• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/edac/
1/*
2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Copyright (c) 2008 by:
8 *	 Ben Woodard <woodard@redhat.com>
9 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
10 *
11 * Red Hat Inc. http://www.redhat.com
12 *
13 * Forked and adapted from the i5000_edac driver which was
14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15 *
16 * This module is based on the following document:
17 *
18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/pci.h>
26#include <linux/pci_ids.h>
27#include <linux/slab.h>
28#include <linux/edac.h>
29#include <linux/mmzone.h>
30
31#include "edac_core.h"
32
33/*
34 * Alter this version for the I5400 module when modifications are made
35 */
36#define I5400_REVISION    " Ver: 1.0.0 " __DATE__
37
38#define EDAC_MOD_STR      "i5400_edac"
39
40#define i5400_printk(level, fmt, arg...) \
41	edac_printk(level, "i5400", fmt, ##arg)
42
43#define i5400_mc_printk(mci, level, fmt, arg...) \
44	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
45
46/* Limits for i5400 */
47#define NUM_MTRS_PER_BRANCH	4
48#define CHANNELS_PER_BRANCH	2
49#define MAX_DIMMS_PER_CHANNEL	NUM_MTRS_PER_BRANCH
50#define	MAX_CHANNELS		4
51/* max possible csrows per channel */
52#define MAX_CSROWS		(MAX_DIMMS_PER_CHANNEL)
53
54/* Device 16,
55 * Function 0: System Address
56 * Function 1: Memory Branch Map, Control, Errors Register
57 * Function 2: FSB Error Registers
58 *
59 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
60 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
61 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
62 * for device 21 (0,1).
63 */
64
65	/* OFFSETS for Function 0 */
66#define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
67#define		MAXCH			0x56 /* Max Channel Number */
68#define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
69
70	/* OFFSETS for Function 1 */
71#define		TOLM			0x6C
72#define		REDMEMB			0x7C
73#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
74#define		MIR0			0x80
75#define		MIR1			0x84
76#define		AMIR0			0x8c
77#define		AMIR1			0x90
78
79	/* Fatal error registers */
80#define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
81#define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
82
83#define		NERR_FAT_FBD		0x9c
84#define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
85
86	/* Non-fatal error register */
87#define		NERR_NF_FBD		0xa4
88
89	/* Enable error mask */
90#define		EMASK_FBD		0xa8
91
92#define		ERR0_FBD		0xac
93#define		ERR1_FBD		0xb0
94#define		ERR2_FBD		0xb4
95#define		MCERR_FBD		0xb8
96
97	/* No OFFSETS for Device 16 Function 2 */
98
99/*
100 * Device 21,
101 * Function 0: Memory Map Branch 0
102 *
103 * Device 22,
104 * Function 0: Memory Map Branch 1
105 */
106
107	/* OFFSETS for Function 0 */
108#define AMBPRESENT_0	0x64
109#define AMBPRESENT_1	0x66
110#define MTR0		0x80
111#define MTR1		0x82
112#define MTR2		0x84
113#define MTR3		0x86
114
115	/* OFFSETS for Function 1 */
116#define NRECFGLOG		0x74
117#define RECFGLOG		0x78
118#define NRECMEMA		0xbe
119#define NRECMEMB		0xc0
120#define NRECFB_DIMMA		0xc4
121#define NRECFB_DIMMB		0xc8
122#define NRECFB_DIMMC		0xcc
123#define NRECFB_DIMMD		0xd0
124#define NRECFB_DIMME		0xd4
125#define NRECFB_DIMMF		0xd8
126#define REDMEMA			0xdC
127#define RECMEMA			0xf0
128#define RECMEMB			0xf4
129#define RECFB_DIMMA		0xf8
130#define RECFB_DIMMB		0xec
131#define RECFB_DIMMC		0xf0
132#define RECFB_DIMMD		0xf4
133#define RECFB_DIMME		0xf8
134#define RECFB_DIMMF		0xfC
135
136/*
137 * Error indicator bits and masks
138 * Error masks are according with Table 5-17 of i5400 datasheet
139 */
140
141enum error_mask {
142	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
143	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
144	EMASK_M3  = 1<<2,  /* Reserved */
145	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
146	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
147	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
148	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
149	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
150	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
151	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
152	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
153	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
154	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
155	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
156	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
157	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
158	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
159	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
160	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
161	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
162	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
163	EMASK_M22 = 1<<21, /* SPD protocol Error */
164	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
165	EMASK_M24 = 1<<23, /* Refresh error */
166	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
167	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
168	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
169	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
170	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
171};
172
173/*
174 * Names to translate bit error into something useful
175 */
176static const char *error_name[] = {
177	[0]  = "Memory Write error on non-redundant retry",
178	[1]  = "Memory or FB-DIMM configuration CRC read error",
179	/* Reserved */
180	[3]  = "Uncorrectable Data ECC on Replay",
181	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
182	/* M6 Unsupported on i5400 */
183	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
184	[7]  = "Aliased Uncorrectable Patrol Data ECC",
185	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
186	/* M10 Unsupported on i5400 */
187	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
188	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
189	[12] = "Memory Write error on first attempt",
190	[13] = "FB-DIMM Configuration Write error on first attempt",
191	[14] = "Memory or FB-DIMM configuration CRC read error",
192	[15] = "Channel Failed-Over Occurred",
193	[16] = "Correctable Non-Mirrored Demand Data ECC",
194	/* M18 Unsupported on i5400 */
195	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
196	[19] = "Correctable Patrol Data ECC",
197	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
198	[21] = "SPD protocol Error",
199	[22] = "Non-Redundant Fast Reset Timeout",
200	[23] = "Refresh error",
201	[24] = "Memory Write error on redundant retry",
202	[25] = "Redundant Fast Reset Timeout",
203	[26] = "Correctable Counter Threshold Exceeded",
204	[27] = "DIMM-Spare Copy Completed",
205	[28] = "DIMM-Isolation Completed",
206};
207
208/* Fatal errors */
209#define ERROR_FAT_MASK		(EMASK_M1 | \
210				 EMASK_M2 | \
211				 EMASK_M23)
212
213/* Correctable errors */
214#define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
215				 EMASK_M20 | \
216				 EMASK_M19 | \
217				 EMASK_M18 | \
218				 EMASK_M17 | \
219				 EMASK_M16)
220#define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
221				 EMASK_M28)
222#define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
223#define ERROR_NF_NORTH_CRC	(EMASK_M21)
224
225/* Recoverable errors */
226#define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
227				 EMASK_M25 | \
228				 EMASK_M24 | \
229				 EMASK_M15 | \
230				 EMASK_M14 | \
231				 EMASK_M13 | \
232				 EMASK_M12 | \
233				 EMASK_M11 | \
234				 EMASK_M9  | \
235				 EMASK_M8  | \
236				 EMASK_M7  | \
237				 EMASK_M5)
238
239/* uncorrectable errors */
240#define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
241
242/* mask to all non-fatal errors */
243#define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
244				 ERROR_NF_UNCORRECTABLE | \
245				 ERROR_NF_RECOVERABLE   | \
246				 ERROR_NF_DIMM_SPARE    | \
247				 ERROR_NF_SPD_PROTOCOL  | \
248				 ERROR_NF_NORTH_CRC)
249
250/*
251 * Define error masks for the several registers
252 */
253
254/* Enable all fatal and non fatal errors */
255#define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
256
257/* mask for fatal error registers */
258#define FERR_FAT_MASK ERROR_FAT_MASK
259
260/* masks for non-fatal error register */
261static inline int to_nf_mask(unsigned int mask)
262{
263	return (mask & EMASK_M29) | (mask >> 3);
264};
265
266static inline int from_nf_ferr(unsigned int mask)
267{
268	return (mask & EMASK_M29) |		/* Bit 28 */
269	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
270};
271
272#define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
273#define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
274#define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
275#define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
276#define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
277#define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
278#define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
279
280/* Defines to extract the vaious fields from the
281 *	MTRx - Memory Technology Registers
282 */
283#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
284#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
285#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
286#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
287#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
288#define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
289#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
290#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
291#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
292#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
293#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
294
295/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
296static inline int extract_fbdchan_indx(u32 x)
297{
298	return (x>>28) & 0x3;
299}
300
301#ifdef CONFIG_EDAC_DEBUG
302/* MTR NUMROW */
303static const char *numrow_toString[] = {
304	"8,192 - 13 rows",
305	"16,384 - 14 rows",
306	"32,768 - 15 rows",
307	"65,536 - 16 rows"
308};
309
310/* MTR NUMCOL */
311static const char *numcol_toString[] = {
312	"1,024 - 10 columns",
313	"2,048 - 11 columns",
314	"4,096 - 12 columns",
315	"reserved"
316};
317#endif
318
319/* Device name and register DID (Device ID) */
320struct i5400_dev_info {
321	const char *ctl_name;	/* name for this device */
322	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
323};
324
325/* Table of devices attributes supported by this driver */
326static const struct i5400_dev_info i5400_devs[] = {
327	{
328		.ctl_name = "I5400",
329		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
330	},
331};
332
333struct i5400_dimm_info {
334	int megabytes;		/* size, 0 means not present  */
335};
336
337/* driver private data structure */
338struct i5400_pvt {
339	struct pci_dev *system_address;		/* 16.0 */
340	struct pci_dev *branchmap_werrors;	/* 16.1 */
341	struct pci_dev *fsb_error_regs;		/* 16.2 */
342	struct pci_dev *branch_0;		/* 21.0 */
343	struct pci_dev *branch_1;		/* 22.0 */
344
345	u16 tolm;				/* top of low memory */
346	u64 ambase;				/* AMB BAR */
347
348	u16 mir0, mir1;
349
350	u16 b0_mtr[NUM_MTRS_PER_BRANCH];	/* Memory Technlogy Reg */
351	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
352	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
353
354	u16 b1_mtr[NUM_MTRS_PER_BRANCH];	/* Memory Technlogy Reg */
355	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
356	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
357
358	/* DIMM information matrix, allocating architecture maximums */
359	struct i5400_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
360
361	/* Actual values for this controller */
362	int maxch;				/* Max channels */
363	int maxdimmperch;			/* Max DIMMs per channel */
364};
365
366/* I5400 MCH error information retrieved from Hardware */
367struct i5400_error_info {
368	/* These registers are always read from the MC */
369	u32 ferr_fat_fbd;	/* First Errors Fatal */
370	u32 nerr_fat_fbd;	/* Next Errors Fatal */
371	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
372	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
373
374	/* These registers are input ONLY if there was a Recoverable Error */
375	u32 redmemb;		/* Recoverable Mem Data Error log B */
376	u16 recmema;		/* Recoverable Mem Error log A */
377	u32 recmemb;		/* Recoverable Mem Error log B */
378
379	/* These registers are input ONLY if there was a Non-Rec Error */
380	u16 nrecmema;		/* Non-Recoverable Mem log A */
381	u16 nrecmemb;		/* Non-Recoverable Mem log B */
382
383};
384
385/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
386   5400 better to use an inline function than a macro in this case */
387static inline int nrec_bank(struct i5400_error_info *info)
388{
389	return ((info->nrecmema) >> 12) & 0x7;
390}
391static inline int nrec_rank(struct i5400_error_info *info)
392{
393	return ((info->nrecmema) >> 8) & 0xf;
394}
395static inline int nrec_buf_id(struct i5400_error_info *info)
396{
397	return ((info->nrecmema)) & 0xff;
398}
399static inline int nrec_rdwr(struct i5400_error_info *info)
400{
401	return (info->nrecmemb) >> 31;
402}
403/* This applies to both NREC and REC string so it can be used with nrec_rdwr
404   and rec_rdwr */
405static inline const char *rdwr_str(int rdwr)
406{
407	return rdwr ? "Write" : "Read";
408}
409static inline int nrec_cas(struct i5400_error_info *info)
410{
411	return ((info->nrecmemb) >> 16) & 0x1fff;
412}
413static inline int nrec_ras(struct i5400_error_info *info)
414{
415	return (info->nrecmemb) & 0xffff;
416}
417static inline int rec_bank(struct i5400_error_info *info)
418{
419	return ((info->recmema) >> 12) & 0x7;
420}
421static inline int rec_rank(struct i5400_error_info *info)
422{
423	return ((info->recmema) >> 8) & 0xf;
424}
425static inline int rec_rdwr(struct i5400_error_info *info)
426{
427	return (info->recmemb) >> 31;
428}
429static inline int rec_cas(struct i5400_error_info *info)
430{
431	return ((info->recmemb) >> 16) & 0x1fff;
432}
433static inline int rec_ras(struct i5400_error_info *info)
434{
435	return (info->recmemb) & 0xffff;
436}
437
438static struct edac_pci_ctl_info *i5400_pci;
439
440/*
441 *	i5400_get_error_info	Retrieve the hardware error information from
442 *				the hardware and cache it in the 'info'
443 *				structure
444 */
445static void i5400_get_error_info(struct mem_ctl_info *mci,
446				 struct i5400_error_info *info)
447{
448	struct i5400_pvt *pvt;
449	u32 value;
450
451	pvt = mci->pvt_info;
452
453	/* read in the 1st FATAL error register */
454	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
455
456	/* Mask only the bits that the doc says are valid
457	 */
458	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
459
460	/* If there is an error, then read in the
461	   NEXT FATAL error register and the Memory Error Log Register A
462	 */
463	if (value & FERR_FAT_MASK) {
464		info->ferr_fat_fbd = value;
465
466		/* harvest the various error data we need */
467		pci_read_config_dword(pvt->branchmap_werrors,
468				NERR_FAT_FBD, &info->nerr_fat_fbd);
469		pci_read_config_word(pvt->branchmap_werrors,
470				NRECMEMA, &info->nrecmema);
471		pci_read_config_word(pvt->branchmap_werrors,
472				NRECMEMB, &info->nrecmemb);
473
474		/* Clear the error bits, by writing them back */
475		pci_write_config_dword(pvt->branchmap_werrors,
476				FERR_FAT_FBD, value);
477	} else {
478		info->ferr_fat_fbd = 0;
479		info->nerr_fat_fbd = 0;
480		info->nrecmema = 0;
481		info->nrecmemb = 0;
482	}
483
484	/* read in the 1st NON-FATAL error register */
485	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
486
487	/* If there is an error, then read in the 1st NON-FATAL error
488	 * register as well */
489	if (value & FERR_NF_MASK) {
490		info->ferr_nf_fbd = value;
491
492		/* harvest the various error data we need */
493		pci_read_config_dword(pvt->branchmap_werrors,
494				NERR_NF_FBD, &info->nerr_nf_fbd);
495		pci_read_config_word(pvt->branchmap_werrors,
496				RECMEMA, &info->recmema);
497		pci_read_config_dword(pvt->branchmap_werrors,
498				RECMEMB, &info->recmemb);
499		pci_read_config_dword(pvt->branchmap_werrors,
500				REDMEMB, &info->redmemb);
501
502		/* Clear the error bits, by writing them back */
503		pci_write_config_dword(pvt->branchmap_werrors,
504				FERR_NF_FBD, value);
505	} else {
506		info->ferr_nf_fbd = 0;
507		info->nerr_nf_fbd = 0;
508		info->recmema = 0;
509		info->recmemb = 0;
510		info->redmemb = 0;
511	}
512}
513
514/*
515 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
516 * 					struct i5400_error_info *info,
517 * 					int handle_errors);
518 *
519 *	handle the Intel FATAL and unrecoverable errors, if any
520 */
521static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
522				    struct i5400_error_info *info,
523				    unsigned long allErrors)
524{
525	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
526	int branch;
527	int channel;
528	int bank;
529	int buf_id;
530	int rank;
531	int rdwr;
532	int ras, cas;
533	int errnum;
534	char *type = NULL;
535
536	if (!allErrors)
537		return;		/* if no error, return now */
538
539	if (allErrors &  ERROR_FAT_MASK)
540		type = "FATAL";
541	else if (allErrors & FERR_NF_UNCORRECTABLE)
542		type = "NON-FATAL uncorrected";
543	else
544		type = "NON-FATAL recoverable";
545
546	/* ONLY ONE of the possible error bits will be set, as per the docs */
547
548	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
549	channel = branch;
550
551	/* Use the NON-Recoverable macros to extract data */
552	bank = nrec_bank(info);
553	rank = nrec_rank(info);
554	buf_id = nrec_buf_id(info);
555	rdwr = nrec_rdwr(info);
556	ras = nrec_ras(info);
557	cas = nrec_cas(info);
558
559	debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
560		"DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
561		rank, channel, channel + 1, branch >> 1, bank,
562		buf_id, rdwr_str(rdwr), ras, cas);
563
564	/* Only 1 bit will be on */
565	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
566
567	/* Form out message */
568	snprintf(msg, sizeof(msg),
569		 "%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s "
570		 "RAS=%d CAS=%d %s Err=0x%lx (%s))",
571		 type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas,
572		 type, allErrors, error_name[errnum]);
573
574	/* Call the helper to output message */
575	edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
576}
577
578/*
579 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
580 * 				struct i5400_error_info *info,
581 * 				int handle_errors);
582 *
583 *	handle the Intel NON-FATAL errors, if any
584 */
585static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
586					struct i5400_error_info *info)
587{
588	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
589	unsigned long allErrors;
590	int branch;
591	int channel;
592	int bank;
593	int rank;
594	int rdwr;
595	int ras, cas;
596	int errnum;
597
598	/* mask off the Error bits that are possible */
599	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
600	if (!allErrors)
601		return;		/* if no error, return now */
602
603	/* ONLY ONE of the possible error bits will be set, as per the docs */
604
605	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
606		i5400_proccess_non_recoverable_info(mci, info, allErrors);
607		return;
608	}
609
610	/* Correctable errors */
611	if (allErrors & ERROR_NF_CORRECTABLE) {
612		debugf0("\tCorrected bits= 0x%lx\n", allErrors);
613
614		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
615
616		channel = 0;
617		if (REC_ECC_LOCATOR_ODD(info->redmemb))
618			channel = 1;
619
620		/* Convert channel to be based from zero, instead of
621		 * from branch base of 0 */
622		channel += branch;
623
624		bank = rec_bank(info);
625		rank = rec_rank(info);
626		rdwr = rec_rdwr(info);
627		ras = rec_ras(info);
628		cas = rec_cas(info);
629
630		/* Only 1 bit will be on */
631		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
632
633		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
634			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
635			rank, channel, branch >> 1, bank,
636			rdwr_str(rdwr), ras, cas);
637
638		/* Form out message */
639		snprintf(msg, sizeof(msg),
640			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
641			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
642			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
643			 allErrors, error_name[errnum]);
644
645		/* Call the helper to output message */
646		edac_mc_handle_fbd_ce(mci, rank, channel, msg);
647
648		return;
649	}
650
651	/* Miscelaneous errors */
652	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
653
654	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
655
656	i5400_mc_printk(mci, KERN_EMERG,
657			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
658			branch >> 1, allErrors, error_name[errnum]);
659}
660
661/*
662 *	i5400_process_error_info	Process the error info that is
663 *	in the 'info' structure, previously retrieved from hardware
664 */
665static void i5400_process_error_info(struct mem_ctl_info *mci,
666				struct i5400_error_info *info)
667{	u32 allErrors;
668
669	/* First handle any fatal errors that occurred */
670	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
671	i5400_proccess_non_recoverable_info(mci, info, allErrors);
672
673	/* now handle any non-fatal errors that occurred */
674	i5400_process_nonfatal_error_info(mci, info);
675}
676
677/*
678 *	i5400_clear_error	Retrieve any error from the hardware
679 *				but do NOT process that error.
680 *				Used for 'clearing' out of previous errors
681 *				Called by the Core module.
682 */
683static void i5400_clear_error(struct mem_ctl_info *mci)
684{
685	struct i5400_error_info info;
686
687	i5400_get_error_info(mci, &info);
688}
689
690/*
691 *	i5400_check_error	Retrieve and process errors reported by the
692 *				hardware. Called by the Core module.
693 */
694static void i5400_check_error(struct mem_ctl_info *mci)
695{
696	struct i5400_error_info info;
697	debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
698	i5400_get_error_info(mci, &info);
699	i5400_process_error_info(mci, &info);
700}
701
702/*
703 *	i5400_put_devices	'put' all the devices that we have
704 *				reserved via 'get'
705 */
706static void i5400_put_devices(struct mem_ctl_info *mci)
707{
708	struct i5400_pvt *pvt;
709
710	pvt = mci->pvt_info;
711
712	/* Decrement usage count for devices */
713	pci_dev_put(pvt->branch_1);
714	pci_dev_put(pvt->branch_0);
715	pci_dev_put(pvt->fsb_error_regs);
716	pci_dev_put(pvt->branchmap_werrors);
717}
718
719/*
720 *	i5400_get_devices	Find and perform 'get' operation on the MCH's
721 *			device/functions we want to reference for this driver
722 *
723 *			Need to 'get' device 16 func 1 and func 2
724 */
725static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
726{
727	struct i5400_pvt *pvt;
728	struct pci_dev *pdev;
729
730	pvt = mci->pvt_info;
731	pvt->branchmap_werrors = NULL;
732	pvt->fsb_error_regs = NULL;
733	pvt->branch_0 = NULL;
734	pvt->branch_1 = NULL;
735
736	/* Attempt to 'get' the MCH register we want */
737	pdev = NULL;
738	while (!pvt->branchmap_werrors || !pvt->fsb_error_regs) {
739		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
740				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
741		if (!pdev) {
742			/* End of list, leave */
743			i5400_printk(KERN_ERR,
744				"'system address,Process Bus' "
745				"device not found:"
746				"vendor 0x%x device 0x%x ERR funcs "
747				"(broken BIOS?)\n",
748				PCI_VENDOR_ID_INTEL,
749				PCI_DEVICE_ID_INTEL_5400_ERR);
750			goto error;
751		}
752
753		/* Store device 16 funcs 1 and 2 */
754		switch (PCI_FUNC(pdev->devfn)) {
755		case 1:
756			pvt->branchmap_werrors = pdev;
757			break;
758		case 2:
759			pvt->fsb_error_regs = pdev;
760			break;
761		}
762	}
763
764	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
765		pci_name(pvt->system_address),
766		pvt->system_address->vendor, pvt->system_address->device);
767	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
768		pci_name(pvt->branchmap_werrors),
769		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
770	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
771		pci_name(pvt->fsb_error_regs),
772		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
773
774	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
775				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
776	if (!pvt->branch_0) {
777		i5400_printk(KERN_ERR,
778			"MC: 'BRANCH 0' device not found:"
779			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
780			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
781		goto error;
782	}
783
784	/* If this device claims to have more than 2 channels then
785	 * fetch Branch 1's information
786	 */
787	if (pvt->maxch < CHANNELS_PER_BRANCH)
788		return 0;
789
790	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
791				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
792	if (!pvt->branch_1) {
793		i5400_printk(KERN_ERR,
794			"MC: 'BRANCH 1' device not found:"
795			"vendor 0x%x device 0x%x Func 0 "
796			"(broken BIOS?)\n",
797			PCI_VENDOR_ID_INTEL,
798			PCI_DEVICE_ID_INTEL_5400_FBD1);
799		goto error;
800	}
801
802	return 0;
803
804error:
805	i5400_put_devices(mci);
806	return -ENODEV;
807}
808
809/*
810 *	determine_amb_present
811 *
812 *		the information is contained in NUM_MTRS_PER_BRANCH different
813 *		registers determining which of the NUM_MTRS_PER_BRANCH requires
814 *              knowing which channel is in question
815 *
816 *	2 branches, each with 2 channels
817 *		b0_ambpresent0 for channel '0'
818 *		b0_ambpresent1 for channel '1'
819 *		b1_ambpresent0 for channel '2'
820 *		b1_ambpresent1 for channel '3'
821 */
822static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
823{
824	int amb_present;
825
826	if (channel < CHANNELS_PER_BRANCH) {
827		if (channel & 0x1)
828			amb_present = pvt->b0_ambpresent1;
829		else
830			amb_present = pvt->b0_ambpresent0;
831	} else {
832		if (channel & 0x1)
833			amb_present = pvt->b1_ambpresent1;
834		else
835			amb_present = pvt->b1_ambpresent0;
836	}
837
838	return amb_present;
839}
840
841/*
842 * determine_mtr(pvt, csrow, channel)
843 *
844 * return the proper MTR register as determine by the csrow and desired channel
845 */
846static int determine_mtr(struct i5400_pvt *pvt, int csrow, int channel)
847{
848	int mtr;
849	int n;
850
851	/* There is one MTR for each slot pair of FB-DIMMs,
852	   Each slot pair may be at branch 0 or branch 1.
853	 */
854	n = csrow;
855
856	if (n >= NUM_MTRS_PER_BRANCH) {
857		debugf0("ERROR: trying to access an invalid csrow: %d\n",
858			csrow);
859		return 0;
860	}
861
862	if (channel < CHANNELS_PER_BRANCH)
863		mtr = pvt->b0_mtr[n];
864	else
865		mtr = pvt->b1_mtr[n];
866
867	return mtr;
868}
869
870/*
871 */
872static void decode_mtr(int slot_row, u16 mtr)
873{
874	int ans;
875
876	ans = MTR_DIMMS_PRESENT(mtr);
877
878	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
879		ans ? "Present" : "NOT Present");
880	if (!ans)
881		return;
882
883	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
884
885	debugf2("\t\tELECTRICAL THROTTLING is %s\n",
886		MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
887
888	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
889	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
890	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
891	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
892}
893
894static void handle_channel(struct i5400_pvt *pvt, int csrow, int channel,
895			struct i5400_dimm_info *dinfo)
896{
897	int mtr;
898	int amb_present_reg;
899	int addrBits;
900
901	mtr = determine_mtr(pvt, csrow, channel);
902	if (MTR_DIMMS_PRESENT(mtr)) {
903		amb_present_reg = determine_amb_present_reg(pvt, channel);
904
905		/* Determine if there is a DIMM present in this DIMM slot */
906		if (amb_present_reg & (1 << csrow)) {
907			/* Start with the number of bits for a Bank
908			 * on the DRAM */
909			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
910			/* Add thenumber of ROW bits */
911			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
912			/* add the number of COLUMN bits */
913			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
914			/* add the number of RANK bits */
915			addrBits += MTR_DIMM_RANK(mtr);
916
917			addrBits += 6;	/* add 64 bits per DIMM */
918			addrBits -= 20;	/* divide by 2^^20 */
919			addrBits -= 3;	/* 8 bits per bytes */
920
921			dinfo->megabytes = 1 << addrBits;
922		}
923	}
924}
925
926/*
927 *	calculate_dimm_size
928 *
929 *	also will output a DIMM matrix map, if debug is enabled, for viewing
930 *	how the DIMMs are populated
931 */
932static void calculate_dimm_size(struct i5400_pvt *pvt)
933{
934	struct i5400_dimm_info *dinfo;
935	int csrow, max_csrows;
936	char *p, *mem_buffer;
937	int space, n;
938	int channel;
939
940	/* ================= Generate some debug output ================= */
941	space = PAGE_SIZE;
942	mem_buffer = p = kmalloc(space, GFP_KERNEL);
943	if (p == NULL) {
944		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
945			__FILE__, __func__);
946		return;
947	}
948
949	/* Scan all the actual CSROWS
950	 * and calculate the information for each DIMM
951	 * Start with the highest csrow first, to display it first
952	 * and work toward the 0th csrow
953	 */
954	max_csrows = pvt->maxdimmperch;
955	for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
956
957		/* on an odd csrow, first output a 'boundary' marker,
958		 * then reset the message buffer  */
959		if (csrow & 0x1) {
960			n = snprintf(p, space, "---------------------------"
961					"--------------------------------");
962			p += n;
963			space -= n;
964			debugf2("%s\n", mem_buffer);
965			p = mem_buffer;
966			space = PAGE_SIZE;
967		}
968		n = snprintf(p, space, "csrow %2d    ", csrow);
969		p += n;
970		space -= n;
971
972		for (channel = 0; channel < pvt->maxch; channel++) {
973			dinfo = &pvt->dimm_info[csrow][channel];
974			handle_channel(pvt, csrow, channel, dinfo);
975			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
976			p += n;
977			space -= n;
978		}
979		debugf2("%s\n", mem_buffer);
980		p = mem_buffer;
981		space = PAGE_SIZE;
982	}
983
984	/* Output the last bottom 'boundary' marker */
985	n = snprintf(p, space, "---------------------------"
986			"--------------------------------");
987	p += n;
988	space -= n;
989	debugf2("%s\n", mem_buffer);
990	p = mem_buffer;
991	space = PAGE_SIZE;
992
993	/* now output the 'channel' labels */
994	n = snprintf(p, space, "            ");
995	p += n;
996	space -= n;
997	for (channel = 0; channel < pvt->maxch; channel++) {
998		n = snprintf(p, space, "channel %d | ", channel);
999		p += n;
1000		space -= n;
1001	}
1002
1003	/* output the last message and free buffer */
1004	debugf2("%s\n", mem_buffer);
1005	kfree(mem_buffer);
1006}
1007
1008/*
1009 *	i5400_get_mc_regs	read in the necessary registers and
1010 *				cache locally
1011 *
1012 *			Fills in the private data members
1013 */
1014static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1015{
1016	struct i5400_pvt *pvt;
1017	u32 actual_tolm;
1018	u16 limit;
1019	int slot_row;
1020	int maxch;
1021	int maxdimmperch;
1022	int way0, way1;
1023
1024	pvt = mci->pvt_info;
1025
1026	pci_read_config_dword(pvt->system_address, AMBASE,
1027			(u32 *) &pvt->ambase);
1028	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1029			((u32 *) &pvt->ambase) + sizeof(u32));
1030
1031	maxdimmperch = pvt->maxdimmperch;
1032	maxch = pvt->maxch;
1033
1034	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1035		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1036
1037	/* Get the Branch Map regs */
1038	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1039	pvt->tolm >>= 12;
1040	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1041		pvt->tolm);
1042
1043	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1044	debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1045		actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1046
1047	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1048	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1049
1050	/* Get the MIR[0-1] regs */
1051	limit = (pvt->mir0 >> 4) & 0x0fff;
1052	way0 = pvt->mir0 & 0x1;
1053	way1 = pvt->mir0 & 0x2;
1054	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1055	limit = (pvt->mir1 >> 4) & 0xfff;
1056	way0 = pvt->mir1 & 0x1;
1057	way1 = pvt->mir1 & 0x2;
1058	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1059
1060	/* Get the set of MTR[0-3] regs by each branch */
1061	for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) {
1062		int where = MTR0 + (slot_row * sizeof(u16));
1063
1064		/* Branch 0 set of MTR registers */
1065		pci_read_config_word(pvt->branch_0, where,
1066				&pvt->b0_mtr[slot_row]);
1067
1068		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1069			pvt->b0_mtr[slot_row]);
1070
1071		if (pvt->maxch < CHANNELS_PER_BRANCH) {
1072			pvt->b1_mtr[slot_row] = 0;
1073			continue;
1074		}
1075
1076		/* Branch 1 set of MTR registers */
1077		pci_read_config_word(pvt->branch_1, where,
1078				&pvt->b1_mtr[slot_row]);
1079		debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where,
1080			pvt->b1_mtr[slot_row]);
1081	}
1082
1083	/* Read and dump branch 0's MTRs */
1084	debugf2("\nMemory Technology Registers:\n");
1085	debugf2("   Branch 0:\n");
1086	for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1087		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1088
1089	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1090			&pvt->b0_ambpresent0);
1091	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1092	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1093			&pvt->b0_ambpresent1);
1094	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1095
1096	/* Only if we have 2 branchs (4 channels) */
1097	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1098		pvt->b1_ambpresent0 = 0;
1099		pvt->b1_ambpresent1 = 0;
1100	} else {
1101		/* Read and dump  branch 1's MTRs */
1102		debugf2("   Branch 1:\n");
1103		for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1104			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1105
1106		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1107				&pvt->b1_ambpresent0);
1108		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1109			pvt->b1_ambpresent0);
1110		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1111				&pvt->b1_ambpresent1);
1112		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1113			pvt->b1_ambpresent1);
1114	}
1115
1116	/* Go and determine the size of each DIMM and place in an
1117	 * orderly matrix */
1118	calculate_dimm_size(pvt);
1119}
1120
1121/*
1122 *	i5400_init_csrows	Initialize the 'csrows' table within
1123 *				the mci control	structure with the
1124 *				addressing of memory.
1125 *
1126 *	return:
1127 *		0	success
1128 *		1	no actual memory found on this MC
1129 */
1130static int i5400_init_csrows(struct mem_ctl_info *mci)
1131{
1132	struct i5400_pvt *pvt;
1133	struct csrow_info *p_csrow;
1134	int empty, channel_count;
1135	int max_csrows;
1136	int mtr;
1137	int csrow_megs;
1138	int channel;
1139	int csrow;
1140
1141	pvt = mci->pvt_info;
1142
1143	channel_count = pvt->maxch;
1144	max_csrows = pvt->maxdimmperch;
1145
1146	empty = 1;		/* Assume NO memory */
1147
1148	for (csrow = 0; csrow < max_csrows; csrow++) {
1149		p_csrow = &mci->csrows[csrow];
1150
1151		p_csrow->csrow_idx = csrow;
1152
1153		/* use branch 0 for the basis */
1154		mtr = determine_mtr(pvt, csrow, 0);
1155
1156		/* if no DIMMS on this row, continue */
1157		if (!MTR_DIMMS_PRESENT(mtr))
1158			continue;
1159
1160		p_csrow->first_page = 0 + csrow * 20;
1161		p_csrow->last_page = 9 + csrow * 20;
1162		p_csrow->page_mask = 0xFFF;
1163
1164		p_csrow->grain = 8;
1165
1166		csrow_megs = 0;
1167		for (channel = 0; channel < pvt->maxch; channel++)
1168			csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1169
1170		p_csrow->nr_pages = csrow_megs << 8;
1171
1172		/* Assume DDR2 for now */
1173		p_csrow->mtype = MEM_FB_DDR2;
1174
1175		/* ask what device type on this row */
1176		if (MTR_DRAM_WIDTH(mtr))
1177			p_csrow->dtype = DEV_X8;
1178		else
1179			p_csrow->dtype = DEV_X4;
1180
1181		p_csrow->edac_mode = EDAC_S8ECD8ED;
1182
1183		empty = 0;
1184	}
1185
1186	return empty;
1187}
1188
1189/*
1190 *	i5400_enable_error_reporting
1191 *			Turn on the memory reporting features of the hardware
1192 */
1193static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1194{
1195	struct i5400_pvt *pvt;
1196	u32 fbd_error_mask;
1197
1198	pvt = mci->pvt_info;
1199
1200	/* Read the FBD Error Mask Register */
1201	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1202			&fbd_error_mask);
1203
1204	/* Enable with a '0' */
1205	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1206
1207	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1208			fbd_error_mask);
1209}
1210
1211/*
1212 *	i5400_probe1	Probe for ONE instance of device to see if it is
1213 *			present.
1214 *	return:
1215 *		0 for FOUND a device
1216 *		< 0 for error code
1217 */
1218static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1219{
1220	struct mem_ctl_info *mci;
1221	struct i5400_pvt *pvt;
1222	int num_channels;
1223	int num_dimms_per_channel;
1224	int num_csrows;
1225
1226	if (dev_idx >= ARRAY_SIZE(i5400_devs))
1227		return -EINVAL;
1228
1229	debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1230		__FILE__, __func__,
1231		pdev->bus->number,
1232		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1233
1234	/* We only are looking for func 0 of the set */
1235	if (PCI_FUNC(pdev->devfn) != 0)
1236		return -ENODEV;
1237
1238	/* As we don't have a motherboard identification routine to determine
1239	 * actual number of slots/dimms per channel, we thus utilize the
1240	 * resource as specified by the chipset. Thus, we might have
1241	 * have more DIMMs per channel than actually on the mobo, but this
1242	 * allows the driver to support upto the chipset max, without
1243	 * some fancy mobo determination.
1244	 */
1245	num_dimms_per_channel = MAX_DIMMS_PER_CHANNEL;
1246	num_channels = MAX_CHANNELS;
1247	num_csrows = num_dimms_per_channel;
1248
1249	debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1250		__func__, num_channels, num_dimms_per_channel, num_csrows);
1251
1252	/* allocate a new MC control structure */
1253	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1254
1255	if (mci == NULL)
1256		return -ENOMEM;
1257
1258	debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1259
1260	mci->dev = &pdev->dev;	/* record ptr  to the generic device */
1261
1262	pvt = mci->pvt_info;
1263	pvt->system_address = pdev;	/* Record this device in our private */
1264	pvt->maxch = num_channels;
1265	pvt->maxdimmperch = num_dimms_per_channel;
1266
1267	/* 'get' the pci devices we want to reserve for our use */
1268	if (i5400_get_devices(mci, dev_idx))
1269		goto fail0;
1270
1271	/* Time to get serious */
1272	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
1273
1274	mci->mc_idx = 0;
1275	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1276	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1277	mci->edac_cap = EDAC_FLAG_NONE;
1278	mci->mod_name = "i5400_edac.c";
1279	mci->mod_ver = I5400_REVISION;
1280	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1281	mci->dev_name = pci_name(pdev);
1282	mci->ctl_page_to_phys = NULL;
1283
1284	/* Set the function pointer to an actual operation function */
1285	mci->edac_check = i5400_check_error;
1286
1287	/* initialize the MC control structure 'csrows' table
1288	 * with the mapping and control information */
1289	if (i5400_init_csrows(mci)) {
1290		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1291			"    because i5400_init_csrows() returned nonzero "
1292			"value\n");
1293		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1294	} else {
1295		debugf1("MC: Enable error reporting now\n");
1296		i5400_enable_error_reporting(mci);
1297	}
1298
1299	/* add this new MC control structure to EDAC's list of MCs */
1300	if (edac_mc_add_mc(mci)) {
1301		debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1302			__FILE__, __func__);
1303		goto fail1;
1304	}
1305
1306	i5400_clear_error(mci);
1307
1308	/* allocating generic PCI control info */
1309	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1310	if (!i5400_pci) {
1311		printk(KERN_WARNING
1312			"%s(): Unable to create PCI control\n",
1313			__func__);
1314		printk(KERN_WARNING
1315			"%s(): PCI error report via EDAC not setup\n",
1316			__func__);
1317	}
1318
1319	return 0;
1320
1321	/* Error exit unwinding stack */
1322fail1:
1323
1324	i5400_put_devices(mci);
1325
1326fail0:
1327	edac_mc_free(mci);
1328	return -ENODEV;
1329}
1330
1331/*
1332 *	i5400_init_one	constructor for one instance of device
1333 *
1334 * 	returns:
1335 *		negative on error
1336 *		count (>= 0)
1337 */
1338static int __devinit i5400_init_one(struct pci_dev *pdev,
1339				const struct pci_device_id *id)
1340{
1341	int rc;
1342
1343	debugf0("MC: %s: %s()\n", __FILE__, __func__);
1344
1345	/* wake up device */
1346	rc = pci_enable_device(pdev);
1347	if (rc)
1348		return rc;
1349
1350	/* now probe and enable the device */
1351	return i5400_probe1(pdev, id->driver_data);
1352}
1353
1354/*
1355 *	i5400_remove_one	destructor for one instance of device
1356 *
1357 */
1358static void __devexit i5400_remove_one(struct pci_dev *pdev)
1359{
1360	struct mem_ctl_info *mci;
1361
1362	debugf0("%s: %s()\n", __FILE__, __func__);
1363
1364	if (i5400_pci)
1365		edac_pci_release_generic_ctl(i5400_pci);
1366
1367	mci = edac_mc_del_mc(&pdev->dev);
1368	if (!mci)
1369		return;
1370
1371	/* retrieve references to resources, and free those resources */
1372	i5400_put_devices(mci);
1373
1374	edac_mc_free(mci);
1375}
1376
1377/*
1378 *	pci_device_id	table for which devices we are looking for
1379 *
1380 *	The "E500P" device is the first device supported.
1381 */
1382static const struct pci_device_id i5400_pci_tbl[] __devinitdata = {
1383	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1384	{0,}			/* 0 terminated list. */
1385};
1386
1387MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1388
1389/*
1390 *	i5400_driver	pci_driver structure for this module
1391 *
1392 */
1393static struct pci_driver i5400_driver = {
1394	.name = "i5400_edac",
1395	.probe = i5400_init_one,
1396	.remove = __devexit_p(i5400_remove_one),
1397	.id_table = i5400_pci_tbl,
1398};
1399
1400/*
1401 *	i5400_init		Module entry function
1402 *			Try to initialize this module for its devices
1403 */
1404static int __init i5400_init(void)
1405{
1406	int pci_rc;
1407
1408	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1409
1410	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1411	opstate_init();
1412
1413	pci_rc = pci_register_driver(&i5400_driver);
1414
1415	return (pci_rc < 0) ? pci_rc : 0;
1416}
1417
1418/*
1419 *	i5400_exit()	Module exit function
1420 *			Unregister the driver
1421 */
1422static void __exit i5400_exit(void)
1423{
1424	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1425	pci_unregister_driver(&i5400_driver);
1426}
1427
1428module_init(i5400_init);
1429module_exit(i5400_exit);
1430
1431MODULE_LICENSE("GPL");
1432MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1433MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1434MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1435MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1436		   I5400_REVISION);
1437
1438module_param(edac_op_state, int, 0444);
1439MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1440