• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/sparc/kernel/
1/* arch/sparc64/kernel/kprobes.c
2 *
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/kprobes.h>
8#include <linux/module.h>
9#include <linux/kdebug.h>
10#include <linux/slab.h>
11#include <asm/signal.h>
12#include <asm/cacheflush.h>
13#include <asm/uaccess.h>
14
15/* We do not have hardware single-stepping on sparc64.
16 * So we implement software single-stepping with breakpoint
17 * traps.  The top-level scheme is similar to that used
18 * in the x86 kprobes implementation.
19 *
20 * In the kprobe->ainsn.insn[] array we store the original
21 * instruction at index zero and a break instruction at
22 * index one.
23 *
24 * When we hit a kprobe we:
25 * - Run the pre-handler
26 * - Remember "regs->tnpc" and interrupt level stored in
27 *   "regs->tstate" so we can restore them later
28 * - Disable PIL interrupts
29 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
30 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
31 * - Mark that we are actively in a kprobe
32 *
33 * At this point we wait for the second breakpoint at
34 * kprobe->ainsn.insn[1] to hit.  When it does we:
35 * - Run the post-handler
36 * - Set regs->tpc to "remembered" regs->tnpc stored above,
37 *   restore the PIL interrupt level in "regs->tstate" as well
38 * - Make any adjustments necessary to regs->tnpc in order
39 *   to handle relative branches correctly.  See below.
40 * - Mark that we are no longer actively in a kprobe.
41 */
42
43DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
44DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45
46struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
47
48int __kprobes arch_prepare_kprobe(struct kprobe *p)
49{
50	if ((unsigned long) p->addr & 0x3UL)
51		return -EILSEQ;
52
53	p->ainsn.insn[0] = *p->addr;
54	flushi(&p->ainsn.insn[0]);
55
56	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
57	flushi(&p->ainsn.insn[1]);
58
59	p->opcode = *p->addr;
60	return 0;
61}
62
63void __kprobes arch_arm_kprobe(struct kprobe *p)
64{
65	*p->addr = BREAKPOINT_INSTRUCTION;
66	flushi(p->addr);
67}
68
69void __kprobes arch_disarm_kprobe(struct kprobe *p)
70{
71	*p->addr = p->opcode;
72	flushi(p->addr);
73}
74
75static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
76{
77	kcb->prev_kprobe.kp = kprobe_running();
78	kcb->prev_kprobe.status = kcb->kprobe_status;
79	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
80	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
81}
82
83static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
84{
85	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
86	kcb->kprobe_status = kcb->prev_kprobe.status;
87	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
88	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
89}
90
91static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
92				struct kprobe_ctlblk *kcb)
93{
94	__get_cpu_var(current_kprobe) = p;
95	kcb->kprobe_orig_tnpc = regs->tnpc;
96	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
97}
98
99static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
100			struct kprobe_ctlblk *kcb)
101{
102	regs->tstate |= TSTATE_PIL;
103
104	/*single step inline, if it a breakpoint instruction*/
105	if (p->opcode == BREAKPOINT_INSTRUCTION) {
106		regs->tpc = (unsigned long) p->addr;
107		regs->tnpc = kcb->kprobe_orig_tnpc;
108	} else {
109		regs->tpc = (unsigned long) &p->ainsn.insn[0];
110		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
111	}
112}
113
114static int __kprobes kprobe_handler(struct pt_regs *regs)
115{
116	struct kprobe *p;
117	void *addr = (void *) regs->tpc;
118	int ret = 0;
119	struct kprobe_ctlblk *kcb;
120
121	/*
122	 * We don't want to be preempted for the entire
123	 * duration of kprobe processing
124	 */
125	preempt_disable();
126	kcb = get_kprobe_ctlblk();
127
128	if (kprobe_running()) {
129		p = get_kprobe(addr);
130		if (p) {
131			if (kcb->kprobe_status == KPROBE_HIT_SS) {
132				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
133					kcb->kprobe_orig_tstate_pil);
134				goto no_kprobe;
135			}
136			/* We have reentered the kprobe_handler(), since
137			 * another probe was hit while within the handler.
138			 * We here save the original kprobes variables and
139			 * just single step on the instruction of the new probe
140			 * without calling any user handlers.
141			 */
142			save_previous_kprobe(kcb);
143			set_current_kprobe(p, regs, kcb);
144			kprobes_inc_nmissed_count(p);
145			kcb->kprobe_status = KPROBE_REENTER;
146			prepare_singlestep(p, regs, kcb);
147			return 1;
148		} else {
149			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
150			/* The breakpoint instruction was removed by
151			 * another cpu right after we hit, no further
152			 * handling of this interrupt is appropriate
153			 */
154				ret = 1;
155				goto no_kprobe;
156			}
157			p = __get_cpu_var(current_kprobe);
158			if (p->break_handler && p->break_handler(p, regs))
159				goto ss_probe;
160		}
161		goto no_kprobe;
162	}
163
164	p = get_kprobe(addr);
165	if (!p) {
166		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
167			/*
168			 * The breakpoint instruction was removed right
169			 * after we hit it.  Another cpu has removed
170			 * either a probepoint or a debugger breakpoint
171			 * at this address.  In either case, no further
172			 * handling of this interrupt is appropriate.
173			 */
174			ret = 1;
175		}
176		/* Not one of ours: let kernel handle it */
177		goto no_kprobe;
178	}
179
180	set_current_kprobe(p, regs, kcb);
181	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
182	if (p->pre_handler && p->pre_handler(p, regs))
183		return 1;
184
185ss_probe:
186	prepare_singlestep(p, regs, kcb);
187	kcb->kprobe_status = KPROBE_HIT_SS;
188	return 1;
189
190no_kprobe:
191	preempt_enable_no_resched();
192	return ret;
193}
194
195/* If INSN is a relative control transfer instruction,
196 * return the corrected branch destination value.
197 *
198 * regs->tpc and regs->tnpc still hold the values of the
199 * program counters at the time of trap due to the execution
200 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
201 *
202 */
203static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
204					       struct pt_regs *regs)
205{
206	unsigned long real_pc = (unsigned long) p->addr;
207
208	/* Branch not taken, no mods necessary.  */
209	if (regs->tnpc == regs->tpc + 0x4UL)
210		return real_pc + 0x8UL;
211
212	/* The three cases are call, branch w/prediction,
213	 * and traditional branch.
214	 */
215	if ((insn & 0xc0000000) == 0x40000000 ||
216	    (insn & 0xc1c00000) == 0x00400000 ||
217	    (insn & 0xc1c00000) == 0x00800000) {
218		unsigned long ainsn_addr;
219
220		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
221
222		/* The instruction did all the work for us
223		 * already, just apply the offset to the correct
224		 * instruction location.
225		 */
226		return (real_pc + (regs->tnpc - ainsn_addr));
227	}
228
229	/* It is jmpl or some other absolute PC modification instruction,
230	 * leave NPC as-is.
231	 */
232	return regs->tnpc;
233}
234
235/* If INSN is an instruction which writes it's PC location
236 * into a destination register, fix that up.
237 */
238static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
239				  unsigned long real_pc)
240{
241	unsigned long *slot = NULL;
242
243	/* Simplest case is 'call', which always uses %o7 */
244	if ((insn & 0xc0000000) == 0x40000000) {
245		slot = &regs->u_regs[UREG_I7];
246	}
247
248	/* 'jmpl' encodes the register inside of the opcode */
249	if ((insn & 0xc1f80000) == 0x81c00000) {
250		unsigned long rd = ((insn >> 25) & 0x1f);
251
252		if (rd <= 15) {
253			slot = &regs->u_regs[rd];
254		} else {
255			/* Hard case, it goes onto the stack. */
256			flushw_all();
257
258			rd -= 16;
259			slot = (unsigned long *)
260				(regs->u_regs[UREG_FP] + STACK_BIAS);
261			slot += rd;
262		}
263	}
264	if (slot != NULL)
265		*slot = real_pc;
266}
267
268/*
269 * Called after single-stepping.  p->addr is the address of the
270 * instruction which has been replaced by the breakpoint
271 * instruction.  To avoid the SMP problems that can occur when we
272 * temporarily put back the original opcode to single-step, we
273 * single-stepped a copy of the instruction.  The address of this
274 * copy is &p->ainsn.insn[0].
275 *
276 * This function prepares to return from the post-single-step
277 * breakpoint trap.
278 */
279static void __kprobes resume_execution(struct kprobe *p,
280		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
281{
282	u32 insn = p->ainsn.insn[0];
283
284	regs->tnpc = relbranch_fixup(insn, p, regs);
285
286	/* This assignment must occur after relbranch_fixup() */
287	regs->tpc = kcb->kprobe_orig_tnpc;
288
289	retpc_fixup(regs, insn, (unsigned long) p->addr);
290
291	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
292			kcb->kprobe_orig_tstate_pil);
293}
294
295static int __kprobes post_kprobe_handler(struct pt_regs *regs)
296{
297	struct kprobe *cur = kprobe_running();
298	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
299
300	if (!cur)
301		return 0;
302
303	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
304		kcb->kprobe_status = KPROBE_HIT_SSDONE;
305		cur->post_handler(cur, regs, 0);
306	}
307
308	resume_execution(cur, regs, kcb);
309
310	/*Restore back the original saved kprobes variables and continue. */
311	if (kcb->kprobe_status == KPROBE_REENTER) {
312		restore_previous_kprobe(kcb);
313		goto out;
314	}
315	reset_current_kprobe();
316out:
317	preempt_enable_no_resched();
318
319	return 1;
320}
321
322int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
323{
324	struct kprobe *cur = kprobe_running();
325	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
326	const struct exception_table_entry *entry;
327
328	switch(kcb->kprobe_status) {
329	case KPROBE_HIT_SS:
330	case KPROBE_REENTER:
331		/*
332		 * We are here because the instruction being single
333		 * stepped caused a page fault. We reset the current
334		 * kprobe and the tpc points back to the probe address
335		 * and allow the page fault handler to continue as a
336		 * normal page fault.
337		 */
338		regs->tpc = (unsigned long)cur->addr;
339		regs->tnpc = kcb->kprobe_orig_tnpc;
340		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
341				kcb->kprobe_orig_tstate_pil);
342		if (kcb->kprobe_status == KPROBE_REENTER)
343			restore_previous_kprobe(kcb);
344		else
345			reset_current_kprobe();
346		preempt_enable_no_resched();
347		break;
348	case KPROBE_HIT_ACTIVE:
349	case KPROBE_HIT_SSDONE:
350		/*
351		 * We increment the nmissed count for accounting,
352		 * we can also use npre/npostfault count for accouting
353		 * these specific fault cases.
354		 */
355		kprobes_inc_nmissed_count(cur);
356
357		/*
358		 * We come here because instructions in the pre/post
359		 * handler caused the page_fault, this could happen
360		 * if handler tries to access user space by
361		 * copy_from_user(), get_user() etc. Let the
362		 * user-specified handler try to fix it first.
363		 */
364		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
365			return 1;
366
367		/*
368		 * In case the user-specified fault handler returned
369		 * zero, try to fix up.
370		 */
371
372		entry = search_exception_tables(regs->tpc);
373		if (entry) {
374			regs->tpc = entry->fixup;
375			regs->tnpc = regs->tpc + 4;
376			return 1;
377		}
378
379		/*
380		 * fixup_exception() could not handle it,
381		 * Let do_page_fault() fix it.
382		 */
383		break;
384	default:
385		break;
386	}
387
388	return 0;
389}
390
391/*
392 * Wrapper routine to for handling exceptions.
393 */
394int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
395				       unsigned long val, void *data)
396{
397	struct die_args *args = (struct die_args *)data;
398	int ret = NOTIFY_DONE;
399
400	if (args->regs && user_mode(args->regs))
401		return ret;
402
403	switch (val) {
404	case DIE_DEBUG:
405		if (kprobe_handler(args->regs))
406			ret = NOTIFY_STOP;
407		break;
408	case DIE_DEBUG_2:
409		if (post_kprobe_handler(args->regs))
410			ret = NOTIFY_STOP;
411		break;
412	default:
413		break;
414	}
415	return ret;
416}
417
418asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
419				      struct pt_regs *regs)
420{
421	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
422
423	if (user_mode(regs)) {
424		local_irq_enable();
425		bad_trap(regs, trap_level);
426		return;
427	}
428
429	/* trap_level == 0x170 --> ta 0x70
430	 * trap_level == 0x171 --> ta 0x71
431	 */
432	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
433		       (trap_level == 0x170) ? "debug" : "debug_2",
434		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
435		bad_trap(regs, trap_level);
436}
437
438/* Jprobes support.  */
439int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
440{
441	struct jprobe *jp = container_of(p, struct jprobe, kp);
442	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443
444	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
445
446	regs->tpc  = (unsigned long) jp->entry;
447	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
448	regs->tstate |= TSTATE_PIL;
449
450	return 1;
451}
452
453void __kprobes jprobe_return(void)
454{
455	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456	register unsigned long orig_fp asm("g1");
457
458	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
459	__asm__ __volatile__("\n"
460"1:	cmp		%%sp, %0\n\t"
461	"blu,a,pt	%%xcc, 1b\n\t"
462	" restore\n\t"
463	".globl		jprobe_return_trap_instruction\n"
464"jprobe_return_trap_instruction:\n\t"
465	"ta		0x70"
466	: /* no outputs */
467	: "r" (orig_fp));
468}
469
470extern void jprobe_return_trap_instruction(void);
471
472int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
473{
474	u32 *addr = (u32 *) regs->tpc;
475	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476
477	if (addr == (u32 *) jprobe_return_trap_instruction) {
478		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
479		preempt_enable_no_resched();
480		return 1;
481	}
482	return 0;
483}
484
485/* The value stored in the return address register is actually 2
486 * instructions before where the callee will return to.
487 * Sequences usually look something like this
488 *
489 *		call	some_function	<--- return register points here
490 *		 nop			<--- call delay slot
491 *		whatever		<--- where callee returns to
492 *
493 * To keep trampoline_probe_handler logic simpler, we normalize the
494 * value kept in ri->ret_addr so we don't need to keep adjusting it
495 * back and forth.
496 */
497void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
498				      struct pt_regs *regs)
499{
500	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
501
502	/* Replace the return addr with trampoline addr */
503	regs->u_regs[UREG_RETPC] =
504		((unsigned long)kretprobe_trampoline) - 8;
505}
506
507/*
508 * Called when the probe at kretprobe trampoline is hit
509 */
510int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
511{
512	struct kretprobe_instance *ri = NULL;
513	struct hlist_head *head, empty_rp;
514	struct hlist_node *node, *tmp;
515	unsigned long flags, orig_ret_address = 0;
516	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
517
518	INIT_HLIST_HEAD(&empty_rp);
519	kretprobe_hash_lock(current, &head, &flags);
520
521	/*
522	 * It is possible to have multiple instances associated with a given
523	 * task either because an multiple functions in the call path
524	 * have a return probe installed on them, and/or more than one return
525	 * return probe was registered for a target function.
526	 *
527	 * We can handle this because:
528	 *     - instances are always inserted at the head of the list
529	 *     - when multiple return probes are registered for the same
530	 *       function, the first instance's ret_addr will point to the
531	 *       real return address, and all the rest will point to
532	 *       kretprobe_trampoline
533	 */
534	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
535		if (ri->task != current)
536			/* another task is sharing our hash bucket */
537			continue;
538
539		if (ri->rp && ri->rp->handler)
540			ri->rp->handler(ri, regs);
541
542		orig_ret_address = (unsigned long)ri->ret_addr;
543		recycle_rp_inst(ri, &empty_rp);
544
545		if (orig_ret_address != trampoline_address)
546			/*
547			 * This is the real return address. Any other
548			 * instances associated with this task are for
549			 * other calls deeper on the call stack
550			 */
551			break;
552	}
553
554	kretprobe_assert(ri, orig_ret_address, trampoline_address);
555	regs->tpc = orig_ret_address;
556	regs->tnpc = orig_ret_address + 4;
557
558	reset_current_kprobe();
559	kretprobe_hash_unlock(current, &flags);
560	preempt_enable_no_resched();
561
562	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
563		hlist_del(&ri->hlist);
564		kfree(ri);
565	}
566	/*
567	 * By returning a non-zero value, we are telling
568	 * kprobe_handler() that we don't want the post_handler
569	 * to run (and have re-enabled preemption)
570	 */
571	return 1;
572}
573
574void kretprobe_trampoline_holder(void)
575{
576	asm volatile(".global kretprobe_trampoline\n"
577		     "kretprobe_trampoline:\n"
578		     "\tnop\n"
579		     "\tnop\n");
580}
581static struct kprobe trampoline_p = {
582	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
583	.pre_handler = trampoline_probe_handler
584};
585
586int __init arch_init_kprobes(void)
587{
588	return register_kprobe(&trampoline_p);
589}
590
591int __kprobes arch_trampoline_kprobe(struct kprobe *p)
592{
593	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
594		return 1;
595
596	return 0;
597}
598