• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/powerpc/include/asm/
1#ifndef _SMU_H
2#define _SMU_H
3
4/*
5 * Definitions for talking to the SMU chip in newer G5 PowerMacs
6 */
7#ifdef __KERNEL__
8#include <linux/list.h>
9#endif
10#include <linux/types.h>
11
12/*
13 * Known SMU commands
14 *
15 * Most of what is below comes from looking at the Open Firmware driver,
16 * though this is still incomplete and could use better documentation here
17 * or there...
18 */
19
20
21/*
22 * Partition info commands
23 *
24 * These commands are used to retrieve the sdb-partition-XX datas from
25 * the SMU. The length is always 2. First byte is the subcommand code
26 * and second byte is the partition ID.
27 *
28 * The reply is 6 bytes:
29 *
30 *  - 0..1 : partition address
31 *  - 2    : a byte containing the partition ID
32 *  - 3    : length (maybe other bits are rest of header ?)
33 *
34 * The data must then be obtained with calls to another command:
35 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below).
36 */
37#define SMU_CMD_PARTITION_COMMAND		0x3e
38#define   SMU_CMD_PARTITION_LATEST		0x01
39#define   SMU_CMD_PARTITION_BASE		0x02
40#define   SMU_CMD_PARTITION_UPDATE		0x03
41
42
43/*
44 * Fan control
45 *
46 * This is a "mux" for fan control commands. The command seem to
47 * act differently based on the number of arguments. With 1 byte
48 * of argument, this seem to be queries for fans status, setpoint,
49 * etc..., while with 0xe arguments, we will set the fans speeds.
50 *
51 * Queries (1 byte arg):
52 * ---------------------
53 *
54 * arg=0x01: read RPM fans status
55 * arg=0x02: read RPM fans setpoint
56 * arg=0x11: read PWM fans status
57 * arg=0x12: read PWM fans setpoint
58 *
59 * the "status" queries return the current speed while the "setpoint" ones
60 * return the programmed/target speed. It _seems_ that the result is a bit
61 * mask in the first byte of active/available fans, followed by 6 words (16
62 * bits) containing the requested speed.
63 *
64 * Setpoint (14 bytes arg):
65 * ------------------------
66 *
67 * first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the
68 * mask of fans affected by the command. Followed by 6 words containing the
69 * setpoint value for selected fans in the mask (or 0 if mask value is 0)
70 */
71#define SMU_CMD_FAN_COMMAND			0x4a
72
73
74/*
75 * Battery access
76 *
77 * Same command number as the PMU, could it be same syntax ?
78 */
79#define SMU_CMD_BATTERY_COMMAND			0x6f
80#define   SMU_CMD_GET_BATTERY_INFO		0x00
81
82/*
83 * Real time clock control
84 *
85 * This is a "mux", first data byte contains the "sub" command.
86 * The "RTC" part of the SMU controls the date, time, powerup
87 * timer, but also a PRAM
88 *
89 * Dates are in BCD format on 7 bytes:
90 * [sec] [min] [hour] [weekday] [month day] [month] [year]
91 * with month being 1 based and year minus 100
92 */
93#define SMU_CMD_RTC_COMMAND			0x8e
94#define   SMU_CMD_RTC_SET_PWRUP_TIMER		0x00 /* i: 7 bytes date */
95#define   SMU_CMD_RTC_GET_PWRUP_TIMER		0x01 /* o: 7 bytes date */
96#define   SMU_CMD_RTC_STOP_PWRUP_TIMER		0x02
97#define   SMU_CMD_RTC_SET_PRAM_BYTE_ACC		0x20 /* i: 1 byte (address?) */
98#define   SMU_CMD_RTC_SET_PRAM_AUTOINC		0x21 /* i: 1 byte (data?) */
99#define   SMU_CMD_RTC_SET_PRAM_LO_BYTES 	0x22 /* i: 10 bytes */
100#define   SMU_CMD_RTC_SET_PRAM_HI_BYTES 	0x23 /* i: 10 bytes */
101#define   SMU_CMD_RTC_GET_PRAM_BYTE		0x28 /* i: 1 bytes (address?) */
102#define   SMU_CMD_RTC_GET_PRAM_LO_BYTES 	0x29 /* o: 10 bytes */
103#define   SMU_CMD_RTC_GET_PRAM_HI_BYTES 	0x2a /* o: 10 bytes */
104#define	  SMU_CMD_RTC_SET_DATETIME		0x80 /* i: 7 bytes date */
105#define   SMU_CMD_RTC_GET_DATETIME		0x81 /* o: 7 bytes date */
106
107 /*
108  * i2c commands
109  *
110  * To issue an i2c command, first is to send a parameter block to the
111  * the SMU. This is a command of type 0x9a with 9 bytes of header
112  * eventually followed by data for a write:
113  *
114  * 0: bus number (from device-tree usually, SMU has lots of busses !)
115  * 1: transfer type/format (see below)
116  * 2: device address. For combined and combined4 type transfers, this
117  *    is the "write" version of the address (bit 0x01 cleared)
118  * 3: subaddress length (0..3)
119  * 4: subaddress byte 0 (or only byte for subaddress length 1)
120  * 5: subaddress byte 1
121  * 6: subaddress byte 2
122  * 7: combined address (device address for combined mode data phase)
123  * 8: data length
124  *
125  * The transfer types are the same good old Apple ones it seems,
126  * that is:
127  *   - 0x00: Simple transfer
128  *   - 0x01: Subaddress transfer (addr write + data tx, no restart)
129  *   - 0x02: Combined transfer (addr write + restart + data tx)
130  *
131  * This is then followed by actual data for a write.
132  *
133  * At this point, the OF driver seems to have a limitation on transfer
134  * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
135  * wether this is just an OF limit due to some temporary buffer size
136  * or if this is an SMU imposed limit. This driver has the same limitation
137  * for now as I use a 0x10 bytes temporary buffer as well
138  *
139  * Once that is completed, a response is expected from the SMU. This is
140  * obtained via a command of type 0x9a with a length of 1 byte containing
141  * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
142  * though I can't tell yet if this is actually necessary. Once this command
143  * is complete, at this point, all I can tell is what OF does. OF tests
144  * byte 0 of the reply:
145  *   - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
146  *   - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
147  *   - on write, < 0 -> failure (immediate exit)
148  *   - else, OF just exists (without error, weird)
149  *
150  * So on read, there is this wait-for-busy thing when getting a 0xfc or
151  * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
152  * doing the above again until either the retries expire or the result
153  * is no longer 0xfe or 0xfc
154  *
155  * The Darwin I2C driver is less subtle though. On any non-success status
156  * from the response command, it waits 5ms and tries again up to 20 times,
157  * it doesn't differenciate between fatal errors or "busy" status.
158  *
159  * This driver provides an asynchronous paramblock based i2c command
160  * interface to be used either directly by low level code or by a higher
161  * level driver interfacing to the linux i2c layer. The current
162  * implementation of this relies on working timers & timer interrupts
163  * though, so be careful of calling context for now. This may be "fixed"
164  * in the future by adding a polling facility.
165  */
166#define SMU_CMD_I2C_COMMAND			0x9a
167          /* transfer types */
168#define   SMU_I2C_TRANSFER_SIMPLE	0x00
169#define   SMU_I2C_TRANSFER_STDSUB	0x01
170#define   SMU_I2C_TRANSFER_COMBINED	0x02
171
172/*
173 * Power supply control
174 *
175 * The "sub" command is an ASCII string in the data, the
176 * data length is that of the string.
177 *
178 * The VSLEW command can be used to get or set the voltage slewing.
179 *  - length 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
180 *    reply at data offset 6, 7 and 8.
181 *  - length 8 ("VSLEWxyz") has 3 additional bytes appended, and is
182 *    used to set the voltage slewing point. The SMU replies with "DONE"
183 * I yet have to figure out their exact meaning of those 3 bytes in
184 * both cases. They seem to be:
185 *  x = processor mask
186 *  y = op. point index
187 *  z = processor freq. step index
188 * I haven't yet decyphered result codes
189 *
190 */
191#define SMU_CMD_POWER_COMMAND			0xaa
192#define   SMU_CMD_POWER_RESTART		       	"RESTART"
193#define   SMU_CMD_POWER_SHUTDOWN		"SHUTDOWN"
194#define   SMU_CMD_POWER_VOLTAGE_SLEW		"VSLEW"
195
196/*
197 * Read ADC sensors
198 *
199 * This command takes one byte of parameter: the sensor ID (or "reg"
200 * value in the device-tree) and returns a 16 bits value
201 */
202#define SMU_CMD_READ_ADC			0xd8
203
204
205/* Misc commands
206 *
207 * This command seem to be a grab bag of various things
208 *
209 * Parameters:
210 *   1: subcommand
211 */
212#define SMU_CMD_MISC_df_COMMAND			0xdf
213
214/*
215 * Sets "system ready" status
216 *
217 * I did not yet understand how it exactly works or what it does.
218 *
219 * Guessing from OF code, 0x02 activates the display backlight. Apple uses/used
220 * the same codebase for all OF versions. On PowerBooks, this command would
221 * enable the backlight. For the G5s, it only activates the front LED. However,
222 * don't take this for granted.
223 *
224 * Parameters:
225 *   2: status [0x00, 0x01 or 0x02]
226 */
227#define   SMU_CMD_MISC_df_SET_DISPLAY_LIT	0x02
228
229/*
230 * Sets mode of power switch.
231 *
232 * What this actually does is not yet known. Maybe it enables some interrupt.
233 *
234 * Parameters:
235 *   2: enable power switch? [0x00 or 0x01]
236 *   3 (optional): enable nmi? [0x00 or 0x01]
237 *
238 * Returns:
239 *   If parameter 2 is 0x00 and parameter 3 is not specified, returns wether
240 *   NMI is enabled. Otherwise unknown.
241 */
242#define   SMU_CMD_MISC_df_NMI_OPTION		0x04
243
244/* Sets LED dimm offset.
245 *
246 * The front LED dimms itself during sleep. Its brightness (or, well, the PWM
247 * frequency) depends on current time. Therefore, the SMU needs to know the
248 * timezone.
249 *
250 * Parameters:
251 *   2-8: unknown (BCD coding)
252 */
253#define   SMU_CMD_MISC_df_DIMM_OFFSET		0x99
254
255
256/*
257 * Version info commands
258 *
259 * Parameters:
260 *   1 (optional): Specifies version part to retrieve
261 *
262 * Returns:
263 *   Version value
264 */
265#define SMU_CMD_VERSION_COMMAND			0xea
266#define   SMU_VERSION_RUNNING			0x00
267#define   SMU_VERSION_BASE			0x01
268#define   SMU_VERSION_UPDATE			0x02
269
270
271/*
272 * Switches
273 *
274 * These are switches whose status seems to be known to the SMU.
275 *
276 * Parameters:
277 *   none
278 *
279 * Result:
280 *   Switch bits (ORed, see below)
281 */
282#define SMU_CMD_SWITCHES			0xdc
283
284/* Switches bits */
285#define SMU_SWITCH_CASE_CLOSED			0x01
286#define SMU_SWITCH_AC_POWER			0x04
287#define SMU_SWITCH_POWER_SWITCH			0x08
288
289
290/*
291 * Misc commands
292 *
293 * This command seem to be a grab bag of various things
294 *
295 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to
296 * transfer blocks of data from the SMU. So far, I've decrypted it's
297 * usage to retrieve partition data. In order to do that, you have to
298 * break your transfer in "chunks" since that command cannot transfer
299 * more than a chunk at a time. The chunk size used by OF is 0xe bytes,
300 * but it seems that the darwin driver will let you do 0x1e bytes if
301 * your "PMU" version is >= 0x30. You can get the "PMU" version apparently
302 * either in the last 16 bits of property "smu-version-pmu" or as the 16
303 * bytes at offset 1 of "smu-version-info"
304 *
305 * For each chunk, the command takes 7 bytes of arguments:
306 *  byte 0: subcommand code (0x02)
307 *  byte 1: 0x04 (always, I don't know what it means, maybe the address
308 *                space to use or some other nicety. It's hard coded in OF)
309 *  byte 2..5: SMU address of the chunk (big endian 32 bits)
310 *  byte 6: size to transfer (up to max chunk size)
311 *
312 * The data is returned directly
313 */
314#define SMU_CMD_MISC_ee_COMMAND			0xee
315#define   SMU_CMD_MISC_ee_GET_DATABLOCK_REC	0x02
316
317/* Retrieves currently used watts.
318 *
319 * Parameters:
320 *   1: 0x03 (Meaning unknown)
321 */
322#define   SMU_CMD_MISC_ee_GET_WATTS		0x03
323
324#define   SMU_CMD_MISC_ee_LEDS_CTRL		0x04 /* i: 00 (00,01) [00] */
325#define   SMU_CMD_MISC_ee_GET_DATA		0x05 /* i: 00 , o: ?? */
326
327
328/*
329 * Power related commands
330 *
331 * Parameters:
332 *   1: subcommand
333 */
334#define SMU_CMD_POWER_EVENTS_COMMAND		0x8f
335
336/* SMU_POWER_EVENTS subcommands */
337enum {
338	SMU_PWR_GET_POWERUP_EVENTS      = 0x00,
339	SMU_PWR_SET_POWERUP_EVENTS      = 0x01,
340	SMU_PWR_CLR_POWERUP_EVENTS      = 0x02,
341	SMU_PWR_GET_WAKEUP_EVENTS       = 0x03,
342	SMU_PWR_SET_WAKEUP_EVENTS       = 0x04,
343	SMU_PWR_CLR_WAKEUP_EVENTS       = 0x05,
344
345	/*
346	 * Get last shutdown cause
347	 *
348	 * Returns:
349	 *   1 byte (signed char): Last shutdown cause. Exact meaning unknown.
350	 */
351	SMU_PWR_LAST_SHUTDOWN_CAUSE	= 0x07,
352
353	/*
354	 * Sets or gets server ID. Meaning or use is unknown.
355	 *
356	 * Parameters:
357	 *   2 (optional): Set server ID (1 byte)
358	 *
359	 * Returns:
360	 *   1 byte (server ID?)
361	 */
362	SMU_PWR_SERVER_ID		= 0x08,
363};
364
365/* Power events wakeup bits */
366enum {
367	SMU_PWR_WAKEUP_KEY              = 0x01, /* Wake on key press */
368	SMU_PWR_WAKEUP_AC_INSERT        = 0x02, /* Wake on AC adapter plug */
369	SMU_PWR_WAKEUP_AC_CHANGE        = 0x04,
370	SMU_PWR_WAKEUP_LID_OPEN         = 0x08,
371	SMU_PWR_WAKEUP_RING             = 0x10,
372};
373
374
375/*
376 * - Kernel side interface -
377 */
378
379#ifdef __KERNEL__
380
381/*
382 * Asynchronous SMU commands
383 *
384 * Fill up this structure and submit it via smu_queue_command(),
385 * and get notified by the optional done() callback, or because
386 * status becomes != 1
387 */
388
389struct smu_cmd;
390
391struct smu_cmd
392{
393	/* public */
394	u8			cmd;		/* command */
395	int			data_len;	/* data len */
396	int			reply_len;	/* reply len */
397	void			*data_buf;	/* data buffer */
398	void			*reply_buf;	/* reply buffer */
399	int			status;		/* command status */
400	void			(*done)(struct smu_cmd *cmd, void *misc);
401	void			*misc;
402
403	/* private */
404	struct list_head	link;
405};
406
407/*
408 * Queues an SMU command, all fields have to be initialized
409 */
410extern int smu_queue_cmd(struct smu_cmd *cmd);
411
412/*
413 * Simple command wrapper. This structure embeds a small buffer
414 * to ease sending simple SMU commands from the stack
415 */
416struct smu_simple_cmd
417{
418	struct smu_cmd	cmd;
419	u8	       	buffer[16];
420};
421
422/*
423 * Queues a simple command. All fields will be initialized by that
424 * function
425 */
426extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
427			    unsigned int data_len,
428			    void (*done)(struct smu_cmd *cmd, void *misc),
429			    void *misc,
430			    ...);
431
432/*
433 * Completion helper. Pass it to smu_queue_simple or as 'done'
434 * member to smu_queue_cmd, it will call complete() on the struct
435 * completion passed in the "misc" argument
436 */
437extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
438
439/*
440 * Synchronous helpers. Will spin-wait for completion of a command
441 */
442extern void smu_spinwait_cmd(struct smu_cmd *cmd);
443
444static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
445{
446	smu_spinwait_cmd(&scmd->cmd);
447}
448
449/*
450 * Poll routine to call if blocked with irqs off
451 */
452extern void smu_poll(void);
453
454
455/*
456 * Init routine, presence check....
457 */
458extern int smu_init(void);
459extern int smu_present(void);
460struct platform_device;
461extern struct platform_device *smu_get_ofdev(void);
462
463
464/*
465 * Common command wrappers
466 */
467extern void smu_shutdown(void);
468extern void smu_restart(void);
469struct rtc_time;
470extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
471extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
472
473/*
474 * SMU command buffer absolute address, exported by pmac_setup,
475 * this is allocated very early during boot.
476 */
477extern unsigned long smu_cmdbuf_abs;
478
479
480/*
481 * Kenrel asynchronous i2c interface
482 */
483
484#define SMU_I2C_READ_MAX	0x1d
485#define SMU_I2C_WRITE_MAX	0x15
486
487/* SMU i2c header, exactly matches i2c header on wire */
488struct smu_i2c_param
489{
490	u8	bus;		/* SMU bus ID (from device tree) */
491	u8	type;		/* i2c transfer type */
492	u8	devaddr;	/* device address (includes direction) */
493	u8	sublen;		/* subaddress length */
494	u8	subaddr[3];	/* subaddress */
495	u8	caddr;		/* combined address, filled by SMU driver */
496	u8	datalen;	/* length of transfer */
497	u8	data[SMU_I2C_READ_MAX];	/* data */
498};
499
500struct smu_i2c_cmd
501{
502	/* public */
503	struct smu_i2c_param	info;
504	void			(*done)(struct smu_i2c_cmd *cmd, void *misc);
505	void			*misc;
506	int			status; /* 1 = pending, 0 = ok, <0 = fail */
507
508	/* private */
509	struct smu_cmd		scmd;
510	int			read;
511	int			stage;
512	int			retries;
513	u8			pdata[32];
514	struct list_head	link;
515};
516
517/*
518 * Call this to queue an i2c command to the SMU. You must fill info,
519 * including info.data for a write, done and misc.
520 * For now, no polling interface is provided so you have to use completion
521 * callback.
522 */
523extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
524
525
526#endif /* __KERNEL__ */
527
528
529/*
530 * - SMU "sdb" partitions informations -
531 */
532
533
534/*
535 * Partition header format
536 */
537struct smu_sdbp_header {
538	__u8	id;
539	__u8	len;
540	__u8	version;
541	__u8	flags;
542};
543
544
545 /*
546 * demangle 16 and 32 bits integer in some SMU partitions
547 * (currently, afaik, this concerns only the FVT partition
548 * (0x12)
549 */
550#define SMU_U16_MIX(x)	le16_to_cpu(x);
551#define SMU_U32_MIX(x)  ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8))
552
553
554/* This is the definition of the SMU sdb-partition-0x12 table (called
555 * CPU F/V/T operating points in Darwin). The definition for all those
556 * SMU tables should be moved to some separate file
557 */
558#define SMU_SDB_FVT_ID			0x12
559
560struct smu_sdbp_fvt {
561	__u32	sysclk;			/* Base SysClk frequency in Hz for
562					 * this operating point. Value need to
563					 * be unmixed with SMU_U32_MIX()
564					 */
565	__u8	pad;
566	__u8	maxtemp;		/* Max temp. supported by this
567					 * operating point
568					 */
569
570	__u16	volts[3];		/* CPU core voltage for the 3
571					 * PowerTune modes, a mode with
572					 * 0V = not supported. Value need
573					 * to be unmixed with SMU_U16_MIX()
574					 */
575};
576
577/* This partition contains voltage & current sensor calibration
578 * informations
579 */
580#define SMU_SDB_CPUVCP_ID		0x21
581
582struct smu_sdbp_cpuvcp {
583	__u16	volt_scale;		/* u4.12 fixed point */
584	__s16	volt_offset;		/* s4.12 fixed point */
585	__u16	curr_scale;		/* u4.12 fixed point */
586	__s16	curr_offset;		/* s4.12 fixed point */
587	__s32	power_quads[3];		/* s4.28 fixed point */
588};
589
590/* This partition contains CPU thermal diode calibration
591 */
592#define SMU_SDB_CPUDIODE_ID		0x18
593
594struct smu_sdbp_cpudiode {
595	__u16	m_value;		/* u1.15 fixed point */
596	__s16	b_value;		/* s10.6 fixed point */
597
598};
599
600/* This partition contains Slots power calibration
601 */
602#define SMU_SDB_SLOTSPOW_ID		0x78
603
604struct smu_sdbp_slotspow {
605	__u16	pow_scale;		/* u4.12 fixed point */
606	__s16	pow_offset;		/* s4.12 fixed point */
607};
608
609/* This partition contains machine specific version information about
610 * the sensor/control layout
611 */
612#define SMU_SDB_SENSORTREE_ID		0x25
613
614struct smu_sdbp_sensortree {
615	__u8	model_id;
616	__u8	unknown[3];
617};
618
619/* This partition contains CPU thermal control PID informations. So far
620 * only single CPU machines have been seen with an SMU, so we assume this
621 * carries only informations for those
622 */
623#define SMU_SDB_CPUPIDDATA_ID		0x17
624
625struct smu_sdbp_cpupiddata {
626	__u8	unknown1;
627	__u8	target_temp_delta;
628	__u8	unknown2;
629	__u8	history_len;
630	__s16	power_adj;
631	__u16	max_power;
632	__s32	gp,gr,gd;
633};
634
635
636/* Other partitions without known structures */
637#define SMU_SDB_DEBUG_SWITCHES_ID	0x05
638
639#ifdef __KERNEL__
640/*
641 * This returns the pointer to an SMU "sdb" partition data or NULL
642 * if not found. The data format is described below
643 */
644extern const struct smu_sdbp_header *smu_get_sdb_partition(int id,
645					unsigned int *size);
646
647/* Get "sdb" partition data from an SMU satellite */
648extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id,
649					int id, unsigned int *size);
650
651
652#endif /* __KERNEL__ */
653
654
655/*
656 * - Userland interface -
657 */
658
659/*
660 * A given instance of the device can be configured for 2 different
661 * things at the moment:
662 *
663 *  - sending SMU commands (default at open() time)
664 *  - receiving SMU events (not yet implemented)
665 *
666 * Commands are written with write() of a command block. They can be
667 * "driver" commands (for example to switch to event reception mode)
668 * or real SMU commands. They are made of a header followed by command
669 * data if any.
670 *
671 * For SMU commands (not for driver commands), you can then read() back
672 * a reply. The reader will be blocked or not depending on how the device
673 * file is opened. poll() isn't implemented yet. The reply will consist
674 * of a header as well, followed by the reply data if any. You should
675 * always provide a buffer large enough for the maximum reply data, I
676 * recommand one page.
677 *
678 * It is illegal to send SMU commands through a file descriptor configured
679 * for events reception
680 *
681 */
682struct smu_user_cmd_hdr
683{
684	__u32		cmdtype;
685#define SMU_CMDTYPE_SMU			0	/* SMU command */
686#define SMU_CMDTYPE_WANTS_EVENTS	1	/* switch fd to events mode */
687#define SMU_CMDTYPE_GET_PARTITION	2	/* retrieve an sdb partition */
688
689	__u8		cmd;			/* SMU command byte */
690	__u8		pad[3];			/* padding */
691	__u32		data_len;		/* Length of data following */
692};
693
694struct smu_user_reply_hdr
695{
696	__u32		status;			/* Command status */
697	__u32		reply_len;		/* Length of data follwing */
698};
699
700#endif /*  _SMU_H */
701