• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/powerpc/include/asm/
1/*
2 * PowerPC atomic bit operations.
3 *
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard.  They
7 * originally took it from the ppc32 code.
8 *
9 * Within a word, bits are numbered LSB first.  Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 *   |63..............0|127............64|191...........128|255...........196|
18 * and on ppc32:
19 *   |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
20 *
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
23 * byte-oriented:
24 *   |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
25 *
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
29 *
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
34 */
35
36#ifndef _ASM_POWERPC_BITOPS_H
37#define _ASM_POWERPC_BITOPS_H
38
39#ifdef __KERNEL__
40
41#ifndef _LINUX_BITOPS_H
42#error only <linux/bitops.h> can be included directly
43#endif
44
45#include <linux/compiler.h>
46#include <asm/asm-compat.h>
47#include <asm/synch.h>
48
49/*
50 * clear_bit doesn't imply a memory barrier
51 */
52#define smp_mb__before_clear_bit()	smp_mb()
53#define smp_mb__after_clear_bit()	smp_mb()
54
55#define BITOP_MASK(nr)		(1UL << ((nr) % BITS_PER_LONG))
56#define BITOP_WORD(nr)		((nr) / BITS_PER_LONG)
57#define BITOP_LE_SWIZZLE	((BITS_PER_LONG-1) & ~0x7)
58
59/* Macro for generating the ***_bits() functions */
60#define DEFINE_BITOP(fn, op, prefix, postfix)	\
61static __inline__ void fn(unsigned long mask,	\
62		volatile unsigned long *_p)	\
63{						\
64	unsigned long old;			\
65	unsigned long *p = (unsigned long *)_p;	\
66	__asm__ __volatile__ (			\
67	prefix					\
68"1:"	PPC_LLARX(%0,0,%3,0) "\n"		\
69	stringify_in_c(op) "%0,%0,%2\n"		\
70	PPC405_ERR77(0,%3)			\
71	PPC_STLCX "%0,0,%3\n"			\
72	"bne- 1b\n"				\
73	postfix					\
74	: "=&r" (old), "+m" (*p)		\
75	: "r" (mask), "r" (p)			\
76	: "cc", "memory");			\
77}
78
79DEFINE_BITOP(set_bits, or, "", "")
80DEFINE_BITOP(clear_bits, andc, "", "")
81DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
82DEFINE_BITOP(change_bits, xor, "", "")
83
84static __inline__ void set_bit(int nr, volatile unsigned long *addr)
85{
86	set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
87}
88
89static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
90{
91	clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
92}
93
94static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
95{
96	clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
97}
98
99static __inline__ void change_bit(int nr, volatile unsigned long *addr)
100{
101	change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
102}
103
104/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
105 * operands. */
106#define DEFINE_TESTOP(fn, op, prefix, postfix, eh)	\
107static __inline__ unsigned long fn(			\
108		unsigned long mask,			\
109		volatile unsigned long *_p)		\
110{							\
111	unsigned long old, t;				\
112	unsigned long *p = (unsigned long *)_p;		\
113	__asm__ __volatile__ (				\
114	prefix						\
115"1:"	PPC_LLARX(%0,0,%3,eh) "\n"			\
116	stringify_in_c(op) "%1,%0,%2\n"			\
117	PPC405_ERR77(0,%3)				\
118	PPC_STLCX "%1,0,%3\n"				\
119	"bne- 1b\n"					\
120	postfix						\
121	: "=&r" (old), "=&r" (t)			\
122	: "r" (mask), "r" (p)				\
123	: "cc", "memory");				\
124	return (old & mask);				\
125}
126
127DEFINE_TESTOP(test_and_set_bits, or, PPC_RELEASE_BARRIER,
128	      PPC_ACQUIRE_BARRIER, 0)
129DEFINE_TESTOP(test_and_set_bits_lock, or, "",
130	      PPC_ACQUIRE_BARRIER, 1)
131DEFINE_TESTOP(test_and_clear_bits, andc, PPC_RELEASE_BARRIER,
132	      PPC_ACQUIRE_BARRIER, 0)
133DEFINE_TESTOP(test_and_change_bits, xor, PPC_RELEASE_BARRIER,
134	      PPC_ACQUIRE_BARRIER, 0)
135
136static __inline__ int test_and_set_bit(unsigned long nr,
137				       volatile unsigned long *addr)
138{
139	return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
140}
141
142static __inline__ int test_and_set_bit_lock(unsigned long nr,
143				       volatile unsigned long *addr)
144{
145	return test_and_set_bits_lock(BITOP_MASK(nr),
146				addr + BITOP_WORD(nr)) != 0;
147}
148
149static __inline__ int test_and_clear_bit(unsigned long nr,
150					 volatile unsigned long *addr)
151{
152	return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
153}
154
155static __inline__ int test_and_change_bit(unsigned long nr,
156					  volatile unsigned long *addr)
157{
158	return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
159}
160
161#include <asm-generic/bitops/non-atomic.h>
162
163static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
164{
165	__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
166	__clear_bit(nr, addr);
167}
168
169/*
170 * Return the zero-based bit position (LE, not IBM bit numbering) of
171 * the most significant 1-bit in a double word.
172 */
173static __inline__ __attribute__((const))
174int __ilog2(unsigned long x)
175{
176	int lz;
177
178	asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
179	return BITS_PER_LONG - 1 - lz;
180}
181
182static inline __attribute__((const))
183int __ilog2_u32(u32 n)
184{
185	int bit;
186	asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
187	return 31 - bit;
188}
189
190#ifdef __powerpc64__
191static inline __attribute__((const))
192int __ilog2_u64(u64 n)
193{
194	int bit;
195	asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
196	return 63 - bit;
197}
198#endif
199
200/*
201 * Determines the bit position of the least significant 0 bit in the
202 * specified double word. The returned bit position will be
203 * zero-based, starting from the right side (63/31 - 0).
204 */
205static __inline__ unsigned long ffz(unsigned long x)
206{
207	/* no zero exists anywhere in the 8 byte area. */
208	if ((x = ~x) == 0)
209		return BITS_PER_LONG;
210
211	/*
212	 * Calculate the bit position of the least signficant '1' bit in x
213	 * (since x has been changed this will actually be the least signficant
214	 * '0' bit in * the original x).  Note: (x & -x) gives us a mask that
215	 * is the least significant * (RIGHT-most) 1-bit of the value in x.
216	 */
217	return __ilog2(x & -x);
218}
219
220static __inline__ int __ffs(unsigned long x)
221{
222	return __ilog2(x & -x);
223}
224
225/*
226 * ffs: find first bit set. This is defined the same way as
227 * the libc and compiler builtin ffs routines, therefore
228 * differs in spirit from the above ffz (man ffs).
229 */
230static __inline__ int ffs(int x)
231{
232	unsigned long i = (unsigned long)x;
233	return __ilog2(i & -i) + 1;
234}
235
236/*
237 * fls: find last (most-significant) bit set.
238 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
239 */
240static __inline__ int fls(unsigned int x)
241{
242	int lz;
243
244	asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
245	return 32 - lz;
246}
247
248static __inline__ unsigned long __fls(unsigned long x)
249{
250	return __ilog2(x);
251}
252
253/*
254 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
255 * instruction; for 32-bit we use the generic version, which does two
256 * 32-bit fls calls.
257 */
258#ifdef __powerpc64__
259static __inline__ int fls64(__u64 x)
260{
261	int lz;
262
263	asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
264	return 64 - lz;
265}
266#else
267#include <asm-generic/bitops/fls64.h>
268#endif /* __powerpc64__ */
269
270#include <asm-generic/bitops/hweight.h>
271#include <asm-generic/bitops/find.h>
272
273/* Little-endian versions */
274
275static __inline__ int test_le_bit(unsigned long nr,
276				  __const__ unsigned long *addr)
277{
278	__const__ unsigned char	*tmp = (__const__ unsigned char *) addr;
279	return (tmp[nr >> 3] >> (nr & 7)) & 1;
280}
281
282#define __set_le_bit(nr, addr) \
283	__set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
284#define __clear_le_bit(nr, addr) \
285	__clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
286
287#define test_and_set_le_bit(nr, addr) \
288	test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
289#define test_and_clear_le_bit(nr, addr) \
290	test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
291
292#define __test_and_set_le_bit(nr, addr) \
293	__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
294#define __test_and_clear_le_bit(nr, addr) \
295	__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
296
297#define find_first_zero_le_bit(addr, size) generic_find_next_zero_le_bit((addr), (size), 0)
298unsigned long generic_find_next_zero_le_bit(const unsigned long *addr,
299				    unsigned long size, unsigned long offset);
300
301unsigned long generic_find_next_le_bit(const unsigned long *addr,
302				    unsigned long size, unsigned long offset);
303/* Bitmap functions for the ext2 filesystem */
304
305#define ext2_set_bit(nr,addr) \
306	__test_and_set_le_bit((nr), (unsigned long*)addr)
307#define ext2_clear_bit(nr, addr) \
308	__test_and_clear_le_bit((nr), (unsigned long*)addr)
309
310#define ext2_set_bit_atomic(lock, nr, addr) \
311	test_and_set_le_bit((nr), (unsigned long*)addr)
312#define ext2_clear_bit_atomic(lock, nr, addr) \
313	test_and_clear_le_bit((nr), (unsigned long*)addr)
314
315#define ext2_test_bit(nr, addr)      test_le_bit((nr),(unsigned long*)addr)
316
317#define ext2_find_first_zero_bit(addr, size) \
318	find_first_zero_le_bit((unsigned long*)addr, size)
319#define ext2_find_next_zero_bit(addr, size, off) \
320	generic_find_next_zero_le_bit((unsigned long*)addr, size, off)
321
322#define ext2_find_next_bit(addr, size, off) \
323	generic_find_next_le_bit((unsigned long *)addr, size, off)
324/* Bitmap functions for the minix filesystem.  */
325
326#define minix_test_and_set_bit(nr,addr) \
327	__test_and_set_le_bit(nr, (unsigned long *)addr)
328#define minix_set_bit(nr,addr) \
329	__set_le_bit(nr, (unsigned long *)addr)
330#define minix_test_and_clear_bit(nr,addr) \
331	__test_and_clear_le_bit(nr, (unsigned long *)addr)
332#define minix_test_bit(nr,addr) \
333	test_le_bit(nr, (unsigned long *)addr)
334
335#define minix_find_first_zero_bit(addr,size) \
336	find_first_zero_le_bit((unsigned long *)addr, size)
337
338#include <asm-generic/bitops/sched.h>
339
340#endif /* __KERNEL__ */
341
342#endif /* _ASM_POWERPC_BITOPS_H */
343