw *hw)
255{
256	struct pci_dev *pdev = hw->back->pdev;
257	struct atl1_adapter *adapter = hw->back;
258	u32 icr;
259	int i;
260
261	/*
262	 * Clear Interrupt mask to stop board from generating
263	 * interrupts & Clear any pending interrupt events
264	 */
265	/*
266	 * iowrite32(0, hw->hw_addr + REG_IMR);
267	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
268	 */
269
270	/*
271	 * Issue Soft Reset to the MAC.  This will reset the chip's
272	 * transmit, receive, DMA.  It will not effect
273	 * the current PCI configuration.  The global reset bit is self-
274	 * clearing, and should clear within a microsecond.
275	 */
276	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
277	ioread32(hw->hw_addr + REG_MASTER_CTRL);
278
279	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
280	ioread16(hw->hw_addr + REG_PHY_ENABLE);
281
282	/* delay about 1ms */
283	msleep(1);
284
285	/* Wait at least 10ms for All module to be Idle */
286	for (i = 0; i < 10; i++) {
287		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
288		if (!icr)
289			break;
290		/* delay 1 ms */
291		msleep(1);
292		cpu_relax();
293	}
294
295	if (icr) {
296		if (netif_msg_hw(adapter))
297			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
298		return icr;
299	}
300
301	return 0;
302}
303
304/* function about EEPROM
305 *
306 * check_eeprom_exist
307 * return 0 if eeprom exist
308 */
309static int atl1_check_eeprom_exist(struct atl1_hw *hw)
310{
311	u32 value;
312	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
313	if (value & SPI_FLASH_CTRL_EN_VPD) {
314		value &= ~SPI_FLASH_CTRL_EN_VPD;
315		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
316	}
317
318	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
319	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
320}
321
322static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
323{
324	int i;
325	u32 control;
326
327	if (offset & 3)
328		/* address do not align */
329		return false;
330
331	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
332	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
333	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
334	ioread32(hw->hw_addr + REG_VPD_CAP);
335
336	for (i = 0; i < 10; i++) {
337		msleep(2);
338		control = ioread32(hw->hw_addr + REG_VPD_CAP);
339		if (control & VPD_CAP_VPD_FLAG)
340			break;
341	}
342	if (control & VPD_CAP_VPD_FLAG) {
343		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
344		return true;
345	}
346	/* timeout */
347	return false;
348}
349
350/*
351 * Reads the value from a PHY register
352 * hw - Struct containing variables accessed by shared code
353 * reg_addr - address of the PHY register to read
354 */
355s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
356{
357	u32 val;
358	int i;
359
360	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
361		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
362		MDIO_CLK_SEL_SHIFT;
363	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
364	ioread32(hw->hw_addr + REG_MDIO_CTRL);
365
366	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
367		udelay(2);
368		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
369		if (!(val & (MDIO_START | MDIO_BUSY)))
370			break;
371	}
372	if (!(val & (MDIO_START | MDIO_BUSY))) {
373		*phy_data = (u16) val;
374		return 0;
375	}
376	return ATLX_ERR_PHY;
377}
378
379#define CUSTOM_SPI_CS_SETUP	2
380#define CUSTOM_SPI_CLK_HI	2
381#define CUSTOM_SPI_CLK_LO	2
382#define CUSTOM_SPI_CS_HOLD	2
383#define CUSTOM_SPI_CS_HI	3
384
385static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
386{
387	int i;
388	u32 value;
389
390	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
391	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
392
393	value = SPI_FLASH_CTRL_WAIT_READY |
394	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
395	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
396					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
397	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
398					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
399	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
400					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
401	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
402					    SPI_FLASH_CTRL_CS_HI_MASK) <<
403	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
404	    SPI_FLASH_CTRL_INS_SHIFT;
405
406	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
407
408	value |= SPI_FLASH_CTRL_START;
409	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
410	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412	for (i = 0; i < 10; i++) {
413		msleep(1);
414		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415		if (!(value & SPI_FLASH_CTRL_START))
416			break;
417	}
418
419	if (value & SPI_FLASH_CTRL_START)
420		return false;
421
422	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
423
424	return true;
425}
426
427/*
428 * get_permanent_address
429 * return 0 if get valid mac address,
430 */
431static int atl1_get_permanent_address(struct atl1_hw *hw)
432{
433	u32 addr[2];
434	u32 i, control;
435	u16 reg;
436	u8 eth_addr[ETH_ALEN];
437	bool key_valid;
438
439	if (is_valid_ether_addr(hw->perm_mac_addr))
440		return 0;
441
442	/* init */
443	addr[0] = addr[1] = 0;
444
445	if (!atl1_check_eeprom_exist(hw)) {
446		reg = 0;
447		key_valid = false;
448		/* Read out all EEPROM content */
449		i = 0;
450		while (1) {
451			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
452				if (key_valid) {
453					if (reg == REG_MAC_STA_ADDR)
454						addr[0] = control;
455					else if (reg == (REG_MAC_STA_ADDR + 4))
456						addr[1] = control;
457					key_valid = false;
458				} else if ((control & 0xff) == 0x5A) {
459					key_valid = true;
460					reg = (u16) (control >> 16);
461				} else
462					break;
463			} else
464				/* read error */
465				break;
466			i += 4;
467		}
468
469		*(u32 *) &eth_addr[2] = swab32(addr[0]);
470		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
471		if (is_valid_ether_addr(eth_addr)) {
472			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
473			return 0;
474		}
475	}
476
477	/* see if SPI FLAGS exist ? */
478	addr[0] = addr[1] = 0;
479	reg = 0;
480	key_valid = false;
481	i = 0;
482	while (1) {
483		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
484			if (key_valid) {
485				if (reg == REG_MAC_STA_ADDR)
486					addr[0] = control;
487				else if (reg == (REG_MAC_STA_ADDR + 4))
488					addr[1] = control;
489				key_valid = false;
490			} else if ((control & 0xff) == 0x5A) {
491				key_valid = true;
492				reg = (u16) (control >> 16);
493			} else
494				/* data end */
495				break;
496		} else
497			/* read error */
498			break;
499		i += 4;
500	}
501
502	*(u32 *) &eth_addr[2] = swab32(addr[0]);
503	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
504	if (is_valid_ether_addr(eth_addr)) {
505		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
506		return 0;
507	}
508
509	/*
510	 * On some motherboards, the MAC address is written by the
511	 * BIOS directly to the MAC register during POST, and is
512	 * not stored in eeprom.  If all else thus far has failed
513	 * to fetch the permanent MAC address, try reading it directly.
514	 */
515	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
516	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
517	*(u32 *) &eth_addr[2] = swab32(addr[0]);
518	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
519	if (is_valid_ether_addr(eth_addr)) {
520		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
521		return 0;
522	}
523
524	return 1;
525}
526
527/*
528 * Reads the adapter's MAC address from the EEPROM
529 * hw - Struct containing variables accessed by shared code
530 */
531static s32 atl1_read_mac_addr(struct atl1_hw *hw)
532{
533	u16 i;
534
535	if (atl1_get_permanent_address(hw))
536		random_ether_addr(hw->perm_mac_addr);
537
538	for (i = 0; i < ETH_ALEN; i++)
539		hw->mac_addr[i] = hw->perm_mac_addr[i];
540	return 0;
541}
542
543/*
544 * Hashes an address to determine its location in the multicast table
545 * hw - Struct containing variables accessed by shared code
546 * mc_addr - the multicast address to hash
547 *
548 * atl1_hash_mc_addr
549 *  purpose
550 *      set hash value for a multicast address
551 *      hash calcu processing :
552 *          1. calcu 32bit CRC for multicast address
553 *          2. reverse crc with MSB to LSB
554 */
555u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
556{
557	u32 crc32, value = 0;
558	int i;
559
560	crc32 = ether_crc_le(6, mc_addr);
561	for (i = 0; i < 32; i++)
562		value |= (((crc32 >> i) & 1) << (31 - i));
563
564	return value;
565}
566
567/*
568 * Sets the bit in the multicast table corresponding to the hash value.
569 * hw - Struct containing variables accessed by shared code
570 * hash_value - Multicast address hash value
571 */
572void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
573{
574	u32 hash_bit, hash_reg;
575	u32 mta;
576
577	/*
578	 * The HASH Table  is a register array of 2 32-bit registers.
579	 * It is treated like an array of 64 bits.  We want to set
580	 * bit BitArray[hash_value]. So we figure out what register
581	 * the bit is in, read it, OR in the new bit, then write
582	 * back the new value.  The register is determined by the
583	 * upper 7 bits of the hash value and the bit within that
584	 * register are determined by the lower 5 bits of the value.
585	 */
586	hash_reg = (hash_value >> 31) & 0x1;
587	hash_bit = (hash_value >> 26) & 0x1F;
588	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
589	mta |= (1 << hash_bit);
590	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
591}
592
593/*
594 * Writes a value to a PHY register
595 * hw - Struct containing variables accessed by shared code
596 * reg_addr - address of the PHY register to write
597 * data - data to write to the PHY
598 */
599static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
600{
601	int i;
602	u32 val;
603
604	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
605	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
606	    MDIO_SUP_PREAMBLE |
607	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
608	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
609	ioread32(hw->hw_addr + REG_MDIO_CTRL);
610
611	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
612		udelay(2);
613		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
614		if (!(val & (MDIO_START | MDIO_BUSY)))
615			break;
616	}
617
618	if (!(val & (MDIO_START | MDIO_BUSY)))
619		return 0;
620
621	return ATLX_ERR_PHY;
622}
623
624/*
625 * Make L001's PHY out of Power Saving State (bug)
626 * hw - Struct containing variables accessed by shared code
627 * when power on, L001's PHY always on Power saving State
628 * (Gigabit Link forbidden)
629 */
630static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
631{
632	s32 ret;
633	ret = atl1_write_phy_reg(hw, 29, 0x0029);
634	if (ret)
635		return ret;
636	return atl1_write_phy_reg(hw, 30, 0);
637}
638
639/*
640 * Resets the PHY and make all config validate
641 * hw - Struct containing variables accessed by shared code
642 *
643 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
644 */
645static s32 atl1_phy_reset(struct atl1_hw *hw)
646{
647	struct pci_dev *pdev = hw->back->pdev;
648	struct atl1_adapter *adapter = hw->back;
649	s32 ret_val;
650	u16 phy_data;
651
652	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
653	    hw->media_type == MEDIA_TYPE_1000M_FULL)
654		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
655	else {
656		switch (hw->media_type) {
657		case MEDIA_TYPE_100M_FULL:
658			phy_data =
659			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
660			    MII_CR_RESET;
661			break;
662		case MEDIA_TYPE_100M_HALF:
663			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
664			break;
665		case MEDIA_TYPE_10M_FULL:
666			phy_data =
667			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
668			break;
669		default:
670			/* MEDIA_TYPE_10M_HALF: */
671			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
672			break;
673		}
674	}
675
676	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
677	if (ret_val) {
678		u32 val;
679		int i;
680		/* pcie serdes link may be down! */
681		if (netif_msg_hw(adapter))
682			dev_dbg(&pdev->dev, "pcie phy link down\n");
683
684		for (i = 0; i < 25; i++) {
685			msleep(1);
686			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
687			if (!(val & (MDIO_START | MDIO_BUSY)))
688				break;
689		}
690
691		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
692			if (netif_msg_hw(adapter))
693				dev_warn(&pdev->dev,
694					"pcie link down at least 25ms\n");
695			return ret_val;
696		}
697	}
698	return 0;
699}
700
701/*
702 * Configures PHY autoneg and flow control advertisement settings
703 * hw - Struct containing variables accessed by shared code
704 */
705static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
706{
707	s32 ret_val;
708	s16 mii_autoneg_adv_reg;
709	s16 mii_1000t_ctrl_reg;
710
711	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
712	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
713
714	/* Read the MII 1000Base-T Control Register (Address 9). */
715	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
716
717	/*
718	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
719	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
720	 * the  1000Base-T Control Register (Address 9).
721	 */
722	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
723	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
724
725	/*
726	 * Need to parse media_type  and set up
727	 * the appropriate PHY registers.
728	 */
729	switch (hw->media_type) {
730	case MEDIA_TYPE_AUTO_SENSOR:
731		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
732					MII_AR_10T_FD_CAPS |
733					MII_AR_100TX_HD_CAPS |
734					MII_AR_100TX_FD_CAPS);
735		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
736		break;
737
738	case MEDIA_TYPE_1000M_FULL:
739		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
740		break;
741
742	case MEDIA_TYPE_100M_FULL:
743		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
744		break;
745
746	case MEDIA_TYPE_100M_HALF:
747		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
748		break;
749
750	case MEDIA_TYPE_10M_FULL:
751		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
752		break;
753
754	default:
755		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
756		break;
757	}
758
759	/* flow control fixed to enable all */
760	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
761
762	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
763	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
764
765	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
766	if (ret_val)
767		return ret_val;
768
769	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
770	if (ret_val)
771		return ret_val;
772
773	return 0;
774}
775
776/*
777 * Configures link settings.
778 * hw - Struct containing variables accessed by shared code
779 * Assumes the hardware has previously been reset and the
780 * transmitter and receiver are not enabled.
781 */
782static s32 atl1_setup_link(struct atl1_hw *hw)
783{
784	struct pci_dev *pdev = hw->back->pdev;
785	struct atl1_adapter *adapter = hw->back;
786	s32 ret_val;
787
788	/*
789	 * Options:
790	 *  PHY will advertise value(s) parsed from
791	 *  autoneg_advertised and fc
792	 *  no matter what autoneg is , We will not wait link result.
793	 */
794	ret_val = atl1_phy_setup_autoneg_adv(hw);
795	if (ret_val) {
796		if (netif_msg_link(adapter))
797			dev_dbg(&pdev->dev,
798				"error setting up autonegotiation\n");
799		return ret_val;
800	}
801	/* SW.Reset , En-Auto-Neg if needed */
802	ret_val = atl1_phy_reset(hw);
803	if (ret_val) {
804		if (netif_msg_link(adapter))
805			dev_dbg(&pdev->dev, "error resetting phy\n");
806		return ret_val;
807	}
808	hw->phy_configured = true;
809	return ret_val;
810}
811
812static void atl1_init_flash_opcode(struct atl1_hw *hw)
813{
814	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
815		/* Atmel */
816		hw->flash_vendor = 0;
817
818	/* Init OP table */
819	iowrite8(flash_table[hw->flash_vendor].cmd_program,
820		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
821	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
822		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
823	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
824		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
825	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
826		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
827	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
828		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
829	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
830		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
831	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
832		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
833	iowrite8(flash_table[hw->flash_vendor].cmd_read,
834		hw->hw_addr + REG_SPI_FLASH_OP_READ);
835}
836
837/*
838 * Performs basic configuration of the adapter.
839 * hw - Struct containing variables accessed by shared code
840 * Assumes that the controller has previously been reset and is in a
841 * post-reset uninitialized state. Initializes multicast table,
842 * and  Calls routines to setup link
843 * Leaves the transmit and receive units disabled and uninitialized.
844 */
845static s32 atl1_init_hw(struct atl1_hw *hw)
846{
847	u32 ret_val = 0;
848
849	/* Zero out the Multicast HASH table */
850	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
851	/* clear the old settings from the multicast hash table */
852	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
853
854	atl1_init_flash_opcode(hw);
855
856	if (!hw->phy_configured) {
857		/* enable GPHY LinkChange Interrrupt */
858		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
859		if (ret_val)
860			return ret_val;
861		/* make PHY out of power-saving state */
862		ret_val = atl1_phy_leave_power_saving(hw);
863		if (ret_val)
864			return ret_val;
865		/* Call a subroutine to configure the link */
866		ret_val = atl1_setup_link(hw);
867	}
868	return ret_val;
869}
870
871/*
872 * Detects the current speed and duplex settings of the hardware.
873 * hw - Struct containing variables accessed by shared code
874 * speed - Speed of the connection
875 * duplex - Duplex setting of the connection
876 */
877static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
878{
879	struct pci_dev *pdev = hw->back->pdev;
880	struct atl1_adapter *adapter = hw->back;
881	s32 ret_val;
882	u16 phy_data;
883
884	/* ; --- Read   PHY Specific Status Register (17) */
885	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
886	if (ret_val)
887		return ret_val;
888
889	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
890		return ATLX_ERR_PHY_RES;
891
892	switch (phy_data & MII_ATLX_PSSR_SPEED) {
893	case MII_ATLX_PSSR_1000MBS:
894		*speed = SPEED_1000;
895		break;
896	case MII_ATLX_PSSR_100MBS:
897		*speed = SPEED_100;
898		break;
899	case MII_ATLX_PSSR_10MBS:
900		*speed = SPEED_10;
901		break;
902	default:
903		if (netif_msg_hw(adapter))
904			dev_dbg(&pdev->dev, "error getting speed\n");
905		return ATLX_ERR_PHY_SPEED;
906		break;
907	}
908	if (phy_data & MII_ATLX_PSSR_DPLX)
909		*duplex = FULL_DUPLEX;
910	else
911		*duplex = HALF_DUPLEX;
912
913	return 0;
914}
915
916void atl1_set_mac_addr(struct atl1_hw *hw)
917{
918	u32 value;
919	/*
920	 * 00-0B-6A-F6-00-DC
921	 * 0:  6AF600DC   1: 000B
922	 * low dword
923	 */
924	value = (((u32) hw->mac_addr[2]) << 24) |
925	    (((u32) hw->mac_addr[3]) << 16) |
926	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
927	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
928	/* high dword */
929	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
930	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
931}
932
933/*
934 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
935 * @adapter: board private structure to initialize
936 *
937 * atl1_sw_init initializes the Adapter private data structure.
938 * Fields are initialized based on PCI device information and
939 * OS network device settings (MTU size).
940 */
941static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
942{
943	struct atl1_hw *hw = &adapter->hw;
944	struct net_device *netdev = adapter->netdev;
945
946	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
947	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
948
949	adapter->wol = 0;
950	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
951	adapter->ict = 50000;		/* 100ms */
952	adapter->link_speed = SPEED_0;	/* hardware init */
953	adapter->link_duplex = FULL_DUPLEX;
954
955	hw->phy_configured = false;
956	hw->preamble_len = 7;
957	hw->ipgt = 0x60;
958	hw->min_ifg = 0x50;
959	hw->ipgr1 = 0x40;
960	hw->ipgr2 = 0x60;
961	hw->max_retry = 0xf;
962	hw->lcol = 0x37;
963	hw->jam_ipg = 7;
964	hw->rfd_burst = 8;
965	hw->rrd_burst = 8;
966	hw->rfd_fetch_gap = 1;
967	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
968	hw->rx_jumbo_lkah = 1;
969	hw->rrd_ret_timer = 16;
970	hw->tpd_burst = 4;
971	hw->tpd_fetch_th = 16;
972	hw->txf_burst = 0x100;
973	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
974	hw->tpd_fetch_gap = 1;
975	hw->rcb_value = atl1_rcb_64;
976	hw->dma_ord = atl1_dma_ord_enh;
977	hw->dmar_block = atl1_dma_req_256;
978	hw->dmaw_block = atl1_dma_req_256;
979	hw->cmb_rrd = 4;
980	hw->cmb_tpd = 4;
981	hw->cmb_rx_timer = 1;	/* about 2us */
982	hw->cmb_tx_timer = 1;	/* about 2us */
983	hw->smb_timer = 100000;	/* about 200ms */
984
985	spin_lock_init(&adapter->lock);
986	spin_lock_init(&adapter->mb_lock);
987
988	return 0;
989}
990
991static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
992{
993	struct atl1_adapter *adapter = netdev_priv(netdev);
994	u16 result;
995
996	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
997
998	return result;
999}
1000
1001static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1002	int val)
1003{
1004	struct atl1_adapter *adapter = netdev_priv(netdev);
1005
1006	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1007}
1008
1009/*
1010 * atl1_mii_ioctl -
1011 * @netdev:
1012 * @ifreq:
1013 * @cmd:
1014 */
1015static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1016{
1017	struct atl1_adapter *adapter = netdev_priv(netdev);
1018	unsigned long flags;
1019	int retval;
1020
1021	if (!netif_running(netdev))
1022		return -EINVAL;
1023
1024	spin_lock_irqsave(&adapter->lock, flags);
1025	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1026	spin_unlock_irqrestore(&adapter->lock, flags);
1027
1028	return retval;
1029}
1030
1031/*
1032 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1033 * @adapter: board private structure
1034 *
1035 * Return 0 on success, negative on failure
1036 */
1037static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1038{
1039	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1040	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1041	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1042	struct atl1_ring_header *ring_header = &adapter->ring_header;
1043	struct pci_dev *pdev = adapter->pdev;
1044	int size;
1045	u8 offset = 0;
1046
1047	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1048	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1049	if (unlikely(!tpd_ring->buffer_info)) {
1050		if (netif_msg_drv(adapter))
1051			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1052				size);
1053		goto err_nomem;
1054	}
1055	rfd_ring->buffer_info =
1056		(struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1057
1058	/*
1059	 * real ring DMA buffer
1060	 * each ring/block may need up to 8 bytes for alignment, hence the
1061	 * additional 40 bytes tacked onto the end.
1062	 */
1063	ring_header->size = size =
1064		sizeof(struct tx_packet_desc) * tpd_ring->count
1065		+ sizeof(struct rx_free_desc) * rfd_ring->count
1066		+ sizeof(struct rx_return_desc) * rrd_ring->count
1067		+ sizeof(struct coals_msg_block)
1068		+ sizeof(struct stats_msg_block)
1069		+ 40;
1070
1071	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1072		&ring_header->dma);
1073	if (unlikely(!ring_header->desc)) {
1074		if (netif_msg_drv(adapter))
1075			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1076		goto err_nomem;
1077	}
1078
1079	memset(ring_header->desc, 0, ring_header->size);
1080
1081	/* init TPD ring */
1082	tpd_ring->dma = ring_header->dma;
1083	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1084	tpd_ring->dma += offset;
1085	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1086	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1087
1088	/* init RFD ring */
1089	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1090	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1091	rfd_ring->dma += offset;
1092	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1093	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1094
1095
1096	/* init RRD ring */
1097	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1098	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1099	rrd_ring->dma += offset;
1100	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1101	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1102
1103
1104	/* init CMB */
1105	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1106	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1107	adapter->cmb.dma += offset;
1108	adapter->cmb.cmb = (struct coals_msg_block *)
1109		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1110
1111	/* init SMB */
1112	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1113	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1114	adapter->smb.dma += offset;
1115	adapter->smb.smb = (struct stats_msg_block *)
1116		((u8 *) adapter->cmb.cmb +
1117		(sizeof(struct coals_msg_block) + offset));
1118
1119	return 0;
1120
1121err_nomem:
1122	kfree(tpd_ring->buffer_info);
1123	return -ENOMEM;
1124}
1125
1126static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1127{
1128	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1129	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1130	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1131
1132	atomic_set(&tpd_ring->next_to_use, 0);
1133	atomic_set(&tpd_ring->next_to_clean, 0);
1134
1135	rfd_ring->next_to_clean = 0;
1136	atomic_set(&rfd_ring->next_to_use, 0);
1137
1138	rrd_ring->next_to_use = 0;
1139	atomic_set(&rrd_ring->next_to_clean, 0);
1140}
1141
1142/*
1143 * atl1_clean_rx_ring - Free RFD Buffers
1144 * @adapter: board private structure
1145 */
1146static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1147{
1148	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1149	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1150	struct atl1_buffer *buffer_info;
1151	struct pci_dev *pdev = adapter->pdev;
1152	unsigned long size;
1153	unsigned int i;
1154
1155	/* Free all the Rx ring sk_buffs */
1156	for (i = 0; i < rfd_ring->count; i++) {
1157		buffer_info = &rfd_ring->buffer_info[i];
1158		if (buffer_info->dma) {
1159			pci_unmap_page(pdev, buffer_info->dma,
1160				buffer_info->length, PCI_DMA_FROMDEVICE);
1161			buffer_info->dma = 0;
1162		}
1163		if (buffer_info->skb) {
1164			dev_kfree_skb(buffer_info->skb);
1165			buffer_info->skb = NULL;
1166		}
1167	}
1168
1169	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1170	memset(rfd_ring->buffer_info, 0, size);
1171
1172	/* Zero out the descriptor ring */
1173	memset(rfd_ring->desc, 0, rfd_ring->size);
1174
1175	rfd_ring->next_to_clean = 0;
1176	atomic_set(&rfd_ring->next_to_use, 0);
1177
1178	rrd_ring->next_to_use = 0;
1179	atomic_set(&rrd_ring->next_to_clean, 0);
1180}
1181
1182/*
1183 * atl1_clean_tx_ring - Free Tx Buffers
1184 * @adapter: board private structure
1185 */
1186static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1187{
1188	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1189	struct atl1_buffer *buffer_info;
1190	struct pci_dev *pdev = adapter->pdev;
1191	unsigned long size;
1192	unsigned int i;
1193
1194	/* Free all the Tx ring sk_buffs */
1195	for (i = 0; i < tpd_ring->count; i++) {
1196		buffer_info = &tpd_ring->buffer_info[i];
1197		if (buffer_info->dma) {
1198			pci_unmap_page(pdev, buffer_info->dma,
1199				buffer_info->length, PCI_DMA_TODEVICE);
1200			buffer_info->dma = 0;
1201		}
1202	}
1203
1204	for (i = 0; i < tpd_ring->count; i++) {
1205		buffer_info = &tpd_ring->buffer_info[i];
1206		if (buffer_info->skb) {
1207			dev_kfree_skb_any(buffer_info->skb);
1208			buffer_info->skb = NULL;
1209		}
1210	}
1211
1212	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1213	memset(tpd_ring->buffer_info, 0, size);
1214
1215	/* Zero out the descriptor ring */
1216	memset(tpd_ring->desc, 0, tpd_ring->size);
1217
1218	atomic_set(&tpd_ring->next_to_use, 0);
1219	atomic_set(&tpd_ring->next_to_clean, 0);
1220}
1221
1222/*
1223 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1224 * @adapter: board private structure
1225 *
1226 * Free all transmit software resources
1227 */
1228static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1229{
1230	struct pci_dev *pdev = adapter->pdev;
1231	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1232	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1233	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1234	struct atl1_ring_header *ring_header = &adapter->ring_header;
1235
1236	atl1_clean_tx_ring(adapter);
1237	atl1_clean_rx_ring(adapter);
1238
1239	kfree(tpd_ring->buffer_info);
1240	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1241		ring_header->dma);
1242
1243	tpd_ring->buffer_info = NULL;
1244	tpd_ring->desc = NULL;
1245	tpd_ring->dma = 0;
1246
1247	rfd_ring->buffer_info = NULL;
1248	rfd_ring->desc = NULL;
1249	rfd_ring->dma = 0;
1250
1251	rrd_ring->desc = NULL;
1252	rrd_ring->dma = 0;
1253
1254	adapter->cmb.dma = 0;
1255	adapter->cmb.cmb = NULL;
1256
1257	adapter->smb.dma = 0;
1258	adapter->smb.smb = NULL;
1259}
1260
1261static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1262{
1263	u32 value;
1264	struct atl1_hw *hw = &adapter->hw;
1265	struct net_device *netdev = adapter->netdev;
1266	/* Config MAC CTRL Register */
1267	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1268	/* duplex */
1269	if (FULL_DUPLEX == adapter->link_duplex)
1270		value |= MAC_CTRL_DUPLX;
1271	/* speed */
1272	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1273			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1274		  MAC_CTRL_SPEED_SHIFT);
1275	/* flow control */
1276	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1277	/* PAD & CRC */
1278	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1279	/* preamble length */
1280	value |= (((u32) adapter->hw.preamble_len
1281		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1282	/* vlan */
1283	if (adapter->vlgrp)
1284		value |= MAC_CTRL_RMV_VLAN;
1285	/* rx checksum
1286	   if (adapter->rx_csum)
1287	   value |= MAC_CTRL_RX_CHKSUM_EN;
1288	 */
1289	/* filter mode */
1290	value |= MAC_CTRL_BC_EN;
1291	if (netdev->flags & IFF_PROMISC)
1292		value |= MAC_CTRL_PROMIS_EN;
1293	else if (netdev->flags & IFF_ALLMULTI)
1294		value |= MAC_CTRL_MC_ALL_EN;
1295	/* value |= MAC_CTRL_LOOPBACK; */
1296	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1297}
1298
1299static u32 atl1_check_link(struct atl1_adapter *adapter)
1300{
1301	struct atl1_hw *hw = &adapter->hw;
1302	struct net_device *netdev = adapter->netdev;
1303	u32 ret_val;
1304	u16 speed, duplex, phy_data;
1305	int reconfig = 0;
1306
1307	/* MII_BMSR must read twice */
1308	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310	if (!(phy_data & BMSR_LSTATUS)) {
1311		/* link down */
1312		if (netif_carrier_ok(netdev)) {
1313			/* old link state: Up */
1314			if (netif_msg_link(adapter))
1315				dev_info(&adapter->pdev->dev, "link is down\n");
1316			adapter->link_speed = SPEED_0;
1317			netif_carrier_off(netdev);
1318		}
1319		return 0;
1320	}
1321
1322	/* Link Up */
1323	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1324	if (ret_val)
1325		return ret_val;
1326
1327	switch (hw->media_type) {
1328	case MEDIA_TYPE_1000M_FULL:
1329		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1330			reconfig = 1;
1331		break;
1332	case MEDIA_TYPE_100M_FULL:
1333		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1334			reconfig = 1;
1335		break;
1336	case MEDIA_TYPE_100M_HALF:
1337		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1338			reconfig = 1;
1339		break;
1340	case MEDIA_TYPE_10M_FULL:
1341		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1342			reconfig = 1;
1343		break;
1344	case MEDIA_TYPE_10M_HALF:
1345		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1346			reconfig = 1;
1347		break;
1348	}
1349
1350	/* link result is our setting */
1351	if (!reconfig) {
1352		if (adapter->link_speed != speed ||
1353		    adapter->link_duplex != duplex) {
1354			adapter->link_speed = speed;
1355			adapter->link_duplex = duplex;
1356			atl1_setup_mac_ctrl(adapter);
1357			if (netif_msg_link(adapter))
1358				dev_info(&adapter->pdev->dev,
1359					"%s link is up %d Mbps %s\n",
1360					netdev->name, adapter->link_speed,
1361					adapter->link_duplex == FULL_DUPLEX ?
1362					"full duplex" : "half duplex");
1363		}
1364		if (!netif_carrier_ok(netdev)) {
1365			/* Link down -> Up */
1366			netif_carrier_on(netdev);
1367		}
1368		return 0;
1369	}
1370
1371	/* change original link status */
1372	if (netif_carrier_ok(netdev)) {
1373		adapter->link_speed = SPEED_0;
1374		netif_carrier_off(netdev);
1375		netif_stop_queue(netdev);
1376	}
1377
1378	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1379	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1380		switch (hw->media_type) {
1381		case MEDIA_TYPE_100M_FULL:
1382			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1383			           MII_CR_RESET;
1384			break;
1385		case MEDIA_TYPE_100M_HALF:
1386			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1387			break;
1388		case MEDIA_TYPE_10M_FULL:
1389			phy_data =
1390			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1391			break;
1392		default:
1393			/* MEDIA_TYPE_10M_HALF: */
1394			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1395			break;
1396		}
1397		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1398		return 0;
1399	}
1400
1401	/* auto-neg, insert timer to re-config phy */
1402	if (!adapter->phy_timer_pending) {
1403		adapter->phy_timer_pending = true;
1404		mod_timer(&adapter->phy_config_timer,
1405			  round_jiffies(jiffies + 3 * HZ));
1406	}
1407
1408	return 0;
1409}
1410
1411static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1412{
1413	u32 hi, lo, value;
1414
1415	/* RFD Flow Control */
1416	value = adapter->rfd_ring.count;
1417	hi = value / 16;
1418	if (hi < 2)
1419		hi = 2;
1420	lo = value * 7 / 8;
1421
1422	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1423		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1424	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1425
1426	/* RRD Flow Control */
1427	value = adapter->rrd_ring.count;
1428	lo = value / 16;
1429	hi = value * 7 / 8;
1430	if (lo < 2)
1431		lo = 2;
1432	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1433		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1434	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1435}
1436
1437static void set_flow_ctrl_new(struct atl1_hw *hw)
1438{
1439	u32 hi, lo, value;
1440
1441	/* RXF Flow Control */
1442	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1443	lo = value / 16;
1444	if (lo < 192)
1445		lo = 192;
1446	hi = value * 7 / 8;
1447	if (hi < lo)
1448		hi = lo + 16;
1449	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1450		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1451	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1452
1453	/* RRD Flow Control */
1454	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1455	lo = value / 8;
1456	hi = value * 7 / 8;
1457	if (lo < 2)
1458		lo = 2;
1459	if (hi < lo)
1460		hi = lo + 3;
1461	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1462		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1463	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1464}
1465
1466/*
1467 * atl1_configure - Configure Transmit&Receive Unit after Reset
1468 * @adapter: board private structure
1469 *
1470 * Configure the Tx /Rx unit of the MAC after a reset.
1471 */
1472static u32 atl1_configure(struct atl1_adapter *adapter)
1473{
1474	struct atl1_hw *hw = &adapter->hw;
1475	u32 value;
1476
1477	/* clear interrupt status */
1478	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1479
1480	/* set MAC Address */
1481	value = (((u32) hw->mac_addr[2]) << 24) |
1482		(((u32) hw->mac_addr[3]) << 16) |
1483		(((u32) hw->mac_addr[4]) << 8) |
1484		(((u32) hw->mac_addr[5]));
1485	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1486	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1487	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1488
1489	/* tx / rx ring */
1490
1491	/* HI base address */
1492	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1493		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1494	/* LO base address */
1495	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1496		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1497	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1498		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1499	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1500		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1501	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1502		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1503	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1504		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1505
1506	/* element count */
1507	value = adapter->rrd_ring.count;
1508	value <<= 16;
1509	value += adapter->rfd_ring.count;
1510	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1511	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1512		REG_DESC_TPD_RING_SIZE);
1513
1514	/* Load Ptr */
1515	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1516
1517	/* config Mailbox */
1518	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1519		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1520		((atomic_read(&adapter->rrd_ring.next_to_clean)
1521		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1522		((atomic_read(&adapter->rfd_ring.next_to_use)
1523		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1524	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1525
1526	/* config IPG/IFG */
1527	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1528		 << MAC_IPG_IFG_IPGT_SHIFT) |
1529		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1530		<< MAC_IPG_IFG_MIFG_SHIFT) |
1531		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1532		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1533		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1534		<< MAC_IPG_IFG_IPGR2_SHIFT);
1535	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1536
1537	/* config  Half-Duplex Control */
1538	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1539		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1540		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1541		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1542		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1543		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1544		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1545	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1546
1547	/* set Interrupt Moderator Timer */
1548	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1549	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1550
1551	/* set Interrupt Clear Timer */
1552	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1553
1554	/* set max frame size hw will accept */
1555	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1556
1557	/* jumbo size & rrd retirement timer */
1558	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1559		 << RXQ_JMBOSZ_TH_SHIFT) |
1560		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1561		<< RXQ_JMBO_LKAH_SHIFT) |
1562		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1563		<< RXQ_RRD_TIMER_SHIFT);
1564	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1565
1566	/* Flow Control */
1567	switch (hw->dev_rev) {
1568	case 0x8001:
1569	case 0x9001:
1570	case 0x9002:
1571	case 0x9003:
1572		set_flow_ctrl_old(adapter);
1573		break;
1574	default:
1575		set_flow_ctrl_new(hw);
1576		break;
1577	}
1578
1579	/* config TXQ */
1580	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1581		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1582		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1583		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1584		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1585		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1586		TXQ_CTRL_EN;
1587	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1588
1589	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1590	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1591		<< TX_JUMBO_TASK_TH_SHIFT) |
1592		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1593		<< TX_TPD_MIN_IPG_SHIFT);
1594	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1595
1596	/* config RXQ */
1597	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1598		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1599		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1600		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1601		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1602		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1603		RXQ_CTRL_EN;
1604	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1605
1606	/* config DMA Engine */
1607	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1608		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1609		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1610		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1611		DMA_CTRL_DMAW_EN;
1612	value |= (u32) hw->dma_ord;
1613	if (atl1_rcb_128 == hw->rcb_value)
1614		value |= DMA_CTRL_RCB_VALUE;
1615	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1616
1617	/* config CMB / SMB */
1618	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1619		hw->cmb_tpd : adapter->tpd_ring.count;
1620	value <<= 16;
1621	value |= hw->cmb_rrd;
1622	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1623	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1624	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1625	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1626
1627	/* --- enable CMB / SMB */
1628	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1629	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1630
1631	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1632	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1633		value = 1;	/* config failed */
1634	else
1635		value = 0;
1636
1637	/* clear all interrupt status */
1638	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1639	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1640	return value;
1641}
1642
1643/*
1644 * atl1_pcie_patch - Patch for PCIE module
1645 */
1646static void atl1_pcie_patch(struct atl1_adapter *adapter)
1647{
1648	u32 value;
1649
1650	/* much vendor magic here */
1651	value = 0x6500;
1652	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1653	/* pcie flow control mode change */
1654	value = ioread32(adapter->hw.hw_addr + 0x1008);
1655	value |= 0x8000;
1656	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1657}
1658
1659/*
1660 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1661 * on PCI Command register is disable.
1662 * The function enable this bit.
1663 * Brackett, 2006/03/15
1664 */
1665static void atl1_via_workaround(struct atl1_adapter *adapter)
1666{
1667	unsigned long value;
1668
1669	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1670	if (value & PCI_COMMAND_INTX_DISABLE)
1671		value &= ~PCI_COMMAND_INTX_DISABLE;
1672	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1673}
1674
1675static void atl1_inc_smb(struct atl1_adapter *adapter)
1676{
1677	struct net_device *netdev = adapter->netdev;
1678	struct stats_msg_block *smb = adapter->smb.smb;
1679
1680	/* Fill out the OS statistics structure */
1681	adapter->soft_stats.rx_packets += smb->rx_ok;
1682	adapter->soft_stats.tx_packets += smb->tx_ok;
1683	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1684	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1685	adapter->soft_stats.multicast += smb->rx_mcast;
1686	adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1687		smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1688
1689	/* Rx Errors */
1690	adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1691		smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1692		smb->rx_rrd_ov + smb->rx_align_err);
1693	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1694	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1695	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1696	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1697	adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1698		smb->rx_rxf_ov);
1699
1700	adapter->soft_stats.rx_pause += smb->rx_pause;
1701	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1702	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1703
1704	/* Tx Errors */
1705	adapter->soft_stats.tx_errors += (smb->tx_late_col +
1706		smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1707	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1708	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1709	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1710
1711	adapter->soft_stats.excecol += smb->tx_abort_col;
1712	adapter->soft_stats.deffer += smb->tx_defer;
1713	adapter->soft_stats.scc += smb->tx_1_col;
1714	adapter->soft_stats.mcc += smb->tx_2_col;
1715	adapter->soft_stats.latecol += smb->tx_late_col;
1716	adapter->soft_stats.tx_underun += smb->tx_underrun;
1717	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1718	adapter->soft_stats.tx_pause += smb->tx_pause;
1719
1720	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1721	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1722	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1723	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1724	netdev->stats.multicast = adapter->soft_stats.multicast;
1725	netdev->stats.collisions = adapter->soft_stats.collisions;
1726	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1727	netdev->stats.rx_over_errors =
1728		adapter->soft_stats.rx_missed_errors;
1729	netdev->stats.rx_length_errors =
1730		adapter->soft_stats.rx_length_errors;
1731	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1732	netdev->stats.rx_frame_errors =
1733		adapter->soft_stats.rx_frame_errors;
1734	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1735	netdev->stats.rx_missed_errors =
1736		adapter->soft_stats.rx_missed_errors;
1737	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1738	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1739	netdev->stats.tx_aborted_errors =
1740		adapter->soft_stats.tx_aborted_errors;
1741	netdev->stats.tx_window_errors =
1742		adapter->soft_stats.tx_window_errors;
1743	netdev->stats.tx_carrier_errors =
1744		adapter->soft_stats.tx_carrier_errors;
1745}
1746
1747static void atl1_update_mailbox(struct atl1_adapter *adapter)
1748{
1749	unsigned long flags;
1750	u32 tpd_next_to_use;
1751	u32 rfd_next_to_use;
1752	u32 rrd_next_to_clean;
1753	u32 value;
1754
1755	spin_lock_irqsave(&adapter->mb_lock, flags);
1756
1757	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1758	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1759	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1760
1761	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1762		MB_RFD_PROD_INDX_SHIFT) |
1763		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1764		MB_RRD_CONS_INDX_SHIFT) |
1765		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1766		MB_TPD_PROD_INDX_SHIFT);
1767	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1768
1769	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1770}
1771
1772static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1773	struct rx_return_desc *rrd, u16 offset)
1774{
1775	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1776
1777	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1778		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1779		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1780			rfd_ring->next_to_clean = 0;
1781		}
1782	}
1783}
1784
1785static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1786	struct rx_return_desc *rrd)
1787{
1788	u16 num_buf;
1789
1790	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1791		adapter->rx_buffer_len;
1792	if (rrd->num_buf == num_buf)
1793		/* clean alloc flag for bad rrd */
1794		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1795}
1796
1797static void atl1_rx_checksum(struct atl1_adapter *adapter,
1798	struct rx_return_desc *rrd, struct sk_buff *skb)
1799{
1800	struct pci_dev *pdev = adapter->pdev;
1801
1802	/*
1803	 * The L1 hardware contains a bug that erroneously sets the
1804	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1805	 * fragmented IP packet is received, even though the packet
1806	 * is perfectly valid and its checksum is correct. There's
1807	 * no way to distinguish between one of these good packets
1808	 * and a packet that actually contains a TCP/UDP checksum
1809	 * error, so all we can do is allow it to be handed up to
1810	 * the higher layers and let it be sorted out there.
1811	 */
1812
1813	skb->ip_summed = CHECKSUM_NONE;
1814
1815	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1816		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1817					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1818			adapter->hw_csum_err++;
1819			if (netif_msg_rx_err(adapter))
1820				dev_printk(KERN_DEBUG, &pdev->dev,
1821					"rx checksum error\n");
1822			return;
1823		}
1824	}
1825
1826	/* not IPv4 */
1827	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1828		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1829		return;
1830
1831	/* IPv4 packet */
1832	if (likely(!(rrd->err_flg &
1833		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1834		skb->ip_summed = CHECKSUM_UNNECESSARY;
1835		adapter->hw_csum_good++;
1836		return;
1837	}
1838}
1839
1840/*
1841 * atl1_alloc_rx_buffers - Replace used receive buffers
1842 * @adapter: address of board private structure
1843 */
1844static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1845{
1846	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1847	struct pci_dev *pdev = adapter->pdev;
1848	struct page *page;
1849	unsigned long offset;
1850	struct atl1_buffer *buffer_info, *next_info;
1851	struct sk_buff *skb;
1852	u16 num_alloc = 0;
1853	u16 rfd_next_to_use, next_next;
1854	struct rx_free_desc *rfd_desc;
1855
1856	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1857	if (++next_next == rfd_ring->count)
1858		next_next = 0;
1859	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1860	next_info = &rfd_ring->buffer_info[next_next];
1861
1862	while (!buffer_info->alloced && !next_info->alloced) {
1863		if (buffer_info->skb) {
1864			buffer_info->alloced = 1;
1865			goto next;
1866		}
1867
1868		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1869
1870		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1871						adapter->rx_buffer_len);
1872		if (unlikely(!skb)) {
1873			/* Better luck next round */
1874			adapter->netdev->stats.rx_dropped++;
1875			break;
1876		}
1877
1878		buffer_info->alloced = 1;
1879		buffer_info->skb = skb;
1880		buffer_info->length = (u16) adapter->rx_buffer_len;
1881		page = virt_to_page(skb->data);
1882		offset = (unsigned long)skb->data & ~PAGE_MASK;
1883		buffer_info->dma = pci_map_page(pdev, page, offset,
1884						adapter->rx_buffer_len,
1885						PCI_DMA_FROMDEVICE);
1886		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1887		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1888		rfd_desc->coalese = 0;
1889
1890next:
1891		rfd_next_to_use = next_next;
1892		if (unlikely(++next_next == rfd_ring->count))
1893			next_next = 0;
1894
1895		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1896		next_info = &rfd_ring->buffer_info[next_next];
1897		num_alloc++;
1898	}
1899
1900	if (num_alloc) {
1901		/*
1902		 * Force memory writes to complete before letting h/w
1903		 * know there are new descriptors to fetch.  (Only
1904		 * applicable for weak-ordered memory model archs,
1905		 * such as IA-64).
1906		 */
1907		wmb();
1908		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1909	}
1910	return num_alloc;
1911}
1912
1913static void atl1_intr_rx(struct atl1_adapter *adapter)
1914{
1915	int i, count;
1916	u16 length;
1917	u16 rrd_next_to_clean;
1918	u32 value;
1919	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1920	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1921	struct atl1_buffer *buffer_info;
1922	struct rx_return_desc *rrd;
1923	struct sk_buff *skb;
1924
1925	count = 0;
1926
1927	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1928
1929	while (1) {
1930		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1931		i = 1;
1932		if (likely(rrd->xsz.valid)) {	/* packet valid */
1933chk_rrd:
1934			/* check rrd status */
1935			if (likely(rrd->num_buf == 1))
1936				goto rrd_ok;
1937			else if (netif_msg_rx_err(adapter)) {
1938				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1939					"unexpected RRD buffer count\n");
1940				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1941					"rx_buf_len = %d\n",
1942					adapter->rx_buffer_len);
1943				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1944					"RRD num_buf = %d\n",
1945					rrd->num_buf);
1946				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1947					"RRD pkt_len = %d\n",
1948					rrd->xsz.xsum_sz.pkt_size);
1949				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1950					"RRD pkt_flg = 0x%08X\n",
1951					rrd->pkt_flg);
1952				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1953					"RRD err_flg = 0x%08X\n",
1954					rrd->err_flg);
1955				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1956					"RRD vlan_tag = 0x%08X\n",
1957					rrd->vlan_tag);
1958			}
1959
1960			/* rrd seems to be bad */
1961			if (unlikely(i-- > 0)) {
1962				/* rrd may not be DMAed completely */
1963				udelay(1);
1964				goto chk_rrd;
1965			}
1966			/* bad rrd */
1967			if (netif_msg_rx_err(adapter))
1968				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1969					"bad RRD\n");
1970			/* see if update RFD index */
1971			if (rrd->num_buf > 1)
1972				atl1_update_rfd_index(adapter, rrd);
1973
1974			/* update rrd */
1975			rrd->xsz.valid = 0;
1976			if (++rrd_next_to_clean == rrd_ring->count)
1977				rrd_next_to_clean = 0;
1978			count++;
1979			continue;
1980		} else {	/* current rrd still not be updated */
1981
1982			break;
1983		}
1984rrd_ok:
1985		/* clean alloc flag for bad rrd */
1986		atl1_clean_alloc_flag(adapter, rrd, 0);
1987
1988		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1989		if (++rfd_ring->next_to_clean == rfd_ring->count)
1990			rfd_ring->next_to_clean = 0;
1991
1992		/* update rrd next to clean */
1993		if (++rrd_next_to_clean == rrd_ring->count)
1994			rrd_next_to_clean = 0;
1995		count++;
1996
1997		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1998			if (!(rrd->err_flg &
1999				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2000				| ERR_FLAG_LEN))) {
2001				/* packet error, don't need upstream */
2002				buffer_info->alloced = 0;
2003				rrd->xsz.valid = 0;
2004				continue;
2005			}
2006		}
2007
2008		/* Good Receive */
2009		pci_unmap_page(adapter->pdev, buffer_info->dma,
2010			       buffer_info->length, PCI_DMA_FROMDEVICE);
2011		buffer_info->dma = 0;
2012		skb = buffer_info->skb;
2013		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2014
2015		skb_put(skb, length - ETH_FCS_LEN);
2016
2017		/* Receive Checksum Offload */
2018		atl1_rx_checksum(adapter, rrd, skb);
2019		skb->protocol = eth_type_trans(skb, adapter->netdev);
2020
2021		if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
2022			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2023					((rrd->vlan_tag & 7) << 13) |
2024					((rrd->vlan_tag & 8) << 9);
2025			vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
2026		} else
2027			netif_rx(skb);
2028
2029		/* let protocol layer free skb */
2030		buffer_info->skb = NULL;
2031		buffer_info->alloced = 0;
2032		rrd->xsz.valid = 0;
2033	}
2034
2035	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2036
2037	atl1_alloc_rx_buffers(adapter);
2038
2039	/* update mailbox ? */
2040	if (count) {
2041		u32 tpd_next_to_use;
2042		u32 rfd_next_to_use;
2043
2044		spin_lock(&adapter->mb_lock);
2045
2046		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2047		rfd_next_to_use =
2048		    atomic_read(&adapter->rfd_ring.next_to_use);
2049		rrd_next_to_clean =
2050		    atomic_read(&adapter->rrd_ring.next_to_clean);
2051		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2052			MB_RFD_PROD_INDX_SHIFT) |
2053                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2054			MB_RRD_CONS_INDX_SHIFT) |
2055                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2056			MB_TPD_PROD_INDX_SHIFT);
2057		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2058		spin_unlock(&adapter->mb_lock);
2059	}
2060}
2061
2062static void atl1_intr_tx(struct atl1_adapter *adapter)
2063{
2064	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2065	struct atl1_buffer *buffer_info;
2066	u16 sw_tpd_next_to_clean;
2067	u16 cmb_tpd_next_to_clean;
2068
2069	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2070	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2071
2072	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2073		struct tx_packet_desc *tpd;
2074
2075		tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
2076		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2077		if (buffer_info->dma) {
2078			pci_unmap_page(adapter->pdev, buffer_info->dma,
2079				       buffer_info->length, PCI_DMA_TODEVICE);
2080			buffer_info->dma = 0;
2081		}
2082
2083		if (buffer_info->skb) {
2084			dev_kfree_skb_irq(buffer_info->skb);
2085			buffer_info->skb = NULL;
2086		}
2087
2088		if (++sw_tpd_next_to_clean == tpd_ring->count)
2089			sw_tpd_next_to_clean = 0;
2090	}
2091	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2092
2093	if (netif_queue_stopped(adapter->netdev) &&
2094	    netif_carrier_ok(adapter->netdev))
2095		netif_wake_queue(adapter->netdev);
2096}
2097
2098static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2099{
2100	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2101	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2102	return ((next_to_clean > next_to_use) ?
2103		next_to_clean - next_to_use - 1 :
2104		tpd_ring->count + next_to_clean - next_to_use - 1);
2105}
2106
2107static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2108	struct tx_packet_desc *ptpd)
2109{
2110	u8 hdr_len, ip_off;
2111	u32 real_len;
2112	int err;
2113
2114	if (skb_shinfo(skb)->gso_size) {
2115		if (skb_header_cloned(skb)) {
2116			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2117			if (unlikely(err))
2118				return -1;
2119		}
2120
2121		if (skb->protocol == htons(ETH_P_IP)) {
2122			struct iphdr *iph = ip_hdr(skb);
2123
2124			real_len = (((unsigned char *)iph - skb->data) +
2125				ntohs(iph->tot_len));
2126			if (real_len < skb->len)
2127				pskb_trim(skb, real_len);
2128			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2129			if (skb->len == hdr_len) {
2130				iph->check = 0;
2131				tcp_hdr(skb)->check =
2132					~csum_tcpudp_magic(iph->saddr,
2133					iph->daddr, tcp_hdrlen(skb),
2134					IPPROTO_TCP, 0);
2135				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2136					TPD_IPHL_SHIFT;
2137				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2138					TPD_TCPHDRLEN_MASK) <<
2139					TPD_TCPHDRLEN_SHIFT;
2140				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2141				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2142				return 1;
2143			}
2144
2145			iph->check = 0;
2146			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2147					iph->daddr, 0, IPPROTO_TCP, 0);
2148			ip_off = (unsigned char *)iph -
2149				(unsigned char *) skb_network_header(skb);
2150			if (ip_off == 8) /* 802.3-SNAP frame */
2151				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2152			else if (ip_off != 0)
2153				return -2;
2154
2155			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2156				TPD_IPHL_SHIFT;
2157			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2158				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2159			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2160				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2161			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2162			return 3;
2163		}
2164	}
2165	return false;
2166}
2167
2168static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2169	struct tx_packet_desc *ptpd)
2170{
2171	u8 css, cso;
2172
2173	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2174		css = (u8) (skb->csum_start - skb_headroom(skb));
2175		cso = css + (u8) skb->csum_offset;
2176		if (unlikely(css & 0x1)) {
2177			/* L1 hardware requires an even number here */
2178			if (netif_msg_tx_err(adapter))
2179				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2180					"payload offset not an even number\n");
2181			return -1;
2182		}
2183		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2184			TPD_PLOADOFFSET_SHIFT;
2185		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2186			TPD_CCSUMOFFSET_SHIFT;
2187		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2188		return true;
2189	}
2190	return 0;
2191}
2192
2193static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2194	struct tx_packet_desc *ptpd)
2195{
2196	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2197	struct atl1_buffer *buffer_info;
2198	u16 buf_len = skb->len;
2199	struct page *page;
2200	unsigned long offset;
2201	unsigned int nr_frags;
2202	unsigned int f;
2203	int retval;
2204	u16 next_to_use;
2205	u16 data_len;
2206	u8 hdr_len;
2207
2208	buf_len -= skb->data_len;
2209	nr_frags = skb_shinfo(skb)->nr_frags;
2210	next_to_use = atomic_read(&tpd_ring->next_to_use);
2211	buffer_info = &tpd_ring->buffer_info[next_to_use];
2212	BUG_ON(buffer_info->skb);
2213	/* put skb in last TPD */
2214	buffer_info->skb = NULL;
2215
2216	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2217	if (retval) {
2218		/* TSO */
2219		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2220		buffer_info->length = hdr_len;
2221		page = virt_to_page(skb->data);
2222		offset = (unsigned long)skb->data & ~PAGE_MASK;
2223		buffer_info->dma = pci_map_page(adapter->pdev, page,
2224						offset, hdr_len,
2225						PCI_DMA_TODEVICE);
2226
2227		if (++next_to_use == tpd_ring->count)
2228			next_to_use = 0;
2229
2230		if (buf_len > hdr_len) {
2231			int i, nseg;
2232
2233			data_len = buf_len - hdr_len;
2234			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2235				ATL1_MAX_TX_BUF_LEN;
2236			for (i = 0; i < nseg; i++) {
2237				buffer_info =
2238				    &tpd_ring->buffer_info[next_to_use];
2239				buffer_info->skb = NULL;
2240				buffer_info->length =
2241				    (ATL1_MAX_TX_BUF_LEN >=
2242				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2243				data_len -= buffer_info->length;
2244				page = virt_to_page(skb->data +
2245					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2246				offset = (unsigned long)(skb->data +
2247					(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2248					~PAGE_MASK;
2249				buffer_info->dma = pci_map_page(adapter->pdev,
2250					page, offset, buffer_info->length,
2251					PCI_DMA_TODEVICE);
2252				if (++next_to_use == tpd_ring->count)
2253					next_to_use = 0;
2254			}
2255		}
2256	} else {
2257		/* not TSO */
2258		buffer_info->length = buf_len;
2259		page = virt_to_page(skb->data);
2260		offset = (unsigned long)skb->data & ~PAGE_MASK;
2261		buffer_info->dma = pci_map_page(adapter->pdev, page,
2262			offset, buf_len, PCI_DMA_TODEVICE);
2263		if (++next_to_use == tpd_ring->count)
2264			next_to_use = 0;
2265	}
2266
2267	for (f = 0; f < nr_frags; f++) {
2268		struct skb_frag_struct *frag;
2269		u16 i, nseg;
2270
2271		frag = &skb_shinfo(skb)->frags[f];
2272		buf_len = frag->size;
2273
2274		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2275			ATL1_MAX_TX_BUF_LEN;
2276		for (i = 0; i < nseg; i++) {
2277			buffer_info = &tpd_ring->buffer_info[next_to_use];
2278			BUG_ON(buffer_info->skb);
2279
2280			buffer_info->skb = NULL;
2281			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2282				ATL1_MAX_TX_BUF_LEN : buf_len;
2283			buf_len -= buffer_info->length;
2284			buffer_info->dma = pci_map_page(adapter->pdev,
2285				frag->page,
2286				frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
2287				buffer_info->length, PCI_DMA_TODEVICE);
2288
2289			if (++next_to_use == tpd_ring->count)
2290				next_to_use = 0;
2291		}
2292	}
2293
2294	/* last tpd's buffer-info */
2295	buffer_info->skb = skb;
2296}
2297
2298static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2299       struct tx_packet_desc *ptpd)
2300{
2301	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2302	struct atl1_buffer *buffer_info;
2303	struct tx_packet_desc *tpd;
2304	u16 j;
2305	u32 val;
2306	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2307
2308	for (j = 0; j < count; j++) {
2309		buffer_info = &tpd_ring->buffer_info[next_to_use];
2310		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2311		if (tpd != ptpd)
2312			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2313		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2314		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2315		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2316			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2317
2318		/*
2319		 * if this is the first packet in a TSO chain, set
2320		 * TPD_HDRFLAG, otherwise, clear it.
2321		 */
2322		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2323			TPD_SEGMENT_EN_MASK;
2324		if (val) {
2325			if (!j)
2326				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2327			else
2328				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2329		}
2330
2331		if (j == (count - 1))
2332			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2333
2334		if (++next_to_use == tpd_ring->count)
2335			next_to_use = 0;
2336	}
2337	/*
2338	 * Force memory writes to complete before letting h/w
2339	 * know there are new descriptors to fetch.  (Only
2340	 * applicable for weak-ordered memory model archs,
2341	 * such as IA-64).
2342	 */
2343	wmb();
2344
2345	atomic_set(&tpd_ring->next_to_use, next_to_use);
2346}
2347
2348static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2349					 struct net_device *netdev)
2350{
2351	struct atl1_adapter *adapter = netdev_priv(netdev);
2352	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2353	int len;
2354	int tso;
2355	int count = 1;
2356	int ret_val;
2357	struct tx_packet_desc *ptpd;
2358	u16 frag_size;
2359	u16 vlan_tag;
2360	unsigned int nr_frags = 0;
2361	unsigned int mss = 0;
2362	unsigned int f;
2363	unsigned int proto_hdr_len;
2364
2365	len = skb_headlen(skb);
2366
2367	if (unlikely(skb->len <= 0)) {
2368		dev_kfree_skb_any(skb);
2369		return NETDEV_TX_OK;
2370	}
2371
2372	nr_frags = skb_shinfo(skb)->nr_frags;
2373	for (f = 0; f < nr_frags; f++) {
2374		frag_size = skb_shinfo(skb)->frags[f].size;
2375		if (frag_size)
2376			count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2377				ATL1_MAX_TX_BUF_LEN;
2378	}
2379
2380	mss = skb_shinfo(skb)->gso_size;
2381	if (mss) {
2382		if (skb->protocol == htons(ETH_P_IP)) {
2383			proto_hdr_len = (skb_transport_offset(skb) +
2384					 tcp_hdrlen(skb));
2385			if (unlikely(proto_hdr_len > len)) {
2386				dev_kfree_skb_any(skb);
2387				return NETDEV_TX_OK;
2388			}
2389			/* need additional TPD ? */
2390			if (proto_hdr_len != len)
2391				count += (len - proto_hdr_len +
2392					ATL1_MAX_TX_BUF_LEN - 1) /
2393					ATL1_MAX_TX_BUF_LEN;
2394		}
2395	}
2396
2397	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2398		/* not enough descriptors */
2399		netif_stop_queue(netdev);
2400		if (netif_msg_tx_queued(adapter))
2401			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2402				"tx busy\n");
2403		return NETDEV_TX_BUSY;
2404	}
2405
2406	ptpd = ATL1_TPD_DESC(tpd_ring,
2407		(u16) atomic_read(&tpd_ring->next_to_use));
2408	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2409
2410	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2411		vlan_tag = vlan_tx_tag_get(skb);
2412		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2413			((vlan_tag >> 9) & 0x8);
2414		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2415		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2416			TPD_VLANTAG_SHIFT;
2417	}
2418
2419	tso = atl1_tso(adapter, skb, ptpd);
2420	if (tso < 0) {
2421		dev_kfree_skb_any(skb);
2422		return NETDEV_TX_OK;
2423	}
2424
2425	if (!tso) {
2426		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2427		if (ret_val < 0) {
2428			dev_kfree_skb_any(skb);
2429			return NETDEV_TX_OK;
2430		}
2431	}
2432
2433	atl1_tx_map(adapter, skb, ptpd);
2434	atl1_tx_queue(adapter, count, ptpd);
2435	atl1_update_mailbox(adapter);
2436	mmiowb();
2437	return NETDEV_TX_OK;
2438}
2439
2440/*
2441 * atl1_intr - Interrupt Handler
2442 * @irq: interrupt number
2443 * @data: pointer to a network interface device structure
2444 * @pt_regs: CPU registers structure
2445 */
2446static irqreturn_t atl1_intr(int irq, void *data)
2447{
2448	struct atl1_adapter *adapter = netdev_priv(data);
2449	u32 status;
2450	int max_ints = 10;
2451
2452	status = adapter->cmb.cmb->int_stats;
2453	if (!status)
2454		return IRQ_NONE;
2455
2456	do {
2457		/* clear CMB interrupt status at once */
2458		adapter->cmb.cmb->int_stats = 0;
2459
2460		if (status & ISR_GPHY)	/* clear phy status */
2461			atlx_clear_phy_int(adapter);
2462
2463		/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2464		iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2465
2466		/* check if SMB intr */
2467		if (status & ISR_SMB)
2468			atl1_inc_smb(adapter);
2469
2470		/* check if PCIE PHY Link down */
2471		if (status & ISR_PHY_LINKDOWN) {
2472			if (netif_msg_intr(adapter))
2473				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2474					"pcie phy link down %x\n", status);
2475			if (netif_running(adapter->netdev)) {	/* reset MAC */
2476				iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2477				schedule_work(&adapter->pcie_dma_to_rst_task);
2478				return IRQ_HANDLED;
2479			}
2480		}
2481
2482		/* check if DMA read/write error ? */
2483		if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2484			if (netif_msg_intr(adapter))
2485				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2486					"pcie DMA r/w error (status = 0x%x)\n",
2487					status);
2488			iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2489			schedule_work(&adapter->pcie_dma_to_rst_task);
2490			return IRQ_HANDLED;
2491		}
2492
2493		/* link event */
2494		if (status & ISR_GPHY) {
2495			adapter->soft_stats.tx_carrier_errors++;
2496			atl1_check_for_link(adapter);
2497		}
2498
2499		/* transmit event */
2500		if (status & ISR_CMB_TX)
2501			atl1_intr_tx(adapter);
2502
2503		/* rx exception */
2504		if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2505			ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2506			ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2507			if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2508				ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2509				ISR_HOST_RRD_OV))
2510				if (netif_msg_intr(adapter))
2511					dev_printk(KERN_DEBUG,
2512						&adapter->pdev->dev,
2513						"rx exception, ISR = 0x%x\n",
2514						status);
2515			atl1_intr_rx(adapter);
2516		}
2517
2518		if (--max_ints < 0)
2519			break;
2520
2521	} while ((status = adapter->cmb.cmb->int_stats));
2522
2523	/* re-enable Interrupt */
2524	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2525	return IRQ_HANDLED;
2526}
2527
2528
2529/*
2530 * atl1_phy_config - Timer Call-back
2531 * @data: pointer to netdev cast into an unsigned long
2532 */
2533static void atl1_phy_config(unsigned long data)
2534{
2535	struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2536	struct atl1_hw *hw = &adapter->hw;
2537	unsigned long flags;
2538
2539	spin_lock_irqsave(&adapter->lock, flags);
2540	adapter->phy_timer_pending = false;
2541	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2542	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2543	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2544	spin_unlock_irqrestore(&adapter->lock, flags);
2545}
2546
2547/*
2548 * Orphaned vendor comment left intact here:
2549 * <vendor comment>
2550 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2551 * will assert. We do soft reset <0x1400=1> according
2552 * with the SPEC. BUT, it seemes that PCIE or DMA
2553 * state-machine will not be reset. DMAR_TO_INT will
2554 * assert again and again.
2555 * </vendor comment>
2556 */
2557
2558static int atl1_reset(struct atl1_adapter *adapter)
2559{
2560	int ret;
2561	ret = atl1_reset_hw(&adapter->hw);
2562	if (ret)
2563		return ret;
2564	return atl1_init_hw(&adapter->hw);
2565}
2566
2567static s32 atl1_up(struct atl1_adapter *adapter)
2568{
2569	struct net_device *netdev = adapter->netdev;
2570	int err;
2571	int irq_flags = IRQF_SAMPLE_RANDOM;
2572
2573	/* hardware has been reset, we need to reload some things */
2574	atlx_set_multi(netdev);
2575	atl1_init_ring_ptrs(adapter);
2576	atlx_restore_vlan(adapter);
2577	err = atl1_alloc_rx_buffers(adapter);
2578	if (unlikely(!err))
2579		/* no RX BUFFER allocated */
2580		return -ENOMEM;
2581
2582	if (unlikely(atl1_configure(adapter))) {
2583		err = -EIO;
2584		goto err_up;
2585	}
2586
2587	err = pci_enable_msi(adapter->pdev);
2588	if (err) {
2589		if (netif_msg_ifup(adapter))
2590			dev_info(&adapter->pdev->dev,
2591				"Unable to enable MSI: %d\n", err);
2592		irq_flags |= IRQF_SHARED;
2593	}
2594
2595	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2596			netdev->name, netdev);
2597	if (unlikely(err))
2598		goto err_up;
2599
2600	atlx_irq_enable(adapter);
2601	atl1_check_link(adapter);
2602	netif_start_queue(netdev);
2603	return 0;
2604
2605err_up:
2606	pci_disable_msi(adapter->pdev);
2607	/* free rx_buffers */
2608	atl1_clean_rx_ring(adapter);
2609	return err;
2610}
2611
2612static void atl1_down(struct atl1_adapter *adapter)
2613{
2614	struct net_device *netdev = adapter->netdev;
2615
2616	netif_stop_queue(netdev);
2617	del_timer_sync(&adapter->phy_config_timer);
2618	adapter->phy_timer_pending = false;
2619
2620	atlx_irq_disable(adapter);
2621	free_irq(adapter->pdev->irq, netdev);
2622	pci_disable_msi(adapter->pdev);
2623	atl1_reset_hw(&adapter->hw);
2624	adapter->cmb.cmb->int_stats = 0;
2625
2626	adapter->link_speed = SPEED_0;
2627	adapter->link_duplex = -1;
2628	netif_carrier_off(netdev);
2629
2630	atl1_clean_tx_ring(adapter);
2631	atl1_clean_rx_ring(adapter);
2632}
2633
2634static void atl1_tx_timeout_task(struct work_struct *work)
2635{
2636	struct atl1_adapter *adapter =
2637		container_of(work, struct atl1_adapter, tx_timeout_task);
2638	struct net_device *netdev = adapter->netdev;
2639
2640	netif_device_detach(netdev);
2641	atl1_down(adapter);
2642	atl1_up(adapter);
2643	netif_device_attach(netdev);
2644}
2645
2646/*
2647 * atl1_change_mtu - Change the Maximum Transfer Unit
2648 * @netdev: network interface device structure
2649 * @new_mtu: new value for maximum frame size
2650 *
2651 * Returns 0 on success, negative on failure
2652 */
2653static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2654{
2655	struct atl1_adapter *adapter = netdev_priv(netdev);
2656	int old_mtu = netdev->mtu;
2657	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2658
2659	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2660	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2661		if (netif_msg_link(adapter))
2662			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2663		return -EINVAL;
2664	}
2665
2666	adapter->hw.max_frame_size = max_frame;
2667	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2668	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2669	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2670
2671	netdev->mtu = new_mtu;
2672	if ((old_mtu != new_mtu) && netif_running(netdev)) {
2673		atl1_down(adapter);
2674		atl1_up(adapter);
2675	}
2676
2677	return 0;
2678}
2679
2680/*
2681 * atl1_open - Called when a network interface is made active
2682 * @netdev: network interface device structure
2683 *
2684 * Returns 0 on success, negative value on failure
2685 *
2686 * The open entry point is called when a network interface is made
2687 * active by the system (IFF_UP).  At this point all resources needed
2688 * for transmit and receive operations are allocated, the interrupt
2689 * handler is registered with the OS, the watchdog timer is started,
2690 * and the stack is notified that the interface is ready.
2691 */
2692static int atl1_open(struct net_device *netdev)
2693{
2694	struct atl1_adapter *adapter = netdev_priv(netdev);
2695	int err;
2696
2697	netif_carrier_off(netdev);
2698
2699	/* allocate transmit descriptors */
2700	err = atl1_setup_ring_resources(adapter);
2701	if (err)
2702		return err;
2703
2704	err = atl1_up(adapter);
2705	if (err)
2706		goto err_up;
2707
2708	return 0;
2709
2710err_up:
2711	atl1_reset(adapter);
2712	return err;
2713}
2714
2715/*
2716 * atl1_close - Disables a network interface
2717 * @netdev: network interface device structure
2718 *
2719 * Returns 0, this is not allowed to fail
2720 *
2721 * The close entry point is called when an interface is de-activated
2722 * by the OS.  The hardware is still under the drivers control, but
2723 * needs to be disabled.  A global MAC reset is issued to stop the
2724 * hardware, and all transmit and receive resources are freed.
2725 */
2726static int atl1_close(struct net_device *netdev)
2727{
2728	struct atl1_adapter *adapter = netdev_priv(netdev);
2729	atl1_down(adapter);
2730	atl1_free_ring_resources(adapter);
2731	return 0;
2732}
2733
2734#ifdef CONFIG_PM
2735static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
2736{
2737	struct net_device *netdev = pci_get_drvdata(pdev);
2738	struct atl1_adapter *adapter = netdev_priv(netdev);
2739	struct atl1_hw *hw = &adapter->hw;
2740	u32 ctrl = 0;
2741	u32 wufc = adapter->wol;
2742	u32 val;
2743	int retval;
2744	u16 speed;
2745	u16 duplex;
2746
2747	netif_device_detach(netdev);
2748	if (netif_running(netdev))
2749		atl1_down(adapter);
2750
2751	retval = pci_save_state(pdev);
2752	if (retval)
2753		return retval;
2754
2755	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2756	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2757	val = ctrl & BMSR_LSTATUS;
2758	if (val)
2759		wufc &= ~ATLX_WUFC_LNKC;
2760
2761	if (val && wufc) {
2762		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2763		if (val) {
2764			if (netif_msg_ifdown(adapter))
2765				dev_printk(KERN_DEBUG, &pdev->dev,
2766					"error getting speed/duplex\n");
2767			goto disable_wol;
2768		}
2769
2770		ctrl = 0;
2771
2772		/* enable magic packet WOL */
2773		if (wufc & ATLX_WUFC_MAG)
2774			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2775		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2776		ioread32(hw->hw_addr + REG_WOL_CTRL);
2777
2778		/* configure the mac */
2779		ctrl = MAC_CTRL_RX_EN;
2780		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2781			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2782		if (duplex == FULL_DUPLEX)
2783			ctrl |= MAC_CTRL_DUPLX;
2784		ctrl |= (((u32)adapter->hw.preamble_len &
2785			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2786		if (adapter->vlgrp)
2787			ctrl |= MAC_CTRL_RMV_VLAN;
2788		if (wufc & ATLX_WUFC_MAG)
2789			ctrl |= MAC_CTRL_BC_EN;
2790		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2791		ioread32(hw->hw_addr + REG_MAC_CTRL);
2792
2793		/* poke the PHY */
2794		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2795		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2796		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2797		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2798
2799		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2800		goto exit;
2801	}
2802
2803	if (!val && wufc) {
2804		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2805		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2806		ioread32(hw->hw_addr + REG_WOL_CTRL);
2807		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2808		ioread32(hw->hw_addr + REG_MAC_CTRL);
2809		hw->phy_configured = false;
2810		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2811		goto exit;
2812	}
2813
2814disable_wol:
2815	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2816	ioread32(hw->hw_addr + REG_WOL_CTRL);
2817	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2818	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2819	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2820	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2821	hw->phy_configured = false;
2822	pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
2823exit:
2824	if (netif_running(netdev))
2825		pci_disable_msi(adapter->pdev);
2826	pci_disable_device(pdev);
2827	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2828
2829	return 0;
2830}
2831
2832static int atl1_resume(struct pci_dev *pdev)
2833{
2834	struct net_device *netdev = pci_get_drvdata(pdev);
2835	struct atl1_adapter *adapter = netdev_priv(netdev);
2836	u32 err;
2837
2838	pci_set_power_state(pdev, PCI_D0);
2839	pci_restore_state(pdev);
2840
2841	err = pci_enable_device(pdev);
2842	if (err) {
2843		if (netif_msg_ifup(adapter))
2844			dev_printk(KERN_DEBUG, &pdev->dev,
2845				"error enabling pci device\n");
2846		return err;
2847	}
2848
2849	pci_set_master(pdev);
2850	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2851	pci_enable_wake(pdev, PCI_D3hot, 0);
2852	pci_enable_wake(pdev, PCI_D3cold, 0);
2853
2854	atl1_reset_hw(&adapter->hw);
2855
2856	if (netif_running(netdev)) {
2857		adapter->cmb.cmb->int_stats = 0;
2858		atl1_up(adapter);
2859	}
2860	netif_device_attach(netdev);
2861
2862	return 0;
2863}
2864#else
2865#define atl1_suspend NULL
2866#define atl1_resume NULL
2867#endif
2868
2869static void atl1_shutdown(struct pci_dev *pdev)
2870{
2871#ifdef CONFIG_PM
2872	atl1_suspend(pdev, PMSG_SUSPEND);
2873#endif
2874}
2875
2876#ifdef CONFIG_NET_POLL_CONTROLLER
2877static void atl1_poll_controller(struct net_device *netdev)
2878{
2879	disable_irq(netdev->irq);
2880	atl1_intr(netdev->irq, netdev);
2881	enable_irq(netdev->irq);
2882}
2883#endif
2884
2885static const struct net_device_ops atl1_netdev_ops = {
2886	.ndo_open		= atl1_open,
2887	.ndo_stop		= atl1_close,
2888	.ndo_start_xmit		= atl1_xmit_frame,
2889	.ndo_set_multicast_list	= atlx_set_multi,
2890	.ndo_validate_addr	= eth_validate_addr,
2891	.ndo_set_mac_address	= atl1_set_mac,
2892	.ndo_change_mtu		= atl1_change_mtu,
2893	.ndo_do_ioctl		= atlx_ioctl,
2894	.ndo_tx_timeout		= atlx_tx_timeout,
2895	.ndo_vlan_rx_register	= atlx_vlan_rx_register,
2896#ifdef CONFIG_NET_POLL_CONTROLLER
2897	.ndo_poll_controller	= atl1_poll_controller,
2898#endif
2899};
2900
2901/*
2902 * atl1_probe - Device Initialization Routine
2903 * @pdev: PCI device information struct
2904 * @ent: entry in atl1_pci_tbl
2905 *
2906 * Returns 0 on success, negative on failure
2907 *
2908 * atl1_probe initializes an adapter identified by a pci_dev structure.
2909 * The OS initialization, configuring of the adapter private structure,
2910 * and a hardware reset occur.
2911 */
2912static int __devinit atl1_probe(struct pci_dev *pdev,
2913	const struct pci_device_id *ent)
2914{
2915	struct net_device *netdev;
2916	struct atl1_adapter *adapter;
2917	static int cards_found = 0;
2918	int err;
2919
2920	err = pci_enable_device(pdev);
2921	if (err)
2922		return err;
2923
2924	/*
2925	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2926	 * shared register for the high 32 bits, so only a single, aligned,
2927	 * 4 GB physical address range can be used at a time.
2928	 *
2929	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2930	 * worth.  It is far easier to limit to 32-bit DMA than update
2931	 * various kernel subsystems to support the mechanics required by a
2932	 * fixed-high-32-bit system.
2933	 */
2934	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2935	if (err) {
2936		dev_err(&pdev->dev, "no usable DMA configuration\n");
2937		goto err_dma;
2938	}
2939	/*
2940	 * Mark all PCI regions associated with PCI device
2941	 * pdev as being reserved by owner atl1_driver_name
2942	 */
2943	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2944	if (err)
2945		goto err_request_regions;
2946
2947	/*
2948	 * Enables bus-mastering on the device and calls
2949	 * pcibios_set_master to do the needed arch specific settings
2950	 */
2951	pci_set_master(pdev);
2952
2953	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2954	if (!netdev) {
2955		err = -ENOMEM;
2956		goto err_alloc_etherdev;
2957	}
2958	SET_NETDEV_DEV(netdev, &pdev->dev);
2959
2960	pci_set_drvdata(pdev, netdev);
2961	adapter = netdev_priv(netdev);
2962	adapter->netdev = netdev;
2963	adapter->pdev = pdev;
2964	adapter->hw.back = adapter;
2965	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2966
2967	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2968	if (!adapter->hw.hw_addr) {
2969		err = -EIO;
2970		goto err_pci_iomap;
2971	}
2972	/* get device revision number */
2973	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2974		(REG_MASTER_CTRL + 2));
2975	if (netif_msg_probe(adapter))
2976		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2977
2978	/* set default ring resource counts */
2979	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2980	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2981
2982	adapter->mii.dev = netdev;
2983	adapter->mii.mdio_read = mdio_read;
2984	adapter->mii.mdio_write = mdio_write;
2985	adapter->mii.phy_id_mask = 0x1f;
2986	adapter->mii.reg_num_mask = 0x1f;
2987
2988	netdev->netdev_ops = &atl1_netdev_ops;
2989	netdev->watchdog_timeo = 5 * HZ;
2990
2991	netdev->ethtool_ops = &atl1_ethtool_ops;
2992	adapter->bd_number = cards_found;
2993
2994	/* setup the private structure */
2995	err = atl1_sw_init(adapter);
2996	if (err)
2997		goto err_common;
2998
2999	netdev->features = NETIF_F_HW_CSUM;
3000	netdev->features |= NETIF_F_SG;
3001	netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
3002
3003	/*
3004	 * patch for some L1 of old version,
3005	 * the final version of L1 may not need these
3006	 * patches
3007	 */
3008	/* atl1_pcie_patch(adapter); */
3009
3010	/* really reset GPHY core */
3011	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3012
3013	/*
3014	 * reset the controller to
3015	 * put the device in a known good starting state
3016	 */
3017	if (atl1_reset_hw(&adapter->hw)) {
3018		err = -EIO;
3019		goto err_common;
3020	}
3021
3022	/* copy the MAC address out of the EEPROM */
3023	atl1_read_mac_addr(&adapter->hw);
3024	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3025
3026	if (!is_valid_ether_addr(netdev->dev_addr)) {
3027		err = -EIO;
3028		goto err_common;
3029	}
3030
3031	atl1_check_options(adapter);
3032
3033	/* pre-init the MAC, and setup link */
3034	err = atl1_init_hw(&adapter->hw);
3035	if (err) {
3036		err = -EIO;
3037		goto err_common;
3038	}
3039
3040	atl1_pcie_patch(adapter);
3041	/* assume we have no link for now */
3042	netif_carrier_off(netdev);
3043	netif_stop_queue(netdev);
3044
3045	setup_timer(&adapter->phy_config_timer, &atl1_phy_config,
3046		    (unsigned long)adapter);
3047	adapter->phy_timer_pending = false;
3048
3049	INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3050
3051	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3052
3053	INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3054
3055	err = register_netdev(netdev);
3056	if (err)
3057		goto err_common;
3058
3059	cards_found++;
3060	atl1_via_workaround(adapter);
3061	return 0;
3062
3063err_common:
3064	pci_iounmap(pdev, adapter->hw.hw_addr);
3065err_pci_iomap:
3066	free_netdev(netdev);
3067err_alloc_etherdev:
3068	pci_release_regions(pdev);
3069err_dma:
3070err_request_regions:
3071	pci_disable_device(pdev);
3072	return err;
3073}
3074
3075/*
3076 * atl1_remove - Device Removal Routine
3077 * @pdev: PCI device information struct
3078 *
3079 * atl1_remove is called by the PCI subsystem to alert the driver
3080 * that it should release a PCI device.  The could be caused by a
3081 * Hot-Plug event, or because the driver is going to be removed from
3082 * memory.
3083 */
3084static void __devexit atl1_remove(struct pci_dev *pdev)
3085{
3086	struct net_device *netdev = pci_get_drvdata(pdev);
3087	struct atl1_adapter *adapter;
3088	/* Device not available. Return. */
3089	if (!netdev)
3090		return;
3091
3092	adapter = netdev_priv(netdev);
3093
3094	/*
3095	 * Some atl1 boards lack persistent storage for their MAC, and get it
3096	 * from the BIOS during POST.  If we've been messing with the MAC
3097	 * address, we need to save the permanent one.
3098	 */
3099	if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3100		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3101			ETH_ALEN);
3102		atl1_set_mac_addr(&adapter->hw);
3103	}
3104
3105	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3106	unregister_netdev(netdev);
3107	pci_iounmap(pdev, adapter->hw.hw_addr);
3108	pci_release_regions(pdev);
3109	free_netdev(netdev);
3110	pci_disable_device(pdev);
3111}
3112
3113static struct pci_driver atl1_driver = {
3114	.name = ATLX_DRIVER_NAME,
3115	.id_table = atl1_pci_tbl,
3116	.probe = atl1_probe,
3117	.remove = __devexit_p(atl1_remove),
3118	.suspend = atl1_suspend,
3119	.resume = atl1_resume,
3120	.shutdown = atl1_shutdown
3121};
3122
3123/*
3124 * atl1_exit_module - Driver Exit Cleanup Routine
3125 *
3126 * atl1_exit_module is called just before the driver is removed
3127 * from memory.
3128 */
3129static void __exit atl1_exit_module(void)
3130{
3131	pci_unregister_driver(&atl1_driver);
3132}
3133
3134/*
3135 * atl1_init_module - Driver Registration Routine
3136 *
3137 * atl1_init_module is the first routine called when the driver is
3138 * loaded. All it does is register with the PCI subsystem.
3139 */
3140static int __init atl1_init_module(void)
3141{
3142	return pci_register_driver(&atl1_driver);
3143}
3144
3145module_init(atl1_init_module);
3146module_exit(atl1_exit_module);
3147
3148struct atl1_stats {
3149	char stat_string[ETH_GSTRING_LEN];
3150	int sizeof_stat;
3151	int stat_offset;
3152};
3153
3154#define ATL1_STAT(m) \
3155	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3156
3157static struct atl1_stats atl1_gstrings_stats[] = {
3158	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3159	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3160	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3161	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3162	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3163	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3164	{"multicast", ATL1_STAT(soft_stats.multicast)},
3165	{"collisions", ATL1_STAT(soft_stats.collisions)},
3166	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3167	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3168	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3169	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3170	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3171	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3172	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3173	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3174	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3175	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3176	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3177	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3178	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3179	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3180	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3181	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3182	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3183	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3184	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3185	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3186	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3187};
3188
3189static void atl1_get_ethtool_stats(struct net_device *netdev,
3190	struct ethtool_stats *stats, u64 *data)
3191{
3192	struct atl1_adapter *adapter = netdev_priv(netdev);
3193	int i;
3194	char *p;
3195
3196	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3197		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3198		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3199			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3200	}
3201
3202}
3203
3204static int atl1_get_sset_count(struct net_device *netdev, int sset)
3205{
3206	switch (sset) {
3207	case ETH_SS_STATS:
3208		return ARRAY_SIZE(atl1_gstrings_stats);
3209	default:
3210		return -EOPNOTSUPP;
3211	}
3212}
3213
3214static int atl1_get_settings(struct net_device *netdev,
3215	struct ethtool_cmd *ecmd)
3216{
3217	struct atl1_adapter *adapter = netdev_priv(netdev);
3218	struct atl1_hw *hw = &adapter->hw;
3219
3220	ecmd->supported = (SUPPORTED_10baseT_Half |
3221			   SUPPORTED_10baseT_Full |
3222			   SUPPORTED_100baseT_Half |
3223			   SUPPORTED_100baseT_Full |
3224			   SUPPORTED_1000baseT_Full |
3225			   SUPPORTED_Autoneg | SUPPORTED_TP);
3226	ecmd->advertising = ADVERTISED_TP;
3227	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3228	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3229		ecmd->advertising |= ADVERTISED_Autoneg;
3230		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3231			ecmd->advertising |= ADVERTISED_Autoneg;
3232			ecmd->advertising |=
3233			    (ADVERTISED_10baseT_Half |
3234			     ADVERTISED_10baseT_Full |
3235			     ADVERTISED_100baseT_Half |
3236			     ADVERTISED_100baseT_Full |
3237			     ADVERTISED_1000baseT_Full);
3238		} else
3239			ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3240	}
3241	ecmd->port = PORT_TP;
3242	ecmd->phy_address = 0;
3243	ecmd->transceiver = XCVR_INTERNAL;
3244
3245	if (netif_carrier_ok(adapter->netdev)) {
3246		u16 link_speed, link_duplex;
3247		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3248		ecmd->speed = link_speed;
3249		if (link_duplex == FULL_DUPLEX)
3250			ecmd->duplex = DUPLEX_FULL;
3251		else
3252			ecmd->duplex = DUPLEX_HALF;
3253	} else {
3254		ecmd->speed = -1;
3255		ecmd->duplex = -1;
3256	}
3257	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3258	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3259		ecmd->autoneg = AUTONEG_ENABLE;
3260	else
3261		ecmd->autoneg = AUTONEG_DISABLE;
3262
3263	return 0;
3264}
3265
3266static int atl1_set_settings(struct net_device *netdev,
3267	struct ethtool_cmd *ecmd)
3268{
3269	struct atl1_adapter *adapter = netdev_priv(netdev);
3270	struct atl1_hw *hw = &adapter->hw;
3271	u16 phy_data;
3272	int ret_val = 0;
3273	u16 old_media_type = hw->media_type;
3274
3275	if (netif_running(adapter->netdev)) {
3276		if (netif_msg_link(adapter))
3277			dev_dbg(&adapter->pdev->dev,
3278				"ethtool shutting down adapter\n");
3279		atl1_down(adapter);
3280	}
3281
3282	if (ecmd->autoneg == AUTONEG_ENABLE)
3283		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3284	else {
3285		if (ecmd->speed == SPEED_1000) {
3286			if (ecmd->duplex != DUPLEX_FULL) {
3287				if (netif_msg_link(adapter))
3288					dev_warn(&adapter->pdev->dev,
3289						"1000M half is invalid\n");
3290				ret_val = -EINVAL;
3291				goto exit_sset;
3292			}
3293			hw->media_type = MEDIA_TYPE_1000M_FULL;
3294		} else if (ecmd->speed == SPEED_100) {
3295			if (ecmd->duplex == DUPLEX_FULL)
3296				hw->media_type = MEDIA_TYPE_100M_FULL;
3297			else
3298				hw->media_type = MEDIA_TYPE_100M_HALF;
3299		} else {
3300			if (ecmd->duplex == DUPLEX_FULL)
3301				hw->media_type = MEDIA_TYPE_10M_FULL;
3302			else
3303				hw->media_type = MEDIA_TYPE_10M_HALF;
3304		}
3305	}
3306	switch (hw->media_type) {
3307	case MEDIA_TYPE_AUTO_SENSOR:
3308		ecmd->advertising =
3309		    ADVERTISED_10baseT_Half |
3310		    ADVERTISED_10baseT_Full |
3311		    ADVERTISED_100baseT_Half |
3312		    ADVERTISED_100baseT_Full |
3313		    ADVERTISED_1000baseT_Full |
3314		    ADVERTISED_Autoneg | ADVERTISED_TP;
3315		break;
3316	case MEDIA_TYPE_1000M_FULL:
3317		ecmd->advertising =
3318		    ADVERTISED_1000baseT_Full |
3319		    ADVERTISED_Autoneg | ADVERTISED_TP;
3320		break;
3321	default:
3322		ecmd->advertising = 0;
3323		break;
3324	}
3325	if (atl1_phy_setup_autoneg_adv(hw)) {
3326		ret_val = -EINVAL;
3327		if (netif_msg_link(adapter))
3328			dev_warn(&adapter->pdev->dev,
3329				"invalid ethtool speed/duplex setting\n");
3330		goto exit_sset;
3331	}
3332	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3333	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3334		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3335	else {
3336		switch (hw->media_type) {
3337		case MEDIA_TYPE_100M_FULL:
3338			phy_data =
3339			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3340			    MII_CR_RESET;
3341			break;
3342		case MEDIA_TYPE_100M_HALF:
3343			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3344			break;
3345		case MEDIA_TYPE_10M_FULL:
3346			phy_data =
3347			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3348			break;
3349		default:
3350			/* MEDIA_TYPE_10M_HALF: */
3351			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3352			break;
3353		}
3354	}
3355	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3356exit_sset:
3357	if (ret_val)
3358		hw->media_type = old_media_type;
3359
3360	if (netif_running(adapter->netdev)) {
3361		if (netif_msg_link(adapter))
3362			dev_dbg(&adapter->pdev->dev,
3363				"ethtool starting adapter\n");
3364		atl1_up(adapter);
3365	} else if (!ret_val) {
3366		if (netif_msg_link(adapter))
3367			dev_dbg(&adapter->pdev->dev,
3368				"ethtool resetting adapter\n");
3369		atl1_reset(adapter);
3370	}
3371	return ret_val;
3372}
3373
3374static void atl1_get_drvinfo(struct net_device *netdev,
3375	struct ethtool_drvinfo *drvinfo)
3376{
3377	struct atl1_adapter *adapter = netdev_priv(netdev);
3378
3379	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3380	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3381		sizeof(drvinfo->version));
3382	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3383	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3384		sizeof(drvinfo->bus_info));
3385	drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3386}
3387
3388static void atl1_get_wol(struct net_device *netdev,
3389	struct ethtool_wolinfo *wol)
3390{
3391	struct atl1_adapter *adapter = netdev_priv(netdev);
3392
3393	wol->supported = WAKE_MAGIC;
3394	wol->wolopts = 0;
3395	if (adapter->wol & ATLX_WUFC_MAG)
3396		wol->wolopts |= WAKE_MAGIC;
3397}
3398
3399static int atl1_set_wol(struct net_device *netdev,
3400	struct ethtool_wolinfo *wol)
3401{
3402	struct atl1_adapter *adapter = netdev_priv(netdev);
3403
3404	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3405		WAKE_ARP | WAKE_MAGICSECURE))
3406		return -EOPNOTSUPP;
3407	adapter->wol = 0;
3408	if (wol->wolopts & WAKE_MAGIC)
3409		adapter->wol |= ATLX_WUFC_MAG;
3410	return 0;
3411}
3412
3413static u32 atl1_get_msglevel(struct net_device *netdev)
3414{
3415	struct atl1_adapter *adapter = netdev_priv(netdev);
3416	return adapter->msg_enable;
3417}
3418
3419static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3420{
3421	struct atl1_adapter *adapter = netdev_priv(netdev);
3422	adapter->msg_enable = value;
3423}
3424
3425static int atl1_get_regs_len(struct net_device *netdev)
3426{
3427	return ATL1_REG_COUNT * sizeof(u32);
3428}
3429
3430static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3431	void *p)
3432{
3433	struct atl1_adapter *adapter = netdev_priv(netdev);
3434	struct atl1_hw *hw = &adapter->hw;
3435	unsigned int i;
3436	u32 *regbuf = p;
3437
3438	for (i = 0; i < ATL1_REG_COUNT; i++) {
3439		/*
3440		 * This switch statement avoids reserved regions
3441		 * of register space.
3442		 */
3443		switch (i) {
3444		case 6 ... 9:
3445		case 14:
3446		case 29 ... 31:
3447		case 34 ... 63:
3448		case 75 ... 127:
3449		case 136 ... 1023:
3450		case 1027 ... 1087:
3451		case 1091 ... 1151:
3452		case 1194 ... 1195:
3453		case 1200 ... 1201:
3454		case 1206 ... 1213:
3455		case 1216 ... 1279:
3456		case 1290 ... 1311:
3457		case 1323 ... 1343:
3458		case 1358 ... 1359:
3459		case 1368 ... 1375:
3460		case 1378 ... 1383:
3461		case 1388 ... 1391:
3462		case 1393 ... 1395:
3463		case 1402 ... 1403:
3464		case 1410 ... 1471:
3465		case 1522 ... 1535:
3466			/* reserved region; don't read it */
3467			regbuf[i] = 0;
3468			break;
3469		default:
3470			/* unreserved region */
3471			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3472		}
3473	}
3474}
3475
3476static void atl1_get_ringparam(struct net_device *netdev,
3477	struct ethtool_ringparam *ring)
3478{
3479	struct atl1_adapter *adapter = netdev_priv(netdev);
3480	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3481	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3482
3483	ring->rx_max_pending = ATL1_MAX_RFD;
3484	ring->tx_max_pending = ATL1_MAX_TPD;
3485	ring->rx_mini_max_pending = 0;
3486	ring->rx_jumbo_max_pending = 0;
3487	ring->rx_pending = rxdr->count;
3488	ring->tx_pending = txdr->count;
3489	ring->rx_mini_pending = 0;
3490	ring->rx_jumbo_pending = 0;
3491}
3492
3493static int atl1_set_ringparam(struct net_device *netdev,
3494	struct ethtool_ringparam *ring)
3495{
3496	struct atl1_adapter *adapter = netdev_priv(netdev);
3497	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3498	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3499	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3500
3501	struct atl1_tpd_ring tpd_old, tpd_new;
3502	struct atl1_rfd_ring rfd_old, rfd_new;
3503	struct atl1_rrd_ring rrd_old, rrd_new;
3504	struct atl1_ring_header rhdr_old, rhdr_new;
3505	struct atl1_smb smb;
3506	struct atl1_cmb cmb;
3507	int err;
3508
3509	tpd_old = adapter->tpd_ring;
3510	rfd_old = adapter->rfd_ring;
3511	rrd_old = adapter->rrd_ring;
3512	rhdr_old = adapter->ring_header;
3513
3514	if (netif_running(adapter->netdev))
3515		atl1_down(adapter);
3516
3517	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3518	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3519			rfdr->count;
3520	rfdr->count = (rfdr->count + 3) & ~3;
3521	rrdr->count = rfdr->count;
3522
3523	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3524	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3525			tpdr->count;
3526	tpdr->count = (tpdr->count + 3) & ~3;
3527
3528	if (netif_running(adapter->netdev)) {
3529		/* try to get new resources before deleting old */
3530		err = atl1_setup_ring_resources(adapter);
3531		if (err)
3532			goto err_setup_ring;
3533
3534		/*
3535		 * save the new, restore the old in order to free it,
3536		 * then restore the new back again
3537		 */
3538
3539		rfd_new = adapter->rfd_ring;
3540		rrd_new = adapter->rrd_ring;
3541		tpd_new = adapter->tpd_ring;
3542		rhdr_new = adapter->ring_header;
3543		adapter->rfd_ring = rfd_old;
3544		adapter->rrd_ring = rrd_old;
3545		adapter->tpd_ring = tpd_old;
3546		adapter->ring_header = rhdr_old;
3547		/*
3548		 * Save SMB and CMB, since atl1_free_ring_resources
3549		 * will clear them.
3550		 */
3551		smb = adapter->smb;
3552		cmb = adapter->cmb;
3553		atl1_free_ring_resources(adapter);
3554		adapter->rfd_ring = rfd_new;
3555		adapter->rrd_ring = rrd_new;
3556		adapter->tpd_ring = tpd_new;
3557		adapter->ring_header = rhdr_new;
3558		adapter->smb = smb;
3559		adapter->cmb = cmb;
3560
3561		err = atl1_up(adapter);
3562		if (err)
3563			return err;
3564	}
3565	return 0;
3566
3567err_setup_ring:
3568	adapter->rfd_ring = rfd_old;
3569	adapter->rrd_ring = rrd_old;
3570	adapter->tpd_ring = tpd_old;
3571	adapter->ring_header = rhdr_old;
3572	atl1_up(adapter);
3573	return err;
3574}
3575
3576static void atl1_get_pauseparam(struct net_device *netdev,
3577	struct ethtool_pauseparam *epause)
3578{
3579	struct atl1_adapter *adapter = netdev_priv(netdev);
3580	struct atl1_hw *hw = &adapter->hw;
3581
3582	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3583	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3584		epause->autoneg = AUTONEG_ENABLE;
3585	} else {
3586		epause->autoneg = AUTONEG_DISABLE;
3587	}
3588	epause->rx_pause = 1;
3589	epause->tx_pause = 1;
3590}
3591
3592static int atl1_set_pauseparam(struct net_device *netdev,
3593	struct ethtool_pauseparam *epause)
3594{
3595	struct atl1_adapter *adapter = netdev_priv(netdev);
3596	struct atl1_hw *hw = &adapter->hw;
3597
3598	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3599	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3600		epause->autoneg = AUTONEG_ENABLE;
3601	} else {
3602		epause->autoneg = AUTONEG_DISABLE;
3603	}
3604
3605	epause->rx_pause = 1;
3606	epause->tx_pause = 1;
3607
3608	return 0;
3609}
3610
3611static u32 atl1_get_rx_csum(struct net_device *netdev)
3612{
3613	return 1;
3614}
3615
3616static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3617	u8 *data)
3618{
3619	u8 *p = data;
3620	int i;
3621
3622	switch (stringset) {
3623	case ETH_SS_STATS:
3624		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3625			memcpy(p, atl1_gstrings_stats[i].stat_string,
3626				ETH_GSTRING_LEN);
3627			p += ETH_GSTRING_LEN;
3628		}
3629		break;
3630	}
3631}
3632
3633static int atl1_nway_reset(struct net_device *netdev)
3634{
3635	struct atl1_adapter *adapter = netdev_priv(netdev);
3636	struct atl1_hw *hw = &adapter->hw;
3637
3638	if (netif_running(netdev)) {
3639		u16 phy_data;
3640		atl1_down(adapter);
3641
3642		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3643			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3644			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3645		} else {
3646			switch (hw->media_type) {
3647			case MEDIA_TYPE_100M_FULL:
3648				phy_data = MII_CR_FULL_DUPLEX |
3649					MII_CR_SPEED_100 | MII_CR_RESET;
3650				break;
3651			case MEDIA_TYPE_100M_HALF:
3652				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3653				break;
3654			case MEDIA_TYPE_10M_FULL:
3655				phy_data = MII_CR_FULL_DUPLEX |
3656					MII_CR_SPEED_10 | MII_CR_RESET;
3657				break;
3658			default:
3659				/* MEDIA_TYPE_10M_HALF */
3660				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3661			}
3662		}
3663		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3664		atl1_up(adapter);
3665	}
3666	return 0;
3667}
3668
3669const struct ethtool_ops atl1_ethtool_ops = {
3670	.get_settings		= atl1_get_settings,
3671	.set_settings		= atl1_set_settings,
3672	.get_drvinfo		= atl1_get_drvinfo,
3673	.get_wol		= atl1_get_wol,
3674	.set_wol		= atl1_set_wol,
3675	.get_msglevel		= atl1_get_msglevel,
3676	.set_msglevel		= atl1_set_msglevel,
3677	.get_regs_len		= atl1_get_regs_len,
3678	.get_regs		= atl1_get_regs,
3679	.get_ringparam		= atl1_get_ringparam,
3680	.set_ringparam		= atl1_set_ringparam,
3681	.get_pauseparam		= atl1_get_pauseparam,
3682	.set_pauseparam		= atl1_set_pauseparam,
3683	.get_rx_csum		= atl1_get_rx_csum,
3684	.set_tx_csum		= ethtool_op_set_tx_hw_csum,
3685	.get_link		= ethtool_op_get_link,
3686	.set_sg			= ethtool_op_set_sg,
3687	.get_strings		= atl1_get_strings,
3688	.nway_reset		= atl1_nway_reset,
3689	.get_ethtool_stats	= atl1_get_ethtool_stats,
3690	.get_sset_count		= atl1_get_sset_count,
3691	.set_tso		= ethtool_op_set_tso,
3692};
3693