• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/edac/
1/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * 	Intel D82875P Memory Controller kernel module
6 * 	(C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/edac.h>
17#include "edac_core.h"
18
19#define I3000_REVISION		"1.1"
20
21#define EDAC_MOD_STR		"i3000_edac"
22
23#define I3000_RANKS		8
24#define I3000_RANKS_PER_CHANNEL	4
25#define I3000_CHANNELS		2
26
27/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29#define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
30#define I3000_MCHBAR_MASK	0xffffc000
31#define I3000_MMR_WINDOW_SIZE	16384
32
33#define I3000_EDEAP	0x70	/* Extended DRAM Error Address Pointer (8b)
34				 *
35				 * 7:1   reserved
36				 * 0     bit 32 of address
37				 */
38#define I3000_DEAP	0x58	/* DRAM Error Address Pointer (32b)
39				 *
40				 * 31:7  address
41				 * 6:1   reserved
42				 * 0     Error channel 0/1
43				 */
44#define I3000_DEAP_GRAIN 		(1 << 7)
45
46/*
47 * Helper functions to decode the DEAP/EDEAP hardware registers.
48 *
49 * The type promotion here is deliberate; we're deriving an
50 * unsigned long pfn and offset from hardware regs which are u8/u32.
51 */
52
53static inline unsigned long deap_pfn(u8 edeap, u32 deap)
54{
55	deap >>= PAGE_SHIFT;
56	deap |= (edeap & 1) << (32 - PAGE_SHIFT);
57	return deap;
58}
59
60static inline unsigned long deap_offset(u32 deap)
61{
62	return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
63}
64
65static inline int deap_channel(u32 deap)
66{
67	return deap & 1;
68}
69
70#define I3000_DERRSYN	0x5c	/* DRAM Error Syndrome (8b)
71				 *
72				 *  7:0  DRAM ECC Syndrome
73				 */
74
75#define I3000_ERRSTS	0xc8	/* Error Status Register (16b)
76				 *
77				 * 15:12 reserved
78				 * 11    MCH Thermal Sensor Event
79				 *         for SMI/SCI/SERR
80				 * 10    reserved
81				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
82				 *  8    Received Refresh Timeout Flag (RRTOF)
83				 *  7:2  reserved
84				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
85				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
86				 */
87#define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
88#define I3000_ERRSTS_UE		0x0002
89#define I3000_ERRSTS_CE		0x0001
90
91#define I3000_ERRCMD	0xca	/* Error Command (16b)
92				 *
93				 * 15:12 reserved
94				 * 11    SERR on MCH Thermal Sensor Event
95				 *         (TSESERR)
96				 * 10    reserved
97				 *  9    SERR on LOCK to non-DRAM Memory
98				 *         (LCKERR)
99				 *  8    SERR on DRAM Refresh Timeout
100				 *         (DRTOERR)
101				 *  7:2  reserved
102				 *  1    SERR Multi-Bit DRAM ECC Error
103				 *         (DMERR)
104				 *  0    SERR on Single-Bit ECC Error
105				 *         (DSERR)
106				 */
107
108/* Intel  MMIO register space - device 0 function 0 - MMR space */
109
110#define I3000_DRB_SHIFT 25	/* 32MiB grain */
111
112#define I3000_C0DRB	0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
113				 *
114				 * 7:0   Channel 0 DRAM Rank Boundary Address
115				 */
116#define I3000_C1DRB	0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
117				 *
118				 * 7:0   Channel 1 DRAM Rank Boundary Address
119				 */
120
121#define I3000_C0DRA	0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
122				 *
123				 * 7     reserved
124				 * 6:4   DRAM odd Rank Attribute
125				 * 3     reserved
126				 * 2:0   DRAM even Rank Attribute
127				 *
128				 * Each attribute defines the page
129				 * size of the corresponding rank:
130				 *     000: unpopulated
131				 *     001: reserved
132				 *     010: 4 KB
133				 *     011: 8 KB
134				 *     100: 16 KB
135				 *     Others: reserved
136				 */
137#define I3000_C1DRA	0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
138
139static inline unsigned char odd_rank_attrib(unsigned char dra)
140{
141	return (dra & 0x70) >> 4;
142}
143
144static inline unsigned char even_rank_attrib(unsigned char dra)
145{
146	return dra & 0x07;
147}
148
149#define I3000_C0DRC0	0x120	/* DRAM Controller Mode 0 (32b)
150				 *
151				 * 31:30 reserved
152				 * 29    Initialization Complete (IC)
153				 * 28:11 reserved
154				 * 10:8  Refresh Mode Select (RMS)
155				 * 7     reserved
156				 * 6:4   Mode Select (SMS)
157				 * 3:2   reserved
158				 * 1:0   DRAM Type (DT)
159				 */
160
161#define I3000_C0DRC1	0x124	/* DRAM Controller Mode 1 (32b)
162				 *
163				 * 31    Enhanced Addressing Enable (ENHADE)
164				 * 30:0  reserved
165				 */
166
167enum i3000p_chips {
168	I3000 = 0,
169};
170
171struct i3000_dev_info {
172	const char *ctl_name;
173};
174
175struct i3000_error_info {
176	u16 errsts;
177	u8 derrsyn;
178	u8 edeap;
179	u32 deap;
180	u16 errsts2;
181};
182
183static const struct i3000_dev_info i3000_devs[] = {
184	[I3000] = {
185		.ctl_name = "i3000"},
186};
187
188static struct pci_dev *mci_pdev;
189static int i3000_registered = 1;
190static struct edac_pci_ctl_info *i3000_pci;
191
192static void i3000_get_error_info(struct mem_ctl_info *mci,
193				 struct i3000_error_info *info)
194{
195	struct pci_dev *pdev;
196
197	pdev = to_pci_dev(mci->dev);
198
199	/*
200	 * This is a mess because there is no atomic way to read all the
201	 * registers at once and the registers can transition from CE being
202	 * overwritten by UE.
203	 */
204	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
205	if (!(info->errsts & I3000_ERRSTS_BITS))
206		return;
207	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
208	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
209	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
210	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
211
212	/*
213	 * If the error is the same for both reads then the first set
214	 * of reads is valid.  If there is a change then there is a CE
215	 * with no info and the second set of reads is valid and
216	 * should be UE info.
217	 */
218	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
219		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
220		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
221		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222	}
223
224	/*
225	 * Clear any error bits.
226	 * (Yes, we really clear bits by writing 1 to them.)
227	 */
228	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
229			 I3000_ERRSTS_BITS);
230}
231
232static int i3000_process_error_info(struct mem_ctl_info *mci,
233				struct i3000_error_info *info,
234				int handle_errors)
235{
236	int row, multi_chan, channel;
237	unsigned long pfn, offset;
238
239	multi_chan = mci->csrows[0].nr_channels - 1;
240
241	if (!(info->errsts & I3000_ERRSTS_BITS))
242		return 0;
243
244	if (!handle_errors)
245		return 1;
246
247	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
248		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
249		info->errsts = info->errsts2;
250	}
251
252	pfn = deap_pfn(info->edeap, info->deap);
253	offset = deap_offset(info->deap);
254	channel = deap_channel(info->deap);
255
256	row = edac_mc_find_csrow_by_page(mci, pfn);
257
258	if (info->errsts & I3000_ERRSTS_UE)
259		edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
260	else
261		edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
262				multi_chan ? channel : 0, "i3000 CE");
263
264	return 1;
265}
266
267static void i3000_check(struct mem_ctl_info *mci)
268{
269	struct i3000_error_info info;
270
271	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
272	i3000_get_error_info(mci, &info);
273	i3000_process_error_info(mci, &info, 1);
274}
275
276static int i3000_is_interleaved(const unsigned char *c0dra,
277				const unsigned char *c1dra,
278				const unsigned char *c0drb,
279				const unsigned char *c1drb)
280{
281	int i;
282
283	/*
284	 * If the channels aren't populated identically then
285	 * we're not interleaved.
286	 */
287	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
288		if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
289			even_rank_attrib(c0dra[i]) !=
290						even_rank_attrib(c1dra[i]))
291			return 0;
292
293	/*
294	 * If the rank boundaries for the two channels are different
295	 * then we're not interleaved.
296	 */
297	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
298		if (c0drb[i] != c1drb[i])
299			return 0;
300
301	return 1;
302}
303
304static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
305{
306	int rc;
307	int i;
308	struct mem_ctl_info *mci = NULL;
309	unsigned long last_cumul_size;
310	int interleaved, nr_channels;
311	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
312	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
313	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
314	unsigned long mchbar;
315	void __iomem *window;
316
317	debugf0("MC: %s()\n", __func__);
318
319	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
320	mchbar &= I3000_MCHBAR_MASK;
321	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
322	if (!window) {
323		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
324			mchbar);
325		return -ENODEV;
326	}
327
328	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
329	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
330	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
331	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
332
333	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
334		c0drb[i] = readb(window + I3000_C0DRB + i);
335		c1drb[i] = readb(window + I3000_C1DRB + i);
336	}
337
338	iounmap(window);
339
340	/*
341	 * Figure out how many channels we have.
342	 *
343	 * If we have what the datasheet calls "asymmetric channels"
344	 * (essentially the same as what was called "virtual single
345	 * channel mode" in the i82875) then it's a single channel as
346	 * far as EDAC is concerned.
347	 */
348	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
349	nr_channels = interleaved ? 2 : 1;
350	mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
351	if (!mci)
352		return -ENOMEM;
353
354	debugf3("MC: %s(): init mci\n", __func__);
355
356	mci->dev = &pdev->dev;
357	mci->mtype_cap = MEM_FLAG_DDR2;
358
359	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
360	mci->edac_cap = EDAC_FLAG_SECDED;
361
362	mci->mod_name = EDAC_MOD_STR;
363	mci->mod_ver = I3000_REVISION;
364	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
365	mci->dev_name = pci_name(pdev);
366	mci->edac_check = i3000_check;
367	mci->ctl_page_to_phys = NULL;
368
369	/*
370	 * The dram rank boundary (DRB) reg values are boundary addresses
371	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
372	 * cumulative; the last one will contain the total memory
373	 * contained in all ranks.
374	 *
375	 * If we're in interleaved mode then we're only walking through
376	 * the ranks of controller 0, so we double all the values we see.
377	 */
378	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
379		u8 value;
380		u32 cumul_size;
381		struct csrow_info *csrow = &mci->csrows[i];
382
383		value = drb[i];
384		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
385		if (interleaved)
386			cumul_size <<= 1;
387		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
388			__func__, i, cumul_size);
389		if (cumul_size == last_cumul_size) {
390			csrow->mtype = MEM_EMPTY;
391			continue;
392		}
393
394		csrow->first_page = last_cumul_size;
395		csrow->last_page = cumul_size - 1;
396		csrow->nr_pages = cumul_size - last_cumul_size;
397		last_cumul_size = cumul_size;
398		csrow->grain = I3000_DEAP_GRAIN;
399		csrow->mtype = MEM_DDR2;
400		csrow->dtype = DEV_UNKNOWN;
401		csrow->edac_mode = EDAC_UNKNOWN;
402	}
403
404	/*
405	 * Clear any error bits.
406	 * (Yes, we really clear bits by writing 1 to them.)
407	 */
408	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
409			 I3000_ERRSTS_BITS);
410
411	rc = -ENODEV;
412	if (edac_mc_add_mc(mci)) {
413		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
414		goto fail;
415	}
416
417	/* allocating generic PCI control info */
418	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
419	if (!i3000_pci) {
420		printk(KERN_WARNING
421			"%s(): Unable to create PCI control\n",
422			__func__);
423		printk(KERN_WARNING
424			"%s(): PCI error report via EDAC not setup\n",
425			__func__);
426	}
427
428	/* get this far and it's successful */
429	debugf3("MC: %s(): success\n", __func__);
430	return 0;
431
432fail:
433	if (mci)
434		edac_mc_free(mci);
435
436	return rc;
437}
438
439/* returns count (>= 0), or negative on error */
440static int __devinit i3000_init_one(struct pci_dev *pdev,
441				const struct pci_device_id *ent)
442{
443	int rc;
444
445	debugf0("MC: %s()\n", __func__);
446
447	if (pci_enable_device(pdev) < 0)
448		return -EIO;
449
450	rc = i3000_probe1(pdev, ent->driver_data);
451	if (!mci_pdev)
452		mci_pdev = pci_dev_get(pdev);
453
454	return rc;
455}
456
457static void __devexit i3000_remove_one(struct pci_dev *pdev)
458{
459	struct mem_ctl_info *mci;
460
461	debugf0("%s()\n", __func__);
462
463	if (i3000_pci)
464		edac_pci_release_generic_ctl(i3000_pci);
465
466	mci = edac_mc_del_mc(&pdev->dev);
467	if (!mci)
468		return;
469
470	edac_mc_free(mci);
471}
472
473static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
474	{
475	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
476	 I3000},
477	{
478	 0,
479	 }			/* 0 terminated list. */
480};
481
482MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
483
484static struct pci_driver i3000_driver = {
485	.name = EDAC_MOD_STR,
486	.probe = i3000_init_one,
487	.remove = __devexit_p(i3000_remove_one),
488	.id_table = i3000_pci_tbl,
489};
490
491static int __init i3000_init(void)
492{
493	int pci_rc;
494
495	debugf3("MC: %s()\n", __func__);
496
497       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
498       opstate_init();
499
500	pci_rc = pci_register_driver(&i3000_driver);
501	if (pci_rc < 0)
502		goto fail0;
503
504	if (!mci_pdev) {
505		i3000_registered = 0;
506		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
507					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
508		if (!mci_pdev) {
509			debugf0("i3000 pci_get_device fail\n");
510			pci_rc = -ENODEV;
511			goto fail1;
512		}
513
514		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
515		if (pci_rc < 0) {
516			debugf0("i3000 init fail\n");
517			pci_rc = -ENODEV;
518			goto fail1;
519		}
520	}
521
522	return 0;
523
524fail1:
525	pci_unregister_driver(&i3000_driver);
526
527fail0:
528	if (mci_pdev)
529		pci_dev_put(mci_pdev);
530
531	return pci_rc;
532}
533
534static void __exit i3000_exit(void)
535{
536	debugf3("MC: %s()\n", __func__);
537
538	pci_unregister_driver(&i3000_driver);
539	if (!i3000_registered) {
540		i3000_remove_one(mci_pdev);
541		pci_dev_put(mci_pdev);
542	}
543}
544
545module_init(i3000_init);
546module_exit(i3000_exit);
547
548MODULE_LICENSE("GPL");
549MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
550MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
551
552module_param(edac_op_state, int, 0444);
553MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
554