• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/mtd/lpddr/
1/*
2 * LPDDR flash memory device operations. This module provides read, write,
3 * erase, lock/unlock support for LPDDR flash memories
4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6 * Many thanks to Roman Borisov for intial enabling
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 * TODO:
23 * Implement VPP management
24 * Implement XIP support
25 * Implement OTP support
26 */
27#include <linux/mtd/pfow.h>
28#include <linux/mtd/qinfo.h>
29#include <linux/slab.h>
30
31static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
32					size_t *retlen, u_char *buf);
33static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
34				size_t len, size_t *retlen, const u_char *buf);
35static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
36				unsigned long count, loff_t to, size_t *retlen);
37static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
38static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
39static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
41			size_t *retlen, void **mtdbuf, resource_size_t *phys);
42static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
43static int get_chip(struct map_info *map, struct flchip *chip, int mode);
44static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
45static void put_chip(struct map_info *map, struct flchip *chip);
46
47struct mtd_info *lpddr_cmdset(struct map_info *map)
48{
49	struct lpddr_private *lpddr = map->fldrv_priv;
50	struct flchip_shared *shared;
51	struct flchip *chip;
52	struct mtd_info *mtd;
53	int numchips;
54	int i, j;
55
56	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
57	if (!mtd) {
58		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
59		return NULL;
60	}
61	mtd->priv = map;
62	mtd->type = MTD_NORFLASH;
63
64	/* Fill in the default mtd operations */
65	mtd->read = lpddr_read;
66	mtd->type = MTD_NORFLASH;
67	mtd->flags = MTD_CAP_NORFLASH;
68	mtd->flags &= ~MTD_BIT_WRITEABLE;
69	mtd->erase = lpddr_erase;
70	mtd->write = lpddr_write_buffers;
71	mtd->writev = lpddr_writev;
72	mtd->read_oob = NULL;
73	mtd->write_oob = NULL;
74	mtd->sync = NULL;
75	mtd->lock = lpddr_lock;
76	mtd->unlock = lpddr_unlock;
77	mtd->suspend = NULL;
78	mtd->resume = NULL;
79	if (map_is_linear(map)) {
80		mtd->point = lpddr_point;
81		mtd->unpoint = lpddr_unpoint;
82	}
83	mtd->block_isbad = NULL;
84	mtd->block_markbad = NULL;
85	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
86	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
87	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
88
89	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
90						GFP_KERNEL);
91	if (!shared) {
92		kfree(lpddr);
93		kfree(mtd);
94		return NULL;
95	}
96
97	chip = &lpddr->chips[0];
98	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
99	for (i = 0; i < numchips; i++) {
100		shared[i].writing = shared[i].erasing = NULL;
101		mutex_init(&shared[i].lock);
102		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
103			*chip = lpddr->chips[i];
104			chip->start += j << lpddr->chipshift;
105			chip->oldstate = chip->state = FL_READY;
106			chip->priv = &shared[i];
107			/* those should be reset too since
108			   they create memory references. */
109			init_waitqueue_head(&chip->wq);
110			mutex_init(&chip->mutex);
111			chip++;
112		}
113	}
114
115	return mtd;
116}
117EXPORT_SYMBOL(lpddr_cmdset);
118
119static int wait_for_ready(struct map_info *map, struct flchip *chip,
120		unsigned int chip_op_time)
121{
122	unsigned int timeo, reset_timeo, sleep_time;
123	unsigned int dsr;
124	flstate_t chip_state = chip->state;
125	int ret = 0;
126
127	/* set our timeout to 8 times the expected delay */
128	timeo = chip_op_time * 8;
129	if (!timeo)
130		timeo = 500000;
131	reset_timeo = timeo;
132	sleep_time = chip_op_time / 2;
133
134	for (;;) {
135		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
136		if (dsr & DSR_READY_STATUS)
137			break;
138		if (!timeo) {
139			printk(KERN_ERR "%s: Flash timeout error state %d \n",
140							map->name, chip_state);
141			ret = -ETIME;
142			break;
143		}
144
145		/* OK Still waiting. Drop the lock, wait a while and retry. */
146		mutex_unlock(&chip->mutex);
147		if (sleep_time >= 1000000/HZ) {
148			/*
149			 * Half of the normal delay still remaining
150			 * can be performed with a sleeping delay instead
151			 * of busy waiting.
152			 */
153			msleep(sleep_time/1000);
154			timeo -= sleep_time;
155			sleep_time = 1000000/HZ;
156		} else {
157			udelay(1);
158			cond_resched();
159			timeo--;
160		}
161		mutex_lock(&chip->mutex);
162
163		while (chip->state != chip_state) {
164			/* Someone's suspended the operation: sleep */
165			DECLARE_WAITQUEUE(wait, current);
166			set_current_state(TASK_UNINTERRUPTIBLE);
167			add_wait_queue(&chip->wq, &wait);
168			mutex_unlock(&chip->mutex);
169			schedule();
170			remove_wait_queue(&chip->wq, &wait);
171			mutex_lock(&chip->mutex);
172		}
173		if (chip->erase_suspended || chip->write_suspended)  {
174			/* Suspend has occured while sleep: reset timeout */
175			timeo = reset_timeo;
176			chip->erase_suspended = chip->write_suspended = 0;
177		}
178	}
179	/* check status for errors */
180	if (dsr & DSR_ERR) {
181		/* Clear DSR*/
182		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
183		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
184				map->name, dsr);
185		print_drs_error(dsr);
186		ret = -EIO;
187	}
188	chip->state = FL_READY;
189	return ret;
190}
191
192static int get_chip(struct map_info *map, struct flchip *chip, int mode)
193{
194	int ret;
195	DECLARE_WAITQUEUE(wait, current);
196
197 retry:
198	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
199		&& chip->state != FL_SYNCING) {
200		/*
201		 * OK. We have possibility for contension on the write/erase
202		 * operations which are global to the real chip and not per
203		 * partition.  So let's fight it over in the partition which
204		 * currently has authority on the operation.
205		 *
206		 * The rules are as follows:
207		 *
208		 * - any write operation must own shared->writing.
209		 *
210		 * - any erase operation must own _both_ shared->writing and
211		 *   shared->erasing.
212		 *
213		 * - contension arbitration is handled in the owner's context.
214		 *
215		 * The 'shared' struct can be read and/or written only when
216		 * its lock is taken.
217		 */
218		struct flchip_shared *shared = chip->priv;
219		struct flchip *contender;
220		mutex_lock(&shared->lock);
221		contender = shared->writing;
222		if (contender && contender != chip) {
223			/*
224			 * The engine to perform desired operation on this
225			 * partition is already in use by someone else.
226			 * Let's fight over it in the context of the chip
227			 * currently using it.  If it is possible to suspend,
228			 * that other partition will do just that, otherwise
229			 * it'll happily send us to sleep.  In any case, when
230			 * get_chip returns success we're clear to go ahead.
231			 */
232			ret = mutex_trylock(&contender->mutex);
233			mutex_unlock(&shared->lock);
234			if (!ret)
235				goto retry;
236			mutex_unlock(&chip->mutex);
237			ret = chip_ready(map, contender, mode);
238			mutex_lock(&chip->mutex);
239
240			if (ret == -EAGAIN) {
241				mutex_unlock(&contender->mutex);
242				goto retry;
243			}
244			if (ret) {
245				mutex_unlock(&contender->mutex);
246				return ret;
247			}
248			mutex_lock(&shared->lock);
249
250			/* We should not own chip if it is already in FL_SYNCING
251			 * state. Put contender and retry. */
252			if (chip->state == FL_SYNCING) {
253				put_chip(map, contender);
254				mutex_unlock(&contender->mutex);
255				goto retry;
256			}
257			mutex_unlock(&contender->mutex);
258		}
259
260		/* Check if we have suspended erase on this chip.
261		   Must sleep in such a case. */
262		if (mode == FL_ERASING && shared->erasing
263		    && shared->erasing->oldstate == FL_ERASING) {
264			mutex_unlock(&shared->lock);
265			set_current_state(TASK_UNINTERRUPTIBLE);
266			add_wait_queue(&chip->wq, &wait);
267			mutex_unlock(&chip->mutex);
268			schedule();
269			remove_wait_queue(&chip->wq, &wait);
270			mutex_lock(&chip->mutex);
271			goto retry;
272		}
273
274		/* We now own it */
275		shared->writing = chip;
276		if (mode == FL_ERASING)
277			shared->erasing = chip;
278		mutex_unlock(&shared->lock);
279	}
280
281	ret = chip_ready(map, chip, mode);
282	if (ret == -EAGAIN)
283		goto retry;
284
285	return ret;
286}
287
288static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
289{
290	struct lpddr_private *lpddr = map->fldrv_priv;
291	int ret = 0;
292	DECLARE_WAITQUEUE(wait, current);
293
294	/* Prevent setting state FL_SYNCING for chip in suspended state. */
295	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
296		goto sleep;
297
298	switch (chip->state) {
299	case FL_READY:
300	case FL_JEDEC_QUERY:
301		return 0;
302
303	case FL_ERASING:
304		if (!lpddr->qinfo->SuspEraseSupp ||
305			!(mode == FL_READY || mode == FL_POINT))
306			goto sleep;
307
308		map_write(map, CMD(LPDDR_SUSPEND),
309			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
310		chip->oldstate = FL_ERASING;
311		chip->state = FL_ERASE_SUSPENDING;
312		ret = wait_for_ready(map, chip, 0);
313		if (ret) {
314			/* Oops. something got wrong. */
315			/* Resume and pretend we weren't here.  */
316			map_write(map, CMD(LPDDR_RESUME),
317				map->pfow_base + PFOW_COMMAND_CODE);
318			map_write(map, CMD(LPDDR_START_EXECUTION),
319				map->pfow_base + PFOW_COMMAND_EXECUTE);
320			chip->state = FL_ERASING;
321			chip->oldstate = FL_READY;
322			printk(KERN_ERR "%s: suspend operation failed."
323					"State may be wrong \n", map->name);
324			return -EIO;
325		}
326		chip->erase_suspended = 1;
327		chip->state = FL_READY;
328		return 0;
329		/* Erase suspend */
330	case FL_POINT:
331		/* Only if there's no operation suspended... */
332		if (mode == FL_READY && chip->oldstate == FL_READY)
333			return 0;
334
335	default:
336sleep:
337		set_current_state(TASK_UNINTERRUPTIBLE);
338		add_wait_queue(&chip->wq, &wait);
339		mutex_unlock(&chip->mutex);
340		schedule();
341		remove_wait_queue(&chip->wq, &wait);
342		mutex_lock(&chip->mutex);
343		return -EAGAIN;
344	}
345}
346
347static void put_chip(struct map_info *map, struct flchip *chip)
348{
349	if (chip->priv) {
350		struct flchip_shared *shared = chip->priv;
351		mutex_lock(&shared->lock);
352		if (shared->writing == chip && chip->oldstate == FL_READY) {
353			/* We own the ability to write, but we're done */
354			shared->writing = shared->erasing;
355			if (shared->writing && shared->writing != chip) {
356				/* give back the ownership */
357				struct flchip *loaner = shared->writing;
358				mutex_lock(&loaner->mutex);
359				mutex_unlock(&shared->lock);
360				mutex_unlock(&chip->mutex);
361				put_chip(map, loaner);
362				mutex_lock(&chip->mutex);
363				mutex_unlock(&loaner->mutex);
364				wake_up(&chip->wq);
365				return;
366			}
367			shared->erasing = NULL;
368			shared->writing = NULL;
369		} else if (shared->erasing == chip && shared->writing != chip) {
370			/*
371			 * We own the ability to erase without the ability
372			 * to write, which means the erase was suspended
373			 * and some other partition is currently writing.
374			 * Don't let the switch below mess things up since
375			 * we don't have ownership to resume anything.
376			 */
377			mutex_unlock(&shared->lock);
378			wake_up(&chip->wq);
379			return;
380		}
381		mutex_unlock(&shared->lock);
382	}
383
384	switch (chip->oldstate) {
385	case FL_ERASING:
386		chip->state = chip->oldstate;
387		map_write(map, CMD(LPDDR_RESUME),
388				map->pfow_base + PFOW_COMMAND_CODE);
389		map_write(map, CMD(LPDDR_START_EXECUTION),
390				map->pfow_base + PFOW_COMMAND_EXECUTE);
391		chip->oldstate = FL_READY;
392		chip->state = FL_ERASING;
393		break;
394	case FL_READY:
395		break;
396	default:
397		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
398				map->name, chip->oldstate);
399	}
400	wake_up(&chip->wq);
401}
402
403int do_write_buffer(struct map_info *map, struct flchip *chip,
404			unsigned long adr, const struct kvec **pvec,
405			unsigned long *pvec_seek, int len)
406{
407	struct lpddr_private *lpddr = map->fldrv_priv;
408	map_word datum;
409	int ret, wbufsize, word_gap, words;
410	const struct kvec *vec;
411	unsigned long vec_seek;
412	unsigned long prog_buf_ofs;
413
414	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
415
416	mutex_lock(&chip->mutex);
417	ret = get_chip(map, chip, FL_WRITING);
418	if (ret) {
419		mutex_unlock(&chip->mutex);
420		return ret;
421	}
422	/* Figure out the number of words to write */
423	word_gap = (-adr & (map_bankwidth(map)-1));
424	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
425	if (!word_gap) {
426		words--;
427	} else {
428		word_gap = map_bankwidth(map) - word_gap;
429		adr -= word_gap;
430		datum = map_word_ff(map);
431	}
432	/* Write data */
433	/* Get the program buffer offset from PFOW register data first*/
434	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
435				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
436	vec = *pvec;
437	vec_seek = *pvec_seek;
438	do {
439		int n = map_bankwidth(map) - word_gap;
440
441		if (n > vec->iov_len - vec_seek)
442			n = vec->iov_len - vec_seek;
443		if (n > len)
444			n = len;
445
446		if (!word_gap && (len < map_bankwidth(map)))
447			datum = map_word_ff(map);
448
449		datum = map_word_load_partial(map, datum,
450				vec->iov_base + vec_seek, word_gap, n);
451
452		len -= n;
453		word_gap += n;
454		if (!len || word_gap == map_bankwidth(map)) {
455			map_write(map, datum, prog_buf_ofs);
456			prog_buf_ofs += map_bankwidth(map);
457			word_gap = 0;
458		}
459
460		vec_seek += n;
461		if (vec_seek == vec->iov_len) {
462			vec++;
463			vec_seek = 0;
464		}
465	} while (len);
466	*pvec = vec;
467	*pvec_seek = vec_seek;
468
469	/* GO GO GO */
470	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
471	chip->state = FL_WRITING;
472	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
473	if (ret)	{
474		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
475			map->name, ret, adr);
476		goto out;
477	}
478
479 out:	put_chip(map, chip);
480	mutex_unlock(&chip->mutex);
481	return ret;
482}
483
484int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
485{
486	struct map_info *map = mtd->priv;
487	struct lpddr_private *lpddr = map->fldrv_priv;
488	int chipnum = adr >> lpddr->chipshift;
489	struct flchip *chip = &lpddr->chips[chipnum];
490	int ret;
491
492	mutex_lock(&chip->mutex);
493	ret = get_chip(map, chip, FL_ERASING);
494	if (ret) {
495		mutex_unlock(&chip->mutex);
496		return ret;
497	}
498	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
499	chip->state = FL_ERASING;
500	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
501	if (ret) {
502		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
503			map->name, ret, adr);
504		goto out;
505	}
506 out:	put_chip(map, chip);
507	mutex_unlock(&chip->mutex);
508	return ret;
509}
510
511static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
512			size_t *retlen, u_char *buf)
513{
514	struct map_info *map = mtd->priv;
515	struct lpddr_private *lpddr = map->fldrv_priv;
516	int chipnum = adr >> lpddr->chipshift;
517	struct flchip *chip = &lpddr->chips[chipnum];
518	int ret = 0;
519
520	mutex_lock(&chip->mutex);
521	ret = get_chip(map, chip, FL_READY);
522	if (ret) {
523		mutex_unlock(&chip->mutex);
524		return ret;
525	}
526
527	map_copy_from(map, buf, adr, len);
528	*retlen = len;
529
530	put_chip(map, chip);
531	mutex_unlock(&chip->mutex);
532	return ret;
533}
534
535static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
536			size_t *retlen, void **mtdbuf, resource_size_t *phys)
537{
538	struct map_info *map = mtd->priv;
539	struct lpddr_private *lpddr = map->fldrv_priv;
540	int chipnum = adr >> lpddr->chipshift;
541	unsigned long ofs, last_end = 0;
542	struct flchip *chip = &lpddr->chips[chipnum];
543	int ret = 0;
544
545	if (!map->virt || (adr + len > mtd->size))
546		return -EINVAL;
547
548	/* ofs: offset within the first chip that the first read should start */
549	ofs = adr - (chipnum << lpddr->chipshift);
550
551	*mtdbuf = (void *)map->virt + chip->start + ofs;
552	*retlen = 0;
553
554	while (len) {
555		unsigned long thislen;
556
557		if (chipnum >= lpddr->numchips)
558			break;
559
560		/* We cannot point across chips that are virtually disjoint */
561		if (!last_end)
562			last_end = chip->start;
563		else if (chip->start != last_end)
564			break;
565
566		if ((len + ofs - 1) >> lpddr->chipshift)
567			thislen = (1<<lpddr->chipshift) - ofs;
568		else
569			thislen = len;
570		/* get the chip */
571		mutex_lock(&chip->mutex);
572		ret = get_chip(map, chip, FL_POINT);
573		mutex_unlock(&chip->mutex);
574		if (ret)
575			break;
576
577		chip->state = FL_POINT;
578		chip->ref_point_counter++;
579		*retlen += thislen;
580		len -= thislen;
581
582		ofs = 0;
583		last_end += 1 << lpddr->chipshift;
584		chipnum++;
585		chip = &lpddr->chips[chipnum];
586	}
587	return 0;
588}
589
590static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
591{
592	struct map_info *map = mtd->priv;
593	struct lpddr_private *lpddr = map->fldrv_priv;
594	int chipnum = adr >> lpddr->chipshift;
595	unsigned long ofs;
596
597	/* ofs: offset within the first chip that the first read should start */
598	ofs = adr - (chipnum << lpddr->chipshift);
599
600	while (len) {
601		unsigned long thislen;
602		struct flchip *chip;
603
604		chip = &lpddr->chips[chipnum];
605		if (chipnum >= lpddr->numchips)
606			break;
607
608		if ((len + ofs - 1) >> lpddr->chipshift)
609			thislen = (1<<lpddr->chipshift) - ofs;
610		else
611			thislen = len;
612
613		mutex_lock(&chip->mutex);
614		if (chip->state == FL_POINT) {
615			chip->ref_point_counter--;
616			if (chip->ref_point_counter == 0)
617				chip->state = FL_READY;
618		} else
619			printk(KERN_WARNING "%s: Warning: unpoint called on non"
620					"pointed region\n", map->name);
621
622		put_chip(map, chip);
623		mutex_unlock(&chip->mutex);
624
625		len -= thislen;
626		ofs = 0;
627		chipnum++;
628	}
629}
630
631static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
632				size_t *retlen, const u_char *buf)
633{
634	struct kvec vec;
635
636	vec.iov_base = (void *) buf;
637	vec.iov_len = len;
638
639	return lpddr_writev(mtd, &vec, 1, to, retlen);
640}
641
642
643static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
644				unsigned long count, loff_t to, size_t *retlen)
645{
646	struct map_info *map = mtd->priv;
647	struct lpddr_private *lpddr = map->fldrv_priv;
648	int ret = 0;
649	int chipnum;
650	unsigned long ofs, vec_seek, i;
651	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
652
653	size_t len = 0;
654
655	for (i = 0; i < count; i++)
656		len += vecs[i].iov_len;
657
658	*retlen = 0;
659	if (!len)
660		return 0;
661
662	chipnum = to >> lpddr->chipshift;
663
664	ofs = to;
665	vec_seek = 0;
666
667	do {
668		/* We must not cross write block boundaries */
669		int size = wbufsize - (ofs & (wbufsize-1));
670
671		if (size > len)
672			size = len;
673
674		ret = do_write_buffer(map, &lpddr->chips[chipnum],
675					  ofs, &vecs, &vec_seek, size);
676		if (ret)
677			return ret;
678
679		ofs += size;
680		(*retlen) += size;
681		len -= size;
682
683		/* Be nice and reschedule with the chip in a usable
684		 * state for other processes */
685		cond_resched();
686
687	} while (len);
688
689	return 0;
690}
691
692static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
693{
694	unsigned long ofs, len;
695	int ret;
696	struct map_info *map = mtd->priv;
697	struct lpddr_private *lpddr = map->fldrv_priv;
698	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
699
700	ofs = instr->addr;
701	len = instr->len;
702
703	if (ofs > mtd->size || (len + ofs) > mtd->size)
704		return -EINVAL;
705
706	while (len > 0) {
707		ret = do_erase_oneblock(mtd, ofs);
708		if (ret)
709			return ret;
710		ofs += size;
711		len -= size;
712	}
713	instr->state = MTD_ERASE_DONE;
714	mtd_erase_callback(instr);
715
716	return 0;
717}
718
719#define DO_XXLOCK_LOCK		1
720#define DO_XXLOCK_UNLOCK	2
721int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
722{
723	int ret = 0;
724	struct map_info *map = mtd->priv;
725	struct lpddr_private *lpddr = map->fldrv_priv;
726	int chipnum = adr >> lpddr->chipshift;
727	struct flchip *chip = &lpddr->chips[chipnum];
728
729	mutex_lock(&chip->mutex);
730	ret = get_chip(map, chip, FL_LOCKING);
731	if (ret) {
732		mutex_unlock(&chip->mutex);
733		return ret;
734	}
735
736	if (thunk == DO_XXLOCK_LOCK) {
737		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
738		chip->state = FL_LOCKING;
739	} else if (thunk == DO_XXLOCK_UNLOCK) {
740		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
741		chip->state = FL_UNLOCKING;
742	} else
743		BUG();
744
745	ret = wait_for_ready(map, chip, 1);
746	if (ret)	{
747		printk(KERN_ERR "%s: block unlock error status %d \n",
748				map->name, ret);
749		goto out;
750	}
751out:	put_chip(map, chip);
752	mutex_unlock(&chip->mutex);
753	return ret;
754}
755
756static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
757{
758	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
759}
760
761static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
762{
763	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
764}
765
766int word_program(struct map_info *map, loff_t adr, uint32_t curval)
767{
768    int ret;
769	struct lpddr_private *lpddr = map->fldrv_priv;
770	int chipnum = adr >> lpddr->chipshift;
771	struct flchip *chip = &lpddr->chips[chipnum];
772
773	mutex_lock(&chip->mutex);
774	ret = get_chip(map, chip, FL_WRITING);
775	if (ret) {
776		mutex_unlock(&chip->mutex);
777		return ret;
778	}
779
780	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
781
782	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
783	if (ret)	{
784		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
785			map->name, adr, curval);
786		goto out;
787	}
788
789out:	put_chip(map, chip);
790	mutex_unlock(&chip->mutex);
791	return ret;
792}
793
794MODULE_LICENSE("GPL");
795MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
796MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
797