• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/mtd/nand/
1/*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 */
19
20#include <linux/kernel.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23#include <linux/delay.h>
24#include <linux/rslib.h>
25#include <linux/moduleparam.h>
26#include <linux/slab.h>
27#include <asm/io.h>
28
29#include <linux/mtd/mtd.h>
30#include <linux/mtd/nand.h>
31#include <linux/mtd/doc2000.h>
32#include <linux/mtd/partitions.h>
33#include <linux/mtd/inftl.h>
34
35/* Where to look for the devices? */
36#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
37#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
38#endif
39
40static unsigned long __initdata doc_locations[] = {
41#if defined(__alpha__) || defined(__i386__) || defined(__x86_64__)
42#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
43	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
44	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
45	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
46	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
47	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
48#else /*  CONFIG_MTD_DOCPROBE_HIGH */
49	0xc8000, 0xca000, 0xcc000, 0xce000,
50	0xd0000, 0xd2000, 0xd4000, 0xd6000,
51	0xd8000, 0xda000, 0xdc000, 0xde000,
52	0xe0000, 0xe2000, 0xe4000, 0xe6000,
53	0xe8000, 0xea000, 0xec000, 0xee000,
54#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
55#else
56#warning Unknown architecture for DiskOnChip. No default probe locations defined
57#endif
58	0xffffffff };
59
60static struct mtd_info *doclist = NULL;
61
62struct doc_priv {
63	void __iomem *virtadr;
64	unsigned long physadr;
65	u_char ChipID;
66	u_char CDSNControl;
67	int chips_per_floor;	/* The number of chips detected on each floor */
68	int curfloor;
69	int curchip;
70	int mh0_page;
71	int mh1_page;
72	struct mtd_info *nextdoc;
73};
74
75/* This is the syndrome computed by the HW ecc generator upon reading an empty
76   page, one with all 0xff for data and stored ecc code. */
77static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
78
79/* This is the ecc value computed by the HW ecc generator upon writing an empty
80   page, one with all 0xff for data. */
81static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
82
83#define INFTL_BBT_RESERVED_BLOCKS 4
84
85#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
86#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
87#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
88
89static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
90			      unsigned int bitmask);
91static void doc200x_select_chip(struct mtd_info *mtd, int chip);
92
93static int debug = 0;
94module_param(debug, int, 0);
95
96static int try_dword = 1;
97module_param(try_dword, int, 0);
98
99static int no_ecc_failures = 0;
100module_param(no_ecc_failures, int, 0);
101
102static int no_autopart = 0;
103module_param(no_autopart, int, 0);
104
105static int show_firmware_partition = 0;
106module_param(show_firmware_partition, int, 0);
107
108#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
109static int inftl_bbt_write = 1;
110#else
111static int inftl_bbt_write = 0;
112#endif
113module_param(inftl_bbt_write, int, 0);
114
115static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
116module_param(doc_config_location, ulong, 0);
117MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
118
119/* Sector size for HW ECC */
120#define SECTOR_SIZE 512
121/* The sector bytes are packed into NB_DATA 10 bit words */
122#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
123/* Number of roots */
124#define NROOTS 4
125/* First consective root */
126#define FCR 510
127/* Number of symbols */
128#define NN 1023
129
130/* the Reed Solomon control structure */
131static struct rs_control *rs_decoder;
132
133/*
134 * The HW decoder in the DoC ASIC's provides us a error syndrome,
135 * which we must convert to a standard syndrom usable by the generic
136 * Reed-Solomon library code.
137 *
138 * Fabrice Bellard figured this out in the old docecc code. I added
139 * some comments, improved a minor bit and converted it to make use
140 * of the generic Reed-Solomon libary. tglx
141 */
142static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
143{
144	int i, j, nerr, errpos[8];
145	uint8_t parity;
146	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
147
148	memset(syn, 0, sizeof(syn));
149	/* Convert the ecc bytes into words */
150	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
151	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
152	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
153	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
154	parity = ecc[1];
155
156	/* Initialize the syndrom buffer */
157	for (i = 0; i < NROOTS; i++)
158		s[i] = ds[0];
159	/*
160	 *  Evaluate
161	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
162	 *  where x = alpha^(FCR + i)
163	 */
164	for (j = 1; j < NROOTS; j++) {
165		if (ds[j] == 0)
166			continue;
167		tmp = rs->index_of[ds[j]];
168		for (i = 0; i < NROOTS; i++)
169			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
170	}
171
172	/* Calc syn[i] = s[i] / alpha^(v + i) */
173	for (i = 0; i < NROOTS; i++) {
174		if (s[i])
175			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
176	}
177	/* Call the decoder library */
178	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
179
180	/* Incorrectable errors ? */
181	if (nerr < 0)
182		return nerr;
183
184	/*
185	 * Correct the errors. The bitpositions are a bit of magic,
186	 * but they are given by the design of the de/encoder circuit
187	 * in the DoC ASIC's.
188	 */
189	for (i = 0; i < nerr; i++) {
190		int index, bitpos, pos = 1015 - errpos[i];
191		uint8_t val;
192		if (pos >= NB_DATA && pos < 1019)
193			continue;
194		if (pos < NB_DATA) {
195			/* extract bit position (MSB first) */
196			pos = 10 * (NB_DATA - 1 - pos) - 6;
197			/* now correct the following 10 bits. At most two bytes
198			   can be modified since pos is even */
199			index = (pos >> 3) ^ 1;
200			bitpos = pos & 7;
201			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
202				val = (uint8_t) (errval[i] >> (2 + bitpos));
203				parity ^= val;
204				if (index < SECTOR_SIZE)
205					data[index] ^= val;
206			}
207			index = ((pos >> 3) + 1) ^ 1;
208			bitpos = (bitpos + 10) & 7;
209			if (bitpos == 0)
210				bitpos = 8;
211			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
212				val = (uint8_t) (errval[i] << (8 - bitpos));
213				parity ^= val;
214				if (index < SECTOR_SIZE)
215					data[index] ^= val;
216			}
217		}
218	}
219	/* If the parity is wrong, no rescue possible */
220	return parity ? -EBADMSG : nerr;
221}
222
223static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
224{
225	volatile char dummy;
226	int i;
227
228	for (i = 0; i < cycles; i++) {
229		if (DoC_is_Millennium(doc))
230			dummy = ReadDOC(doc->virtadr, NOP);
231		else if (DoC_is_MillenniumPlus(doc))
232			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
233		else
234			dummy = ReadDOC(doc->virtadr, DOCStatus);
235	}
236
237}
238
239#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
240
241/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
242static int _DoC_WaitReady(struct doc_priv *doc)
243{
244	void __iomem *docptr = doc->virtadr;
245	unsigned long timeo = jiffies + (HZ * 10);
246
247	if (debug)
248		printk("_DoC_WaitReady...\n");
249	/* Out-of-line routine to wait for chip response */
250	if (DoC_is_MillenniumPlus(doc)) {
251		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
252			if (time_after(jiffies, timeo)) {
253				printk("_DoC_WaitReady timed out.\n");
254				return -EIO;
255			}
256			udelay(1);
257			cond_resched();
258		}
259	} else {
260		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
261			if (time_after(jiffies, timeo)) {
262				printk("_DoC_WaitReady timed out.\n");
263				return -EIO;
264			}
265			udelay(1);
266			cond_resched();
267		}
268	}
269
270	return 0;
271}
272
273static inline int DoC_WaitReady(struct doc_priv *doc)
274{
275	void __iomem *docptr = doc->virtadr;
276	int ret = 0;
277
278	if (DoC_is_MillenniumPlus(doc)) {
279		DoC_Delay(doc, 4);
280
281		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
282			/* Call the out-of-line routine to wait */
283			ret = _DoC_WaitReady(doc);
284	} else {
285		DoC_Delay(doc, 4);
286
287		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
288			/* Call the out-of-line routine to wait */
289			ret = _DoC_WaitReady(doc);
290		DoC_Delay(doc, 2);
291	}
292
293	if (debug)
294		printk("DoC_WaitReady OK\n");
295	return ret;
296}
297
298static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
299{
300	struct nand_chip *this = mtd->priv;
301	struct doc_priv *doc = this->priv;
302	void __iomem *docptr = doc->virtadr;
303
304	if (debug)
305		printk("write_byte %02x\n", datum);
306	WriteDOC(datum, docptr, CDSNSlowIO);
307	WriteDOC(datum, docptr, 2k_CDSN_IO);
308}
309
310static u_char doc2000_read_byte(struct mtd_info *mtd)
311{
312	struct nand_chip *this = mtd->priv;
313	struct doc_priv *doc = this->priv;
314	void __iomem *docptr = doc->virtadr;
315	u_char ret;
316
317	ReadDOC(docptr, CDSNSlowIO);
318	DoC_Delay(doc, 2);
319	ret = ReadDOC(docptr, 2k_CDSN_IO);
320	if (debug)
321		printk("read_byte returns %02x\n", ret);
322	return ret;
323}
324
325static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
326{
327	struct nand_chip *this = mtd->priv;
328	struct doc_priv *doc = this->priv;
329	void __iomem *docptr = doc->virtadr;
330	int i;
331	if (debug)
332		printk("writebuf of %d bytes: ", len);
333	for (i = 0; i < len; i++) {
334		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
335		if (debug && i < 16)
336			printk("%02x ", buf[i]);
337	}
338	if (debug)
339		printk("\n");
340}
341
342static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
343{
344	struct nand_chip *this = mtd->priv;
345	struct doc_priv *doc = this->priv;
346	void __iomem *docptr = doc->virtadr;
347	int i;
348
349	if (debug)
350		printk("readbuf of %d bytes: ", len);
351
352	for (i = 0; i < len; i++) {
353		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
354	}
355}
356
357static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
358{
359	struct nand_chip *this = mtd->priv;
360	struct doc_priv *doc = this->priv;
361	void __iomem *docptr = doc->virtadr;
362	int i;
363
364	if (debug)
365		printk("readbuf_dword of %d bytes: ", len);
366
367	if (unlikely((((unsigned long)buf) | len) & 3)) {
368		for (i = 0; i < len; i++) {
369			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
370		}
371	} else {
372		for (i = 0; i < len; i += 4) {
373			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
374		}
375	}
376}
377
378static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
379{
380	struct nand_chip *this = mtd->priv;
381	struct doc_priv *doc = this->priv;
382	void __iomem *docptr = doc->virtadr;
383	int i;
384
385	for (i = 0; i < len; i++)
386		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
387			return -EFAULT;
388	return 0;
389}
390
391static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
392{
393	struct nand_chip *this = mtd->priv;
394	struct doc_priv *doc = this->priv;
395	uint16_t ret;
396
397	doc200x_select_chip(mtd, nr);
398	doc200x_hwcontrol(mtd, NAND_CMD_READID,
399			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
400	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
401	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
402
403	/* We cant' use dev_ready here, but at least we wait for the
404	 * command to complete
405	 */
406	udelay(50);
407
408	ret = this->read_byte(mtd) << 8;
409	ret |= this->read_byte(mtd);
410
411	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
412		/* First chip probe. See if we get same results by 32-bit access */
413		union {
414			uint32_t dword;
415			uint8_t byte[4];
416		} ident;
417		void __iomem *docptr = doc->virtadr;
418
419		doc200x_hwcontrol(mtd, NAND_CMD_READID,
420				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
421		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
422		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
423				  NAND_NCE | NAND_CTRL_CHANGE);
424
425		udelay(50);
426
427		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
428		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
429			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
430			this->read_buf = &doc2000_readbuf_dword;
431		}
432	}
433
434	return ret;
435}
436
437static void __init doc2000_count_chips(struct mtd_info *mtd)
438{
439	struct nand_chip *this = mtd->priv;
440	struct doc_priv *doc = this->priv;
441	uint16_t mfrid;
442	int i;
443
444	/* Max 4 chips per floor on DiskOnChip 2000 */
445	doc->chips_per_floor = 4;
446
447	/* Find out what the first chip is */
448	mfrid = doc200x_ident_chip(mtd, 0);
449
450	/* Find how many chips in each floor. */
451	for (i = 1; i < 4; i++) {
452		if (doc200x_ident_chip(mtd, i) != mfrid)
453			break;
454	}
455	doc->chips_per_floor = i;
456	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
457}
458
459static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
460{
461	struct doc_priv *doc = this->priv;
462
463	int status;
464
465	DoC_WaitReady(doc);
466	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
467	DoC_WaitReady(doc);
468	status = (int)this->read_byte(mtd);
469
470	return status;
471}
472
473static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
474{
475	struct nand_chip *this = mtd->priv;
476	struct doc_priv *doc = this->priv;
477	void __iomem *docptr = doc->virtadr;
478
479	WriteDOC(datum, docptr, CDSNSlowIO);
480	WriteDOC(datum, docptr, Mil_CDSN_IO);
481	WriteDOC(datum, docptr, WritePipeTerm);
482}
483
484static u_char doc2001_read_byte(struct mtd_info *mtd)
485{
486	struct nand_chip *this = mtd->priv;
487	struct doc_priv *doc = this->priv;
488	void __iomem *docptr = doc->virtadr;
489
490	//ReadDOC(docptr, CDSNSlowIO);
491	/* 11.4.5 -- delay twice to allow extended length cycle */
492	DoC_Delay(doc, 2);
493	ReadDOC(docptr, ReadPipeInit);
494	//return ReadDOC(docptr, Mil_CDSN_IO);
495	return ReadDOC(docptr, LastDataRead);
496}
497
498static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
499{
500	struct nand_chip *this = mtd->priv;
501	struct doc_priv *doc = this->priv;
502	void __iomem *docptr = doc->virtadr;
503	int i;
504
505	for (i = 0; i < len; i++)
506		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
507	/* Terminate write pipeline */
508	WriteDOC(0x00, docptr, WritePipeTerm);
509}
510
511static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
512{
513	struct nand_chip *this = mtd->priv;
514	struct doc_priv *doc = this->priv;
515	void __iomem *docptr = doc->virtadr;
516	int i;
517
518	/* Start read pipeline */
519	ReadDOC(docptr, ReadPipeInit);
520
521	for (i = 0; i < len - 1; i++)
522		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
523
524	/* Terminate read pipeline */
525	buf[i] = ReadDOC(docptr, LastDataRead);
526}
527
528static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
529{
530	struct nand_chip *this = mtd->priv;
531	struct doc_priv *doc = this->priv;
532	void __iomem *docptr = doc->virtadr;
533	int i;
534
535	/* Start read pipeline */
536	ReadDOC(docptr, ReadPipeInit);
537
538	for (i = 0; i < len - 1; i++)
539		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
540			ReadDOC(docptr, LastDataRead);
541			return i;
542		}
543	if (buf[i] != ReadDOC(docptr, LastDataRead))
544		return i;
545	return 0;
546}
547
548static u_char doc2001plus_read_byte(struct mtd_info *mtd)
549{
550	struct nand_chip *this = mtd->priv;
551	struct doc_priv *doc = this->priv;
552	void __iomem *docptr = doc->virtadr;
553	u_char ret;
554
555	ReadDOC(docptr, Mplus_ReadPipeInit);
556	ReadDOC(docptr, Mplus_ReadPipeInit);
557	ret = ReadDOC(docptr, Mplus_LastDataRead);
558	if (debug)
559		printk("read_byte returns %02x\n", ret);
560	return ret;
561}
562
563static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
564{
565	struct nand_chip *this = mtd->priv;
566	struct doc_priv *doc = this->priv;
567	void __iomem *docptr = doc->virtadr;
568	int i;
569
570	if (debug)
571		printk("writebuf of %d bytes: ", len);
572	for (i = 0; i < len; i++) {
573		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
574		if (debug && i < 16)
575			printk("%02x ", buf[i]);
576	}
577	if (debug)
578		printk("\n");
579}
580
581static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
582{
583	struct nand_chip *this = mtd->priv;
584	struct doc_priv *doc = this->priv;
585	void __iomem *docptr = doc->virtadr;
586	int i;
587
588	if (debug)
589		printk("readbuf of %d bytes: ", len);
590
591	/* Start read pipeline */
592	ReadDOC(docptr, Mplus_ReadPipeInit);
593	ReadDOC(docptr, Mplus_ReadPipeInit);
594
595	for (i = 0; i < len - 2; i++) {
596		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
597		if (debug && i < 16)
598			printk("%02x ", buf[i]);
599	}
600
601	/* Terminate read pipeline */
602	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
603	if (debug && i < 16)
604		printk("%02x ", buf[len - 2]);
605	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
606	if (debug && i < 16)
607		printk("%02x ", buf[len - 1]);
608	if (debug)
609		printk("\n");
610}
611
612static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
613{
614	struct nand_chip *this = mtd->priv;
615	struct doc_priv *doc = this->priv;
616	void __iomem *docptr = doc->virtadr;
617	int i;
618
619	if (debug)
620		printk("verifybuf of %d bytes: ", len);
621
622	/* Start read pipeline */
623	ReadDOC(docptr, Mplus_ReadPipeInit);
624	ReadDOC(docptr, Mplus_ReadPipeInit);
625
626	for (i = 0; i < len - 2; i++)
627		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
628			ReadDOC(docptr, Mplus_LastDataRead);
629			ReadDOC(docptr, Mplus_LastDataRead);
630			return i;
631		}
632	if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
633		return len - 2;
634	if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
635		return len - 1;
636	return 0;
637}
638
639static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
640{
641	struct nand_chip *this = mtd->priv;
642	struct doc_priv *doc = this->priv;
643	void __iomem *docptr = doc->virtadr;
644	int floor = 0;
645
646	if (debug)
647		printk("select chip (%d)\n", chip);
648
649	if (chip == -1) {
650		/* Disable flash internally */
651		WriteDOC(0, docptr, Mplus_FlashSelect);
652		return;
653	}
654
655	floor = chip / doc->chips_per_floor;
656	chip -= (floor * doc->chips_per_floor);
657
658	/* Assert ChipEnable and deassert WriteProtect */
659	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
660	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
661
662	doc->curchip = chip;
663	doc->curfloor = floor;
664}
665
666static void doc200x_select_chip(struct mtd_info *mtd, int chip)
667{
668	struct nand_chip *this = mtd->priv;
669	struct doc_priv *doc = this->priv;
670	void __iomem *docptr = doc->virtadr;
671	int floor = 0;
672
673	if (debug)
674		printk("select chip (%d)\n", chip);
675
676	if (chip == -1)
677		return;
678
679	floor = chip / doc->chips_per_floor;
680	chip -= (floor * doc->chips_per_floor);
681
682	/* 11.4.4 -- deassert CE before changing chip */
683	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
684
685	WriteDOC(floor, docptr, FloorSelect);
686	WriteDOC(chip, docptr, CDSNDeviceSelect);
687
688	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
689
690	doc->curchip = chip;
691	doc->curfloor = floor;
692}
693
694#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
695
696static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
697			      unsigned int ctrl)
698{
699	struct nand_chip *this = mtd->priv;
700	struct doc_priv *doc = this->priv;
701	void __iomem *docptr = doc->virtadr;
702
703	if (ctrl & NAND_CTRL_CHANGE) {
704		doc->CDSNControl &= ~CDSN_CTRL_MSK;
705		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
706		if (debug)
707			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
708		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
709		/* 11.4.3 -- 4 NOPs after CSDNControl write */
710		DoC_Delay(doc, 4);
711	}
712	if (cmd != NAND_CMD_NONE) {
713		if (DoC_is_2000(doc))
714			doc2000_write_byte(mtd, cmd);
715		else
716			doc2001_write_byte(mtd, cmd);
717	}
718}
719
720static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
721{
722	struct nand_chip *this = mtd->priv;
723	struct doc_priv *doc = this->priv;
724	void __iomem *docptr = doc->virtadr;
725
726	/*
727	 * Must terminate write pipeline before sending any commands
728	 * to the device.
729	 */
730	if (command == NAND_CMD_PAGEPROG) {
731		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
732		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
733	}
734
735	/*
736	 * Write out the command to the device.
737	 */
738	if (command == NAND_CMD_SEQIN) {
739		int readcmd;
740
741		if (column >= mtd->writesize) {
742			/* OOB area */
743			column -= mtd->writesize;
744			readcmd = NAND_CMD_READOOB;
745		} else if (column < 256) {
746			/* First 256 bytes --> READ0 */
747			readcmd = NAND_CMD_READ0;
748		} else {
749			column -= 256;
750			readcmd = NAND_CMD_READ1;
751		}
752		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
753	}
754	WriteDOC(command, docptr, Mplus_FlashCmd);
755	WriteDOC(0, docptr, Mplus_WritePipeTerm);
756	WriteDOC(0, docptr, Mplus_WritePipeTerm);
757
758	if (column != -1 || page_addr != -1) {
759		/* Serially input address */
760		if (column != -1) {
761			/* Adjust columns for 16 bit buswidth */
762			if (this->options & NAND_BUSWIDTH_16)
763				column >>= 1;
764			WriteDOC(column, docptr, Mplus_FlashAddress);
765		}
766		if (page_addr != -1) {
767			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
768			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
769			/* One more address cycle for higher density devices */
770			if (this->chipsize & 0x0c000000) {
771				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
772				printk("high density\n");
773			}
774		}
775		WriteDOC(0, docptr, Mplus_WritePipeTerm);
776		WriteDOC(0, docptr, Mplus_WritePipeTerm);
777		/* deassert ALE */
778		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
779		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
780			WriteDOC(0, docptr, Mplus_FlashControl);
781	}
782
783	/*
784	 * program and erase have their own busy handlers
785	 * status and sequential in needs no delay
786	 */
787	switch (command) {
788
789	case NAND_CMD_PAGEPROG:
790	case NAND_CMD_ERASE1:
791	case NAND_CMD_ERASE2:
792	case NAND_CMD_SEQIN:
793	case NAND_CMD_STATUS:
794		return;
795
796	case NAND_CMD_RESET:
797		if (this->dev_ready)
798			break;
799		udelay(this->chip_delay);
800		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
801		WriteDOC(0, docptr, Mplus_WritePipeTerm);
802		WriteDOC(0, docptr, Mplus_WritePipeTerm);
803		while (!(this->read_byte(mtd) & 0x40)) ;
804		return;
805
806		/* This applies to read commands */
807	default:
808		/*
809		 * If we don't have access to the busy pin, we apply the given
810		 * command delay
811		 */
812		if (!this->dev_ready) {
813			udelay(this->chip_delay);
814			return;
815		}
816	}
817
818	/* Apply this short delay always to ensure that we do wait tWB in
819	 * any case on any machine. */
820	ndelay(100);
821	/* wait until command is processed */
822	while (!this->dev_ready(mtd)) ;
823}
824
825static int doc200x_dev_ready(struct mtd_info *mtd)
826{
827	struct nand_chip *this = mtd->priv;
828	struct doc_priv *doc = this->priv;
829	void __iomem *docptr = doc->virtadr;
830
831	if (DoC_is_MillenniumPlus(doc)) {
832		/* 11.4.2 -- must NOP four times before checking FR/B# */
833		DoC_Delay(doc, 4);
834		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
835			if (debug)
836				printk("not ready\n");
837			return 0;
838		}
839		if (debug)
840			printk("was ready\n");
841		return 1;
842	} else {
843		/* 11.4.2 -- must NOP four times before checking FR/B# */
844		DoC_Delay(doc, 4);
845		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
846			if (debug)
847				printk("not ready\n");
848			return 0;
849		}
850		/* 11.4.2 -- Must NOP twice if it's ready */
851		DoC_Delay(doc, 2);
852		if (debug)
853			printk("was ready\n");
854		return 1;
855	}
856}
857
858static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
859{
860	/* This is our last resort if we couldn't find or create a BBT.  Just
861	   pretend all blocks are good. */
862	return 0;
863}
864
865static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
866{
867	struct nand_chip *this = mtd->priv;
868	struct doc_priv *doc = this->priv;
869	void __iomem *docptr = doc->virtadr;
870
871	/* Prime the ECC engine */
872	switch (mode) {
873	case NAND_ECC_READ:
874		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
875		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
876		break;
877	case NAND_ECC_WRITE:
878		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
879		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
880		break;
881	}
882}
883
884static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
885{
886	struct nand_chip *this = mtd->priv;
887	struct doc_priv *doc = this->priv;
888	void __iomem *docptr = doc->virtadr;
889
890	/* Prime the ECC engine */
891	switch (mode) {
892	case NAND_ECC_READ:
893		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
894		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
895		break;
896	case NAND_ECC_WRITE:
897		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
898		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
899		break;
900	}
901}
902
903/* This code is only called on write */
904static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
905{
906	struct nand_chip *this = mtd->priv;
907	struct doc_priv *doc = this->priv;
908	void __iomem *docptr = doc->virtadr;
909	int i;
910	int emptymatch = 1;
911
912	/* flush the pipeline */
913	if (DoC_is_2000(doc)) {
914		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
915		WriteDOC(0, docptr, 2k_CDSN_IO);
916		WriteDOC(0, docptr, 2k_CDSN_IO);
917		WriteDOC(0, docptr, 2k_CDSN_IO);
918		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
919	} else if (DoC_is_MillenniumPlus(doc)) {
920		WriteDOC(0, docptr, Mplus_NOP);
921		WriteDOC(0, docptr, Mplus_NOP);
922		WriteDOC(0, docptr, Mplus_NOP);
923	} else {
924		WriteDOC(0, docptr, NOP);
925		WriteDOC(0, docptr, NOP);
926		WriteDOC(0, docptr, NOP);
927	}
928
929	for (i = 0; i < 6; i++) {
930		if (DoC_is_MillenniumPlus(doc))
931			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
932		else
933			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
934		if (ecc_code[i] != empty_write_ecc[i])
935			emptymatch = 0;
936	}
937	if (DoC_is_MillenniumPlus(doc))
938		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
939	else
940		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
941	return 0;
942}
943
944static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
945				u_char *read_ecc, u_char *isnull)
946{
947	int i, ret = 0;
948	struct nand_chip *this = mtd->priv;
949	struct doc_priv *doc = this->priv;
950	void __iomem *docptr = doc->virtadr;
951	uint8_t calc_ecc[6];
952	volatile u_char dummy;
953	int emptymatch = 1;
954
955	/* flush the pipeline */
956	if (DoC_is_2000(doc)) {
957		dummy = ReadDOC(docptr, 2k_ECCStatus);
958		dummy = ReadDOC(docptr, 2k_ECCStatus);
959		dummy = ReadDOC(docptr, 2k_ECCStatus);
960	} else if (DoC_is_MillenniumPlus(doc)) {
961		dummy = ReadDOC(docptr, Mplus_ECCConf);
962		dummy = ReadDOC(docptr, Mplus_ECCConf);
963		dummy = ReadDOC(docptr, Mplus_ECCConf);
964	} else {
965		dummy = ReadDOC(docptr, ECCConf);
966		dummy = ReadDOC(docptr, ECCConf);
967		dummy = ReadDOC(docptr, ECCConf);
968	}
969
970	/* Error occured ? */
971	if (dummy & 0x80) {
972		for (i = 0; i < 6; i++) {
973			if (DoC_is_MillenniumPlus(doc))
974				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
975			else
976				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
977			if (calc_ecc[i] != empty_read_syndrome[i])
978				emptymatch = 0;
979		}
980		/* If emptymatch=1, the read syndrome is consistent with an
981		   all-0xff data and stored ecc block.  Check the stored ecc. */
982		if (emptymatch) {
983			for (i = 0; i < 6; i++) {
984				if (read_ecc[i] == 0xff)
985					continue;
986				emptymatch = 0;
987				break;
988			}
989		}
990		/* If emptymatch still =1, check the data block. */
991		if (emptymatch) {
992			/* Note: this somewhat expensive test should not be triggered
993			   often.  It could be optimized away by examining the data in
994			   the readbuf routine, and remembering the result. */
995			for (i = 0; i < 512; i++) {
996				if (dat[i] == 0xff)
997					continue;
998				emptymatch = 0;
999				break;
1000			}
1001		}
1002		/* If emptymatch still =1, this is almost certainly a freshly-
1003		   erased block, in which case the ECC will not come out right.
1004		   We'll suppress the error and tell the caller everything's
1005		   OK.  Because it is. */
1006		if (!emptymatch)
1007			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1008		if (ret > 0)
1009			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1010	}
1011	if (DoC_is_MillenniumPlus(doc))
1012		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1013	else
1014		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1015	if (no_ecc_failures && (ret == -EBADMSG)) {
1016		printk(KERN_ERR "suppressing ECC failure\n");
1017		ret = 0;
1018	}
1019	return ret;
1020}
1021
1022//u_char mydatabuf[528];
1023
1024/* The strange out-of-order .oobfree list below is a (possibly unneeded)
1025 * attempt to retain compatibility.  It used to read:
1026 * 	.oobfree = { {8, 8} }
1027 * Since that leaves two bytes unusable, it was changed.  But the following
1028 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1029 * 	.oobfree = { {6, 10} }
1030 * jffs2 seems to handle the above gracefully, but the current scheme seems
1031 * safer.  The only problem with it is that any code that parses oobfree must
1032 * be able to handle out-of-order segments.
1033 */
1034static struct nand_ecclayout doc200x_oobinfo = {
1035	.eccbytes = 6,
1036	.eccpos = {0, 1, 2, 3, 4, 5},
1037	.oobfree = {{8, 8}, {6, 2}}
1038};
1039
1040/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1041   On successful return, buf will contain a copy of the media header for
1042   further processing.  id is the string to scan for, and will presumably be
1043   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1044   header.  The page #s of the found media headers are placed in mh0_page and
1045   mh1_page in the DOC private structure. */
1046static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1047{
1048	struct nand_chip *this = mtd->priv;
1049	struct doc_priv *doc = this->priv;
1050	unsigned offs;
1051	int ret;
1052	size_t retlen;
1053
1054	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1055		ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1056		if (retlen != mtd->writesize)
1057			continue;
1058		if (ret) {
1059			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1060		}
1061		if (memcmp(buf, id, 6))
1062			continue;
1063		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1064		if (doc->mh0_page == -1) {
1065			doc->mh0_page = offs >> this->page_shift;
1066			if (!findmirror)
1067				return 1;
1068			continue;
1069		}
1070		doc->mh1_page = offs >> this->page_shift;
1071		return 2;
1072	}
1073	if (doc->mh0_page == -1) {
1074		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1075		return 0;
1076	}
1077	/* Only one mediaheader was found.  We want buf to contain a
1078	   mediaheader on return, so we'll have to re-read the one we found. */
1079	offs = doc->mh0_page << this->page_shift;
1080	ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1081	if (retlen != mtd->writesize) {
1082		/* Insanity.  Give up. */
1083		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1084		return 0;
1085	}
1086	return 1;
1087}
1088
1089static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1090{
1091	struct nand_chip *this = mtd->priv;
1092	struct doc_priv *doc = this->priv;
1093	int ret = 0;
1094	u_char *buf;
1095	struct NFTLMediaHeader *mh;
1096	const unsigned psize = 1 << this->page_shift;
1097	int numparts = 0;
1098	unsigned blocks, maxblocks;
1099	int offs, numheaders;
1100
1101	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1102	if (!buf) {
1103		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1104		return 0;
1105	}
1106	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1107		goto out;
1108	mh = (struct NFTLMediaHeader *)buf;
1109
1110	le16_to_cpus(&mh->NumEraseUnits);
1111	le16_to_cpus(&mh->FirstPhysicalEUN);
1112	le32_to_cpus(&mh->FormattedSize);
1113
1114	printk(KERN_INFO "    DataOrgID        = %s\n"
1115			 "    NumEraseUnits    = %d\n"
1116			 "    FirstPhysicalEUN = %d\n"
1117			 "    FormattedSize    = %d\n"
1118			 "    UnitSizeFactor   = %d\n",
1119		mh->DataOrgID, mh->NumEraseUnits,
1120		mh->FirstPhysicalEUN, mh->FormattedSize,
1121		mh->UnitSizeFactor);
1122
1123	blocks = mtd->size >> this->phys_erase_shift;
1124	maxblocks = min(32768U, mtd->erasesize - psize);
1125
1126	if (mh->UnitSizeFactor == 0x00) {
1127		/* Auto-determine UnitSizeFactor.  The constraints are:
1128		   - There can be at most 32768 virtual blocks.
1129		   - There can be at most (virtual block size - page size)
1130		   virtual blocks (because MediaHeader+BBT must fit in 1).
1131		 */
1132		mh->UnitSizeFactor = 0xff;
1133		while (blocks > maxblocks) {
1134			blocks >>= 1;
1135			maxblocks = min(32768U, (maxblocks << 1) + psize);
1136			mh->UnitSizeFactor--;
1137		}
1138		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1139	}
1140
1141	/* NOTE: The lines below modify internal variables of the NAND and MTD
1142	   layers; variables with have already been configured by nand_scan.
1143	   Unfortunately, we didn't know before this point what these values
1144	   should be.  Thus, this code is somewhat dependant on the exact
1145	   implementation of the NAND layer.  */
1146	if (mh->UnitSizeFactor != 0xff) {
1147		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1148		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1149		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1150		blocks = mtd->size >> this->bbt_erase_shift;
1151		maxblocks = min(32768U, mtd->erasesize - psize);
1152	}
1153
1154	if (blocks > maxblocks) {
1155		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1156		goto out;
1157	}
1158
1159	/* Skip past the media headers. */
1160	offs = max(doc->mh0_page, doc->mh1_page);
1161	offs <<= this->page_shift;
1162	offs += mtd->erasesize;
1163
1164	if (show_firmware_partition == 1) {
1165		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1166		parts[0].offset = 0;
1167		parts[0].size = offs;
1168		numparts = 1;
1169	}
1170
1171	parts[numparts].name = " DiskOnChip BDTL partition";
1172	parts[numparts].offset = offs;
1173	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1174
1175	offs += parts[numparts].size;
1176	numparts++;
1177
1178	if (offs < mtd->size) {
1179		parts[numparts].name = " DiskOnChip Remainder partition";
1180		parts[numparts].offset = offs;
1181		parts[numparts].size = mtd->size - offs;
1182		numparts++;
1183	}
1184
1185	ret = numparts;
1186 out:
1187	kfree(buf);
1188	return ret;
1189}
1190
1191/* This is a stripped-down copy of the code in inftlmount.c */
1192static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1193{
1194	struct nand_chip *this = mtd->priv;
1195	struct doc_priv *doc = this->priv;
1196	int ret = 0;
1197	u_char *buf;
1198	struct INFTLMediaHeader *mh;
1199	struct INFTLPartition *ip;
1200	int numparts = 0;
1201	int blocks;
1202	int vshift, lastvunit = 0;
1203	int i;
1204	int end = mtd->size;
1205
1206	if (inftl_bbt_write)
1207		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1208
1209	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1210	if (!buf) {
1211		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1212		return 0;
1213	}
1214
1215	if (!find_media_headers(mtd, buf, "BNAND", 0))
1216		goto out;
1217	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1218	mh = (struct INFTLMediaHeader *)buf;
1219
1220	le32_to_cpus(&mh->NoOfBootImageBlocks);
1221	le32_to_cpus(&mh->NoOfBinaryPartitions);
1222	le32_to_cpus(&mh->NoOfBDTLPartitions);
1223	le32_to_cpus(&mh->BlockMultiplierBits);
1224	le32_to_cpus(&mh->FormatFlags);
1225	le32_to_cpus(&mh->PercentUsed);
1226
1227	printk(KERN_INFO "    bootRecordID          = %s\n"
1228			 "    NoOfBootImageBlocks   = %d\n"
1229			 "    NoOfBinaryPartitions  = %d\n"
1230			 "    NoOfBDTLPartitions    = %d\n"
1231			 "    BlockMultiplerBits    = %d\n"
1232			 "    FormatFlgs            = %d\n"
1233			 "    OsakVersion           = %d.%d.%d.%d\n"
1234			 "    PercentUsed           = %d\n",
1235		mh->bootRecordID, mh->NoOfBootImageBlocks,
1236		mh->NoOfBinaryPartitions,
1237		mh->NoOfBDTLPartitions,
1238		mh->BlockMultiplierBits, mh->FormatFlags,
1239		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1240		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1241		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1242		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1243		mh->PercentUsed);
1244
1245	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1246
1247	blocks = mtd->size >> vshift;
1248	if (blocks > 32768) {
1249		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1250		goto out;
1251	}
1252
1253	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1254	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1255		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1256		goto out;
1257	}
1258
1259	/* Scan the partitions */
1260	for (i = 0; (i < 4); i++) {
1261		ip = &(mh->Partitions[i]);
1262		le32_to_cpus(&ip->virtualUnits);
1263		le32_to_cpus(&ip->firstUnit);
1264		le32_to_cpus(&ip->lastUnit);
1265		le32_to_cpus(&ip->flags);
1266		le32_to_cpus(&ip->spareUnits);
1267		le32_to_cpus(&ip->Reserved0);
1268
1269		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1270			"        virtualUnits    = %d\n"
1271			"        firstUnit       = %d\n"
1272			"        lastUnit        = %d\n"
1273			"        flags           = 0x%x\n"
1274			"        spareUnits      = %d\n",
1275			i, ip->virtualUnits, ip->firstUnit,
1276			ip->lastUnit, ip->flags,
1277			ip->spareUnits);
1278
1279		if ((show_firmware_partition == 1) &&
1280		    (i == 0) && (ip->firstUnit > 0)) {
1281			parts[0].name = " DiskOnChip IPL / Media Header partition";
1282			parts[0].offset = 0;
1283			parts[0].size = mtd->erasesize * ip->firstUnit;
1284			numparts = 1;
1285		}
1286
1287		if (ip->flags & INFTL_BINARY)
1288			parts[numparts].name = " DiskOnChip BDK partition";
1289		else
1290			parts[numparts].name = " DiskOnChip BDTL partition";
1291		parts[numparts].offset = ip->firstUnit << vshift;
1292		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1293		numparts++;
1294		if (ip->lastUnit > lastvunit)
1295			lastvunit = ip->lastUnit;
1296		if (ip->flags & INFTL_LAST)
1297			break;
1298	}
1299	lastvunit++;
1300	if ((lastvunit << vshift) < end) {
1301		parts[numparts].name = " DiskOnChip Remainder partition";
1302		parts[numparts].offset = lastvunit << vshift;
1303		parts[numparts].size = end - parts[numparts].offset;
1304		numparts++;
1305	}
1306	ret = numparts;
1307 out:
1308	kfree(buf);
1309	return ret;
1310}
1311
1312static int __init nftl_scan_bbt(struct mtd_info *mtd)
1313{
1314	int ret, numparts;
1315	struct nand_chip *this = mtd->priv;
1316	struct doc_priv *doc = this->priv;
1317	struct mtd_partition parts[2];
1318
1319	memset((char *)parts, 0, sizeof(parts));
1320	/* On NFTL, we have to find the media headers before we can read the
1321	   BBTs, since they're stored in the media header eraseblocks. */
1322	numparts = nftl_partscan(mtd, parts);
1323	if (!numparts)
1324		return -EIO;
1325	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1326				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1327				NAND_BBT_VERSION;
1328	this->bbt_td->veroffs = 7;
1329	this->bbt_td->pages[0] = doc->mh0_page + 1;
1330	if (doc->mh1_page != -1) {
1331		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1332					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1333					NAND_BBT_VERSION;
1334		this->bbt_md->veroffs = 7;
1335		this->bbt_md->pages[0] = doc->mh1_page + 1;
1336	} else {
1337		this->bbt_md = NULL;
1338	}
1339
1340	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1341	   At least as nand_bbt.c is currently written. */
1342	if ((ret = nand_scan_bbt(mtd, NULL)))
1343		return ret;
1344	add_mtd_device(mtd);
1345#ifdef CONFIG_MTD_PARTITIONS
1346	if (!no_autopart)
1347		add_mtd_partitions(mtd, parts, numparts);
1348#endif
1349	return 0;
1350}
1351
1352static int __init inftl_scan_bbt(struct mtd_info *mtd)
1353{
1354	int ret, numparts;
1355	struct nand_chip *this = mtd->priv;
1356	struct doc_priv *doc = this->priv;
1357	struct mtd_partition parts[5];
1358
1359	if (this->numchips > doc->chips_per_floor) {
1360		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1361		return -EIO;
1362	}
1363
1364	if (DoC_is_MillenniumPlus(doc)) {
1365		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1366		if (inftl_bbt_write)
1367			this->bbt_td->options |= NAND_BBT_WRITE;
1368		this->bbt_td->pages[0] = 2;
1369		this->bbt_md = NULL;
1370	} else {
1371		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1372		if (inftl_bbt_write)
1373			this->bbt_td->options |= NAND_BBT_WRITE;
1374		this->bbt_td->offs = 8;
1375		this->bbt_td->len = 8;
1376		this->bbt_td->veroffs = 7;
1377		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1378		this->bbt_td->reserved_block_code = 0x01;
1379		this->bbt_td->pattern = "MSYS_BBT";
1380
1381		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1382		if (inftl_bbt_write)
1383			this->bbt_md->options |= NAND_BBT_WRITE;
1384		this->bbt_md->offs = 8;
1385		this->bbt_md->len = 8;
1386		this->bbt_md->veroffs = 7;
1387		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1388		this->bbt_md->reserved_block_code = 0x01;
1389		this->bbt_md->pattern = "TBB_SYSM";
1390	}
1391
1392	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1393	   At least as nand_bbt.c is currently written. */
1394	if ((ret = nand_scan_bbt(mtd, NULL)))
1395		return ret;
1396	memset((char *)parts, 0, sizeof(parts));
1397	numparts = inftl_partscan(mtd, parts);
1398	/* At least for now, require the INFTL Media Header.  We could probably
1399	   do without it for non-INFTL use, since all it gives us is
1400	   autopartitioning, but I want to give it more thought. */
1401	if (!numparts)
1402		return -EIO;
1403	add_mtd_device(mtd);
1404#ifdef CONFIG_MTD_PARTITIONS
1405	if (!no_autopart)
1406		add_mtd_partitions(mtd, parts, numparts);
1407#endif
1408	return 0;
1409}
1410
1411static inline int __init doc2000_init(struct mtd_info *mtd)
1412{
1413	struct nand_chip *this = mtd->priv;
1414	struct doc_priv *doc = this->priv;
1415
1416	this->read_byte = doc2000_read_byte;
1417	this->write_buf = doc2000_writebuf;
1418	this->read_buf = doc2000_readbuf;
1419	this->verify_buf = doc2000_verifybuf;
1420	this->scan_bbt = nftl_scan_bbt;
1421
1422	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1423	doc2000_count_chips(mtd);
1424	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1425	return (4 * doc->chips_per_floor);
1426}
1427
1428static inline int __init doc2001_init(struct mtd_info *mtd)
1429{
1430	struct nand_chip *this = mtd->priv;
1431	struct doc_priv *doc = this->priv;
1432
1433	this->read_byte = doc2001_read_byte;
1434	this->write_buf = doc2001_writebuf;
1435	this->read_buf = doc2001_readbuf;
1436	this->verify_buf = doc2001_verifybuf;
1437
1438	ReadDOC(doc->virtadr, ChipID);
1439	ReadDOC(doc->virtadr, ChipID);
1440	ReadDOC(doc->virtadr, ChipID);
1441	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1442		/* It's not a Millennium; it's one of the newer
1443		   DiskOnChip 2000 units with a similar ASIC.
1444		   Treat it like a Millennium, except that it
1445		   can have multiple chips. */
1446		doc2000_count_chips(mtd);
1447		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1448		this->scan_bbt = inftl_scan_bbt;
1449		return (4 * doc->chips_per_floor);
1450	} else {
1451		/* Bog-standard Millennium */
1452		doc->chips_per_floor = 1;
1453		mtd->name = "DiskOnChip Millennium";
1454		this->scan_bbt = nftl_scan_bbt;
1455		return 1;
1456	}
1457}
1458
1459static inline int __init doc2001plus_init(struct mtd_info *mtd)
1460{
1461	struct nand_chip *this = mtd->priv;
1462	struct doc_priv *doc = this->priv;
1463
1464	this->read_byte = doc2001plus_read_byte;
1465	this->write_buf = doc2001plus_writebuf;
1466	this->read_buf = doc2001plus_readbuf;
1467	this->verify_buf = doc2001plus_verifybuf;
1468	this->scan_bbt = inftl_scan_bbt;
1469	this->cmd_ctrl = NULL;
1470	this->select_chip = doc2001plus_select_chip;
1471	this->cmdfunc = doc2001plus_command;
1472	this->ecc.hwctl = doc2001plus_enable_hwecc;
1473
1474	doc->chips_per_floor = 1;
1475	mtd->name = "DiskOnChip Millennium Plus";
1476
1477	return 1;
1478}
1479
1480static int __init doc_probe(unsigned long physadr)
1481{
1482	unsigned char ChipID;
1483	struct mtd_info *mtd;
1484	struct nand_chip *nand;
1485	struct doc_priv *doc;
1486	void __iomem *virtadr;
1487	unsigned char save_control;
1488	unsigned char tmp, tmpb, tmpc;
1489	int reg, len, numchips;
1490	int ret = 0;
1491
1492	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1493	if (!virtadr) {
1494		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1495		return -EIO;
1496	}
1497
1498	/* It's not possible to cleanly detect the DiskOnChip - the
1499	 * bootup procedure will put the device into reset mode, and
1500	 * it's not possible to talk to it without actually writing
1501	 * to the DOCControl register. So we store the current contents
1502	 * of the DOCControl register's location, in case we later decide
1503	 * that it's not a DiskOnChip, and want to put it back how we
1504	 * found it.
1505	 */
1506	save_control = ReadDOC(virtadr, DOCControl);
1507
1508	/* Reset the DiskOnChip ASIC */
1509	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1510	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1511
1512	/* Enable the DiskOnChip ASIC */
1513	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1514	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1515
1516	ChipID = ReadDOC(virtadr, ChipID);
1517
1518	switch (ChipID) {
1519	case DOC_ChipID_Doc2k:
1520		reg = DoC_2k_ECCStatus;
1521		break;
1522	case DOC_ChipID_DocMil:
1523		reg = DoC_ECCConf;
1524		break;
1525	case DOC_ChipID_DocMilPlus16:
1526	case DOC_ChipID_DocMilPlus32:
1527	case 0:
1528		/* Possible Millennium Plus, need to do more checks */
1529		/* Possibly release from power down mode */
1530		for (tmp = 0; (tmp < 4); tmp++)
1531			ReadDOC(virtadr, Mplus_Power);
1532
1533		/* Reset the Millennium Plus ASIC */
1534		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1535		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1536		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1537
1538		mdelay(1);
1539		/* Enable the Millennium Plus ASIC */
1540		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1541		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1542		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1543		mdelay(1);
1544
1545		ChipID = ReadDOC(virtadr, ChipID);
1546
1547		switch (ChipID) {
1548		case DOC_ChipID_DocMilPlus16:
1549			reg = DoC_Mplus_Toggle;
1550			break;
1551		case DOC_ChipID_DocMilPlus32:
1552			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1553		default:
1554			ret = -ENODEV;
1555			goto notfound;
1556		}
1557		break;
1558
1559	default:
1560		ret = -ENODEV;
1561		goto notfound;
1562	}
1563	/* Check the TOGGLE bit in the ECC register */
1564	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1565	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1566	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1567	if ((tmp == tmpb) || (tmp != tmpc)) {
1568		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1569		ret = -ENODEV;
1570		goto notfound;
1571	}
1572
1573	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1574		unsigned char oldval;
1575		unsigned char newval;
1576		nand = mtd->priv;
1577		doc = nand->priv;
1578		/* Use the alias resolution register to determine if this is
1579		   in fact the same DOC aliased to a new address.  If writes
1580		   to one chip's alias resolution register change the value on
1581		   the other chip, they're the same chip. */
1582		if (ChipID == DOC_ChipID_DocMilPlus16) {
1583			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1584			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1585		} else {
1586			oldval = ReadDOC(doc->virtadr, AliasResolution);
1587			newval = ReadDOC(virtadr, AliasResolution);
1588		}
1589		if (oldval != newval)
1590			continue;
1591		if (ChipID == DOC_ChipID_DocMilPlus16) {
1592			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1593			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1594			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1595		} else {
1596			WriteDOC(~newval, virtadr, AliasResolution);
1597			oldval = ReadDOC(doc->virtadr, AliasResolution);
1598			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1599		}
1600		newval = ~newval;
1601		if (oldval == newval) {
1602			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1603			goto notfound;
1604		}
1605	}
1606
1607	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1608
1609	len = sizeof(struct mtd_info) +
1610	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1611	mtd = kzalloc(len, GFP_KERNEL);
1612	if (!mtd) {
1613		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1614		ret = -ENOMEM;
1615		goto fail;
1616	}
1617
1618	nand			= (struct nand_chip *) (mtd + 1);
1619	doc			= (struct doc_priv *) (nand + 1);
1620	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1621	nand->bbt_md		= nand->bbt_td + 1;
1622
1623	mtd->priv		= nand;
1624	mtd->owner		= THIS_MODULE;
1625
1626	nand->priv		= doc;
1627	nand->select_chip	= doc200x_select_chip;
1628	nand->cmd_ctrl		= doc200x_hwcontrol;
1629	nand->dev_ready		= doc200x_dev_ready;
1630	nand->waitfunc		= doc200x_wait;
1631	nand->block_bad		= doc200x_block_bad;
1632	nand->ecc.hwctl		= doc200x_enable_hwecc;
1633	nand->ecc.calculate	= doc200x_calculate_ecc;
1634	nand->ecc.correct	= doc200x_correct_data;
1635
1636	nand->ecc.layout	= &doc200x_oobinfo;
1637	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1638	nand->ecc.size		= 512;
1639	nand->ecc.bytes		= 6;
1640	nand->options		= NAND_USE_FLASH_BBT;
1641
1642	doc->physadr		= physadr;
1643	doc->virtadr		= virtadr;
1644	doc->ChipID		= ChipID;
1645	doc->curfloor		= -1;
1646	doc->curchip		= -1;
1647	doc->mh0_page		= -1;
1648	doc->mh1_page		= -1;
1649	doc->nextdoc		= doclist;
1650
1651	if (ChipID == DOC_ChipID_Doc2k)
1652		numchips = doc2000_init(mtd);
1653	else if (ChipID == DOC_ChipID_DocMilPlus16)
1654		numchips = doc2001plus_init(mtd);
1655	else
1656		numchips = doc2001_init(mtd);
1657
1658	if ((ret = nand_scan(mtd, numchips))) {
1659		/* DBB note: i believe nand_release is necessary here, as
1660		   buffers may have been allocated in nand_base.  Check with
1661		   Thomas. FIX ME! */
1662		/* nand_release will call del_mtd_device, but we haven't yet
1663		   added it.  This is handled without incident by
1664		   del_mtd_device, as far as I can tell. */
1665		nand_release(mtd);
1666		kfree(mtd);
1667		goto fail;
1668	}
1669
1670	/* Success! */
1671	doclist = mtd;
1672	return 0;
1673
1674 notfound:
1675	/* Put back the contents of the DOCControl register, in case it's not
1676	   actually a DiskOnChip.  */
1677	WriteDOC(save_control, virtadr, DOCControl);
1678 fail:
1679	iounmap(virtadr);
1680	return ret;
1681}
1682
1683static void release_nanddoc(void)
1684{
1685	struct mtd_info *mtd, *nextmtd;
1686	struct nand_chip *nand;
1687	struct doc_priv *doc;
1688
1689	for (mtd = doclist; mtd; mtd = nextmtd) {
1690		nand = mtd->priv;
1691		doc = nand->priv;
1692
1693		nextmtd = doc->nextdoc;
1694		nand_release(mtd);
1695		iounmap(doc->virtadr);
1696		kfree(mtd);
1697	}
1698}
1699
1700static int __init init_nanddoc(void)
1701{
1702	int i, ret = 0;
1703
1704	/* We could create the decoder on demand, if memory is a concern.
1705	 * This way we have it handy, if an error happens
1706	 *
1707	 * Symbolsize is 10 (bits)
1708	 * Primitve polynomial is x^10+x^3+1
1709	 * first consecutive root is 510
1710	 * primitve element to generate roots = 1
1711	 * generator polinomial degree = 4
1712	 */
1713	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1714	if (!rs_decoder) {
1715		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1716		return -ENOMEM;
1717	}
1718
1719	if (doc_config_location) {
1720		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1721		ret = doc_probe(doc_config_location);
1722		if (ret < 0)
1723			goto outerr;
1724	} else {
1725		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1726			doc_probe(doc_locations[i]);
1727		}
1728	}
1729	/* No banner message any more. Print a message if no DiskOnChip
1730	   found, so the user knows we at least tried. */
1731	if (!doclist) {
1732		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1733		ret = -ENODEV;
1734		goto outerr;
1735	}
1736	return 0;
1737 outerr:
1738	free_rs(rs_decoder);
1739	return ret;
1740}
1741
1742static void __exit cleanup_nanddoc(void)
1743{
1744	/* Cleanup the nand/DoC resources */
1745	release_nanddoc();
1746
1747	/* Free the reed solomon resources */
1748	if (rs_decoder) {
1749		free_rs(rs_decoder);
1750	}
1751}
1752
1753module_init(init_nanddoc);
1754module_exit(cleanup_nanddoc);
1755
1756MODULE_LICENSE("GPL");
1757MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1758MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1759