• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/hwmon/
1/*
2  adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3  monitoring
4  Based on lm75.c and lm85.c
5  Supports adm1030 / adm1031
6  Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7  Reworked by Jean Delvare <khali@linux-fr.org>
8
9  This program is free software; you can redistribute it and/or modify
10  it under the terms of the GNU General Public License as published by
11  the Free Software Foundation; either version 2 of the License, or
12  (at your option) any later version.
13
14  This program is distributed in the hope that it will be useful,
15  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  GNU General Public License for more details.
18
19  You should have received a copy of the GNU General Public License
20  along with this program; if not, write to the Free Software
21  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22*/
23
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/i2c.h>
29#include <linux/hwmon.h>
30#include <linux/hwmon-sysfs.h>
31#include <linux/err.h>
32#include <linux/mutex.h>
33
34/* Following macros takes channel parameter starting from 0 to 2 */
35#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37#define ADM1031_REG_PWM			(0x22)
38#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39#define ADM1031_REG_FAN_FILTER		(0x23)
40
41#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45
46#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48
49#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50
51#define ADM1031_REG_CONF1		0x00
52#define ADM1031_REG_CONF2		0x01
53#define ADM1031_REG_EXT_TEMP		0x06
54
55#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58
59#define ADM1031_CONF2_PWM1_ENABLE	0x01
60#define ADM1031_CONF2_PWM2_ENABLE	0x02
61#define ADM1031_CONF2_TACH1_ENABLE	0x04
62#define ADM1031_CONF2_TACH2_ENABLE	0x08
63#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64
65#define ADM1031_UPDATE_RATE_MASK	0x1c
66#define ADM1031_UPDATE_RATE_SHIFT	2
67
68/* Addresses to scan */
69static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70
71enum chips { adm1030, adm1031 };
72
73typedef u8 auto_chan_table_t[8][2];
74
75/* Each client has this additional data */
76struct adm1031_data {
77	struct device *hwmon_dev;
78	struct mutex update_lock;
79	int chip_type;
80	char valid;		/* !=0 if following fields are valid */
81	unsigned long last_updated;	/* In jiffies */
82	unsigned int update_interval;	/* In milliseconds */
83	/* The chan_select_table contains the possible configurations for
84	 * auto fan control.
85	 */
86	const auto_chan_table_t *chan_select_table;
87	u16 alarm;
88	u8 conf1;
89	u8 conf2;
90	u8 fan[2];
91	u8 fan_div[2];
92	u8 fan_min[2];
93	u8 pwm[2];
94	u8 old_pwm[2];
95	s8 temp[3];
96	u8 ext_temp[3];
97	u8 auto_temp[3];
98	u8 auto_temp_min[3];
99	u8 auto_temp_off[3];
100	u8 auto_temp_max[3];
101	s8 temp_offset[3];
102	s8 temp_min[3];
103	s8 temp_max[3];
104	s8 temp_crit[3];
105};
106
107static int adm1031_probe(struct i2c_client *client,
108			 const struct i2c_device_id *id);
109static int adm1031_detect(struct i2c_client *client,
110			  struct i2c_board_info *info);
111static void adm1031_init_client(struct i2c_client *client);
112static int adm1031_remove(struct i2c_client *client);
113static struct adm1031_data *adm1031_update_device(struct device *dev);
114
115static const struct i2c_device_id adm1031_id[] = {
116	{ "adm1030", adm1030 },
117	{ "adm1031", adm1031 },
118	{ }
119};
120MODULE_DEVICE_TABLE(i2c, adm1031_id);
121
122/* This is the driver that will be inserted */
123static struct i2c_driver adm1031_driver = {
124	.class		= I2C_CLASS_HWMON,
125	.driver = {
126		.name = "adm1031",
127	},
128	.probe		= adm1031_probe,
129	.remove		= adm1031_remove,
130	.id_table	= adm1031_id,
131	.detect		= adm1031_detect,
132	.address_list	= normal_i2c,
133};
134
135static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
136{
137	return i2c_smbus_read_byte_data(client, reg);
138}
139
140static inline int
141adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
142{
143	return i2c_smbus_write_byte_data(client, reg, value);
144}
145
146
147#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
148					((val + 500) / 1000)))
149
150#define TEMP_FROM_REG(val)		((val) * 1000)
151
152#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
153
154#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
155#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
156						      (val) | 0x70 : (val))
157
158#define FAN_FROM_REG(reg, div)		((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
159
160static int FAN_TO_REG(int reg, int div)
161{
162	int tmp;
163	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
164	return tmp > 255 ? 255 : tmp;
165}
166
167#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
168
169#define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
170#define PWM_FROM_REG(val)		((val) << 4)
171
172#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
173#define FAN_CHAN_TO_REG(val, reg)	\
174	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
175
176#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
177	((((val)/500) & 0xf8)|((reg) & 0x7))
178#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1<< ((reg)&0x7)))
179#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
180
181#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
182
183#define AUTO_TEMP_OFF_FROM_REG(reg)		\
184	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
185
186#define AUTO_TEMP_MAX_FROM_REG(reg)		\
187	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
188	AUTO_TEMP_MIN_FROM_REG(reg))
189
190static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
191{
192	int ret;
193	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
194
195	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
196	ret = ((reg & 0xf8) |
197	       (range < 10000 ? 0 :
198		range < 20000 ? 1 :
199		range < 40000 ? 2 : range < 80000 ? 3 : 4));
200	return ret;
201}
202
203/* FAN auto control */
204#define GET_FAN_AUTO_BITFIELD(data, idx)	\
205	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
206
207/* The tables below contains the possible values for the auto fan
208 * control bitfields. the index in the table is the register value.
209 * MSb is the auto fan control enable bit, so the four first entries
210 * in the table disables auto fan control when both bitfields are zero.
211 */
212static const auto_chan_table_t auto_channel_select_table_adm1031 = {
213	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
214	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
215	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
216	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
217	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
218};
219
220static const auto_chan_table_t auto_channel_select_table_adm1030 = {
221	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
222	{ 2 /* 0b10 */		, 0 },
223	{ 0xff /* invalid */	, 0 },
224	{ 0xff /* invalid */	, 0 },
225	{ 3 /* 0b11 */		, 0 },
226};
227
228/* That function checks if a bitfield is valid and returns the other bitfield
229 * nearest match if no exact match where found.
230 */
231static int
232get_fan_auto_nearest(struct adm1031_data *data,
233		     int chan, u8 val, u8 reg, u8 * new_reg)
234{
235	int i;
236	int first_match = -1, exact_match = -1;
237	u8 other_reg_val =
238	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
239
240	if (val == 0) {
241		*new_reg = 0;
242		return 0;
243	}
244
245	for (i = 0; i < 8; i++) {
246		if ((val == (*data->chan_select_table)[i][chan]) &&
247		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
248		     other_reg_val)) {
249			/* We found an exact match */
250			exact_match = i;
251			break;
252		} else if (val == (*data->chan_select_table)[i][chan] &&
253			   first_match == -1) {
254			/* Save the first match in case of an exact match has
255			 * not been found
256			 */
257			first_match = i;
258		}
259	}
260
261	if (exact_match >= 0) {
262		*new_reg = exact_match;
263	} else if (first_match >= 0) {
264		*new_reg = first_match;
265	} else {
266		return -EINVAL;
267	}
268	return 0;
269}
270
271static ssize_t show_fan_auto_channel(struct device *dev,
272				     struct device_attribute *attr, char *buf)
273{
274	int nr = to_sensor_dev_attr(attr)->index;
275	struct adm1031_data *data = adm1031_update_device(dev);
276	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
277}
278
279static ssize_t
280set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
281		     const char *buf, size_t count)
282{
283	struct i2c_client *client = to_i2c_client(dev);
284	struct adm1031_data *data = i2c_get_clientdata(client);
285	int nr = to_sensor_dev_attr(attr)->index;
286	int val = simple_strtol(buf, NULL, 10);
287	u8 reg;
288	int ret;
289	u8 old_fan_mode;
290
291	old_fan_mode = data->conf1;
292
293	mutex_lock(&data->update_lock);
294
295	if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
296		mutex_unlock(&data->update_lock);
297		return ret;
298	}
299	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
300	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
301	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
302		if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
303			/* Switch to Auto Fan Mode
304			 * Save PWM registers
305			 * Set PWM registers to 33% Both */
306			data->old_pwm[0] = data->pwm[0];
307			data->old_pwm[1] = data->pwm[1];
308			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
309		} else {
310			/* Switch to Manual Mode */
311			data->pwm[0] = data->old_pwm[0];
312			data->pwm[1] = data->old_pwm[1];
313			/* Restore PWM registers */
314			adm1031_write_value(client, ADM1031_REG_PWM,
315					    data->pwm[0] | (data->pwm[1] << 4));
316		}
317	}
318	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
319	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
320	mutex_unlock(&data->update_lock);
321	return count;
322}
323
324static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
325		show_fan_auto_channel, set_fan_auto_channel, 0);
326static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
327		show_fan_auto_channel, set_fan_auto_channel, 1);
328
329/* Auto Temps */
330static ssize_t show_auto_temp_off(struct device *dev,
331				  struct device_attribute *attr, char *buf)
332{
333	int nr = to_sensor_dev_attr(attr)->index;
334	struct adm1031_data *data = adm1031_update_device(dev);
335	return sprintf(buf, "%d\n",
336		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
337}
338static ssize_t show_auto_temp_min(struct device *dev,
339				  struct device_attribute *attr, char *buf)
340{
341	int nr = to_sensor_dev_attr(attr)->index;
342	struct adm1031_data *data = adm1031_update_device(dev);
343	return sprintf(buf, "%d\n",
344		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
345}
346static ssize_t
347set_auto_temp_min(struct device *dev, struct device_attribute *attr,
348		  const char *buf, size_t count)
349{
350	struct i2c_client *client = to_i2c_client(dev);
351	struct adm1031_data *data = i2c_get_clientdata(client);
352	int nr = to_sensor_dev_attr(attr)->index;
353	int val = simple_strtol(buf, NULL, 10);
354
355	mutex_lock(&data->update_lock);
356	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
357	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
358			    data->auto_temp[nr]);
359	mutex_unlock(&data->update_lock);
360	return count;
361}
362static ssize_t show_auto_temp_max(struct device *dev,
363				  struct device_attribute *attr, char *buf)
364{
365	int nr = to_sensor_dev_attr(attr)->index;
366	struct adm1031_data *data = adm1031_update_device(dev);
367	return sprintf(buf, "%d\n",
368		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
369}
370static ssize_t
371set_auto_temp_max(struct device *dev, struct device_attribute *attr,
372		  const char *buf, size_t count)
373{
374	struct i2c_client *client = to_i2c_client(dev);
375	struct adm1031_data *data = i2c_get_clientdata(client);
376	int nr = to_sensor_dev_attr(attr)->index;
377	int val = simple_strtol(buf, NULL, 10);
378
379	mutex_lock(&data->update_lock);
380	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
381	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
382			    data->temp_max[nr]);
383	mutex_unlock(&data->update_lock);
384	return count;
385}
386
387#define auto_temp_reg(offset)						\
388static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
389		show_auto_temp_off, NULL, offset - 1);			\
390static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
391		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
392static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
393		show_auto_temp_max, set_auto_temp_max, offset - 1)
394
395auto_temp_reg(1);
396auto_temp_reg(2);
397auto_temp_reg(3);
398
399/* pwm */
400static ssize_t show_pwm(struct device *dev,
401			struct device_attribute *attr, char *buf)
402{
403	int nr = to_sensor_dev_attr(attr)->index;
404	struct adm1031_data *data = adm1031_update_device(dev);
405	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
406}
407static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
408		       const char *buf, size_t count)
409{
410	struct i2c_client *client = to_i2c_client(dev);
411	struct adm1031_data *data = i2c_get_clientdata(client);
412	int nr = to_sensor_dev_attr(attr)->index;
413	int val = simple_strtol(buf, NULL, 10);
414	int reg;
415
416	mutex_lock(&data->update_lock);
417	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
418	    (((val>>4) & 0xf) != 5)) {
419		/* In automatic mode, the only PWM accepted is 33% */
420		mutex_unlock(&data->update_lock);
421		return -EINVAL;
422	}
423	data->pwm[nr] = PWM_TO_REG(val);
424	reg = adm1031_read_value(client, ADM1031_REG_PWM);
425	adm1031_write_value(client, ADM1031_REG_PWM,
426			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
427			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
428	mutex_unlock(&data->update_lock);
429	return count;
430}
431
432static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
433static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
434static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
435		show_pwm, set_pwm, 0);
436static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
437		show_pwm, set_pwm, 1);
438
439/* Fans */
440
441/*
442 * That function checks the cases where the fan reading is not
443 * relevant.  It is used to provide 0 as fan reading when the fan is
444 * not supposed to run
445 */
446static int trust_fan_readings(struct adm1031_data *data, int chan)
447{
448	int res = 0;
449
450	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
451		switch (data->conf1 & 0x60) {
452		case 0x00:	/* remote temp1 controls fan1 remote temp2 controls fan2 */
453			res = data->temp[chan+1] >=
454			      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
455			break;
456		case 0x20:	/* remote temp1 controls both fans */
457			res =
458			    data->temp[1] >=
459			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
460			break;
461		case 0x40:	/* remote temp2 controls both fans */
462			res =
463			    data->temp[2] >=
464			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
465			break;
466		case 0x60:	/* max controls both fans */
467			res =
468			    data->temp[0] >=
469			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
470			    || data->temp[1] >=
471			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
472			    || (data->chip_type == adm1031
473				&& data->temp[2] >=
474				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
475			break;
476		}
477	} else {
478		res = data->pwm[chan] > 0;
479	}
480	return res;
481}
482
483
484static ssize_t show_fan(struct device *dev,
485			struct device_attribute *attr, char *buf)
486{
487	int nr = to_sensor_dev_attr(attr)->index;
488	struct adm1031_data *data = adm1031_update_device(dev);
489	int value;
490
491	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
492				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
493	return sprintf(buf, "%d\n", value);
494}
495
496static ssize_t show_fan_div(struct device *dev,
497			    struct device_attribute *attr, char *buf)
498{
499	int nr = to_sensor_dev_attr(attr)->index;
500	struct adm1031_data *data = adm1031_update_device(dev);
501	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
502}
503static ssize_t show_fan_min(struct device *dev,
504			    struct device_attribute *attr, char *buf)
505{
506	int nr = to_sensor_dev_attr(attr)->index;
507	struct adm1031_data *data = adm1031_update_device(dev);
508	return sprintf(buf, "%d\n",
509		       FAN_FROM_REG(data->fan_min[nr],
510				    FAN_DIV_FROM_REG(data->fan_div[nr])));
511}
512static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
513			   const char *buf, size_t count)
514{
515	struct i2c_client *client = to_i2c_client(dev);
516	struct adm1031_data *data = i2c_get_clientdata(client);
517	int nr = to_sensor_dev_attr(attr)->index;
518	int val = simple_strtol(buf, NULL, 10);
519
520	mutex_lock(&data->update_lock);
521	if (val) {
522		data->fan_min[nr] =
523			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
524	} else {
525		data->fan_min[nr] = 0xff;
526	}
527	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
528	mutex_unlock(&data->update_lock);
529	return count;
530}
531static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
532			   const char *buf, size_t count)
533{
534	struct i2c_client *client = to_i2c_client(dev);
535	struct adm1031_data *data = i2c_get_clientdata(client);
536	int nr = to_sensor_dev_attr(attr)->index;
537	int val = simple_strtol(buf, NULL, 10);
538	u8 tmp;
539	int old_div;
540	int new_min;
541
542	tmp = val == 8 ? 0xc0 :
543	      val == 4 ? 0x80 :
544	      val == 2 ? 0x40 :
545	      val == 1 ? 0x00 :
546	      0xff;
547	if (tmp == 0xff)
548		return -EINVAL;
549
550	mutex_lock(&data->update_lock);
551	/* Get fresh readings */
552	data->fan_div[nr] = adm1031_read_value(client,
553					       ADM1031_REG_FAN_DIV(nr));
554	data->fan_min[nr] = adm1031_read_value(client,
555					       ADM1031_REG_FAN_MIN(nr));
556
557	/* Write the new clock divider and fan min */
558	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
559	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
560	new_min = data->fan_min[nr] * old_div / val;
561	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
562
563	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
564			    data->fan_div[nr]);
565	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
566			    data->fan_min[nr]);
567
568	/* Invalidate the cache: fan speed is no longer valid */
569	data->valid = 0;
570	mutex_unlock(&data->update_lock);
571	return count;
572}
573
574#define fan_offset(offset)						\
575static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
576		show_fan, NULL, offset - 1);				\
577static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
578		show_fan_min, set_fan_min, offset - 1);			\
579static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
580		show_fan_div, set_fan_div, offset - 1)
581
582fan_offset(1);
583fan_offset(2);
584
585
586/* Temps */
587static ssize_t show_temp(struct device *dev,
588			 struct device_attribute *attr, char *buf)
589{
590	int nr = to_sensor_dev_attr(attr)->index;
591	struct adm1031_data *data = adm1031_update_device(dev);
592	int ext;
593	ext = nr == 0 ?
594	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
595	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
596	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
597}
598static ssize_t show_temp_offset(struct device *dev,
599				struct device_attribute *attr, char *buf)
600{
601	int nr = to_sensor_dev_attr(attr)->index;
602	struct adm1031_data *data = adm1031_update_device(dev);
603	return sprintf(buf, "%d\n",
604		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
605}
606static ssize_t show_temp_min(struct device *dev,
607			     struct device_attribute *attr, char *buf)
608{
609	int nr = to_sensor_dev_attr(attr)->index;
610	struct adm1031_data *data = adm1031_update_device(dev);
611	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
612}
613static ssize_t show_temp_max(struct device *dev,
614			     struct device_attribute *attr, char *buf)
615{
616	int nr = to_sensor_dev_attr(attr)->index;
617	struct adm1031_data *data = adm1031_update_device(dev);
618	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
619}
620static ssize_t show_temp_crit(struct device *dev,
621			      struct device_attribute *attr, char *buf)
622{
623	int nr = to_sensor_dev_attr(attr)->index;
624	struct adm1031_data *data = adm1031_update_device(dev);
625	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
626}
627static ssize_t set_temp_offset(struct device *dev,
628			       struct device_attribute *attr, const char *buf,
629			       size_t count)
630{
631	struct i2c_client *client = to_i2c_client(dev);
632	struct adm1031_data *data = i2c_get_clientdata(client);
633	int nr = to_sensor_dev_attr(attr)->index;
634	int val;
635
636	val = simple_strtol(buf, NULL, 10);
637	val = SENSORS_LIMIT(val, -15000, 15000);
638	mutex_lock(&data->update_lock);
639	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
640	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
641			    data->temp_offset[nr]);
642	mutex_unlock(&data->update_lock);
643	return count;
644}
645static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
646			    const char *buf, size_t count)
647{
648	struct i2c_client *client = to_i2c_client(dev);
649	struct adm1031_data *data = i2c_get_clientdata(client);
650	int nr = to_sensor_dev_attr(attr)->index;
651	int val;
652
653	val = simple_strtol(buf, NULL, 10);
654	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
655	mutex_lock(&data->update_lock);
656	data->temp_min[nr] = TEMP_TO_REG(val);
657	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
658			    data->temp_min[nr]);
659	mutex_unlock(&data->update_lock);
660	return count;
661}
662static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
663			    const char *buf, size_t count)
664{
665	struct i2c_client *client = to_i2c_client(dev);
666	struct adm1031_data *data = i2c_get_clientdata(client);
667	int nr = to_sensor_dev_attr(attr)->index;
668	int val;
669
670	val = simple_strtol(buf, NULL, 10);
671	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
672	mutex_lock(&data->update_lock);
673	data->temp_max[nr] = TEMP_TO_REG(val);
674	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
675			    data->temp_max[nr]);
676	mutex_unlock(&data->update_lock);
677	return count;
678}
679static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
680			     const char *buf, size_t count)
681{
682	struct i2c_client *client = to_i2c_client(dev);
683	struct adm1031_data *data = i2c_get_clientdata(client);
684	int nr = to_sensor_dev_attr(attr)->index;
685	int val;
686
687	val = simple_strtol(buf, NULL, 10);
688	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
689	mutex_lock(&data->update_lock);
690	data->temp_crit[nr] = TEMP_TO_REG(val);
691	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
692			    data->temp_crit[nr]);
693	mutex_unlock(&data->update_lock);
694	return count;
695}
696
697#define temp_reg(offset)						\
698static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
699		show_temp, NULL, offset - 1);				\
700static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
701		show_temp_offset, set_temp_offset, offset - 1);		\
702static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
703		show_temp_min, set_temp_min, offset - 1);		\
704static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
705		show_temp_max, set_temp_max, offset - 1);		\
706static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
707		show_temp_crit, set_temp_crit, offset - 1)
708
709temp_reg(1);
710temp_reg(2);
711temp_reg(3);
712
713/* Alarms */
714static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
715{
716	struct adm1031_data *data = adm1031_update_device(dev);
717	return sprintf(buf, "%d\n", data->alarm);
718}
719
720static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
721
722static ssize_t show_alarm(struct device *dev,
723			  struct device_attribute *attr, char *buf)
724{
725	int bitnr = to_sensor_dev_attr(attr)->index;
726	struct adm1031_data *data = adm1031_update_device(dev);
727	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
728}
729
730static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
731static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
732static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
733static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
734static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
735static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
736static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
737static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
738static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
739static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
740static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
741static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
742static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
743static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
744static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
745
746/* Update Interval */
747static const unsigned int update_intervals[] = {
748	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
749};
750
751static ssize_t show_update_interval(struct device *dev,
752				    struct device_attribute *attr, char *buf)
753{
754	struct i2c_client *client = to_i2c_client(dev);
755	struct adm1031_data *data = i2c_get_clientdata(client);
756
757	return sprintf(buf, "%u\n", data->update_interval);
758}
759
760static ssize_t set_update_interval(struct device *dev,
761				   struct device_attribute *attr,
762				   const char *buf, size_t count)
763{
764	struct i2c_client *client = to_i2c_client(dev);
765	struct adm1031_data *data = i2c_get_clientdata(client);
766	unsigned long val;
767	int i, err;
768	u8 reg;
769
770	err = strict_strtoul(buf, 10, &val);
771	if (err)
772		return err;
773
774	/*
775	 * Find the nearest update interval from the table.
776	 * Use it to determine the matching update rate.
777	 */
778	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
779		if (val >= update_intervals[i])
780			break;
781	}
782	/* if not found, we point to the last entry (lowest update interval) */
783
784	/* set the new update rate while preserving other settings */
785	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
786	reg &= ~ADM1031_UPDATE_RATE_MASK;
787	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
788	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
789
790	mutex_lock(&data->update_lock);
791	data->update_interval = update_intervals[i];
792	mutex_unlock(&data->update_lock);
793
794	return count;
795}
796
797static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
798		   set_update_interval);
799
800static struct attribute *adm1031_attributes[] = {
801	&sensor_dev_attr_fan1_input.dev_attr.attr,
802	&sensor_dev_attr_fan1_div.dev_attr.attr,
803	&sensor_dev_attr_fan1_min.dev_attr.attr,
804	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
805	&sensor_dev_attr_fan1_fault.dev_attr.attr,
806	&sensor_dev_attr_pwm1.dev_attr.attr,
807	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
808	&sensor_dev_attr_temp1_input.dev_attr.attr,
809	&sensor_dev_attr_temp1_offset.dev_attr.attr,
810	&sensor_dev_attr_temp1_min.dev_attr.attr,
811	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
812	&sensor_dev_attr_temp1_max.dev_attr.attr,
813	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
814	&sensor_dev_attr_temp1_crit.dev_attr.attr,
815	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
816	&sensor_dev_attr_temp2_input.dev_attr.attr,
817	&sensor_dev_attr_temp2_offset.dev_attr.attr,
818	&sensor_dev_attr_temp2_min.dev_attr.attr,
819	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
820	&sensor_dev_attr_temp2_max.dev_attr.attr,
821	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
822	&sensor_dev_attr_temp2_crit.dev_attr.attr,
823	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
824	&sensor_dev_attr_temp2_fault.dev_attr.attr,
825
826	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
827	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
828	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
829
830	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
831	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
832	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
833
834	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
835
836	&dev_attr_update_interval.attr,
837	&dev_attr_alarms.attr,
838
839	NULL
840};
841
842static const struct attribute_group adm1031_group = {
843	.attrs = adm1031_attributes,
844};
845
846static struct attribute *adm1031_attributes_opt[] = {
847	&sensor_dev_attr_fan2_input.dev_attr.attr,
848	&sensor_dev_attr_fan2_div.dev_attr.attr,
849	&sensor_dev_attr_fan2_min.dev_attr.attr,
850	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
851	&sensor_dev_attr_fan2_fault.dev_attr.attr,
852	&sensor_dev_attr_pwm2.dev_attr.attr,
853	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
854	&sensor_dev_attr_temp3_input.dev_attr.attr,
855	&sensor_dev_attr_temp3_offset.dev_attr.attr,
856	&sensor_dev_attr_temp3_min.dev_attr.attr,
857	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
858	&sensor_dev_attr_temp3_max.dev_attr.attr,
859	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
860	&sensor_dev_attr_temp3_crit.dev_attr.attr,
861	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
862	&sensor_dev_attr_temp3_fault.dev_attr.attr,
863	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
864	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
865	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
866	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
867	NULL
868};
869
870static const struct attribute_group adm1031_group_opt = {
871	.attrs = adm1031_attributes_opt,
872};
873
874/* Return 0 if detection is successful, -ENODEV otherwise */
875static int adm1031_detect(struct i2c_client *client,
876			  struct i2c_board_info *info)
877{
878	struct i2c_adapter *adapter = client->adapter;
879	const char *name;
880	int id, co;
881
882	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
883		return -ENODEV;
884
885	id = i2c_smbus_read_byte_data(client, 0x3d);
886	co = i2c_smbus_read_byte_data(client, 0x3e);
887
888	if (!((id == 0x31 || id == 0x30) && co == 0x41))
889		return -ENODEV;
890	name = (id == 0x30) ? "adm1030" : "adm1031";
891
892	strlcpy(info->type, name, I2C_NAME_SIZE);
893
894	return 0;
895}
896
897static int adm1031_probe(struct i2c_client *client,
898			 const struct i2c_device_id *id)
899{
900	struct adm1031_data *data;
901	int err;
902
903	data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
904	if (!data) {
905		err = -ENOMEM;
906		goto exit;
907	}
908
909	i2c_set_clientdata(client, data);
910	data->chip_type = id->driver_data;
911	mutex_init(&data->update_lock);
912
913	if (data->chip_type == adm1030)
914		data->chan_select_table = &auto_channel_select_table_adm1030;
915	else
916		data->chan_select_table = &auto_channel_select_table_adm1031;
917
918	/* Initialize the ADM1031 chip */
919	adm1031_init_client(client);
920
921	/* Register sysfs hooks */
922	if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
923		goto exit_free;
924
925	if (data->chip_type == adm1031) {
926		if ((err = sysfs_create_group(&client->dev.kobj,
927						&adm1031_group_opt)))
928			goto exit_remove;
929	}
930
931	data->hwmon_dev = hwmon_device_register(&client->dev);
932	if (IS_ERR(data->hwmon_dev)) {
933		err = PTR_ERR(data->hwmon_dev);
934		goto exit_remove;
935	}
936
937	return 0;
938
939exit_remove:
940	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
941	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
942exit_free:
943	kfree(data);
944exit:
945	return err;
946}
947
948static int adm1031_remove(struct i2c_client *client)
949{
950	struct adm1031_data *data = i2c_get_clientdata(client);
951
952	hwmon_device_unregister(data->hwmon_dev);
953	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
954	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
955	kfree(data);
956	return 0;
957}
958
959static void adm1031_init_client(struct i2c_client *client)
960{
961	unsigned int read_val;
962	unsigned int mask;
963	int i;
964	struct adm1031_data *data = i2c_get_clientdata(client);
965
966	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
967	if (data->chip_type == adm1031) {
968		mask |= (ADM1031_CONF2_PWM2_ENABLE |
969			ADM1031_CONF2_TACH2_ENABLE);
970	}
971	/* Initialize the ADM1031 chip (enables fan speed reading ) */
972	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
973	if ((read_val | mask) != read_val) {
974	    adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
975	}
976
977	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
978	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
979	    adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
980				ADM1031_CONF1_MONITOR_ENABLE);
981	}
982
983	/* Read the chip's update rate */
984	mask = ADM1031_UPDATE_RATE_MASK;
985	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
986	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
987	/* Save it as update interval */
988	data->update_interval = update_intervals[i];
989}
990
991static struct adm1031_data *adm1031_update_device(struct device *dev)
992{
993	struct i2c_client *client = to_i2c_client(dev);
994	struct adm1031_data *data = i2c_get_clientdata(client);
995	unsigned long next_update;
996	int chan;
997
998	mutex_lock(&data->update_lock);
999
1000	next_update = data->last_updated
1001	  + msecs_to_jiffies(data->update_interval);
1002	if (time_after(jiffies, next_update) || !data->valid) {
1003
1004		dev_dbg(&client->dev, "Starting adm1031 update\n");
1005		for (chan = 0;
1006		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1007			u8 oldh, newh;
1008
1009			oldh =
1010			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1011			data->ext_temp[chan] =
1012			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1013			newh =
1014			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1015			if (newh != oldh) {
1016				data->ext_temp[chan] =
1017				    adm1031_read_value(client,
1018						       ADM1031_REG_EXT_TEMP);
1019#ifdef DEBUG
1020				oldh =
1021				    adm1031_read_value(client,
1022						       ADM1031_REG_TEMP(chan));
1023
1024				/* oldh is actually newer */
1025				if (newh != oldh)
1026					dev_warn(&client->dev,
1027						 "Remote temperature may be "
1028						 "wrong.\n");
1029#endif
1030			}
1031			data->temp[chan] = newh;
1032
1033			data->temp_offset[chan] =
1034			    adm1031_read_value(client,
1035					       ADM1031_REG_TEMP_OFFSET(chan));
1036			data->temp_min[chan] =
1037			    adm1031_read_value(client,
1038					       ADM1031_REG_TEMP_MIN(chan));
1039			data->temp_max[chan] =
1040			    adm1031_read_value(client,
1041					       ADM1031_REG_TEMP_MAX(chan));
1042			data->temp_crit[chan] =
1043			    adm1031_read_value(client,
1044					       ADM1031_REG_TEMP_CRIT(chan));
1045			data->auto_temp[chan] =
1046			    adm1031_read_value(client,
1047					       ADM1031_REG_AUTO_TEMP(chan));
1048
1049		}
1050
1051		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1052		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
1053
1054		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1055			     | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
1056				<< 8);
1057		if (data->chip_type == adm1030) {
1058			data->alarm &= 0xc0ff;
1059		}
1060
1061		for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
1062			data->fan_div[chan] =
1063			    adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
1064			data->fan_min[chan] =
1065			    adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
1066			data->fan[chan] =
1067			    adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
1068			data->pwm[chan] =
1069			    0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
1070				   (4*chan));
1071		}
1072		data->last_updated = jiffies;
1073		data->valid = 1;
1074	}
1075
1076	mutex_unlock(&data->update_lock);
1077
1078	return data;
1079}
1080
1081static int __init sensors_adm1031_init(void)
1082{
1083	return i2c_add_driver(&adm1031_driver);
1084}
1085
1086static void __exit sensors_adm1031_exit(void)
1087{
1088	i2c_del_driver(&adm1031_driver);
1089}
1090
1091MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1092MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1093MODULE_LICENSE("GPL");
1094
1095module_init(sensors_adm1031_init);
1096module_exit(sensors_adm1031_exit);
1097