• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/sn/pci/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2003-2006 Silicon Graphics, Inc.  All Rights Reserved.
7 */
8
9#include <linux/types.h>
10#include <linux/interrupt.h>
11#include <linux/slab.h>
12#include <linux/pci.h>
13#include <asm/sn/sn_sal.h>
14#include <asm/sn/addrs.h>
15#include <asm/sn/io.h>
16#include <asm/sn/pcidev.h>
17#include <asm/sn/pcibus_provider_defs.h>
18#include <asm/sn/tioce_provider.h>
19
20/*
21 * 1/26/2006
22 *
23 * WAR for SGI PV 944642.  For revA TIOCE, need to use the following recipe
24 * (taken from the above PV) before and after accessing tioce internal MMR's
25 * to avoid tioce lockups.
26 *
27 * The recipe as taken from the PV:
28 *
29 *	if(mmr address < 0x45000) {
30 *		if(mmr address == 0 or 0x80)
31 *			mmr wrt or read address 0xc0
32 *		else if(mmr address == 0x148 or 0x200)
33 *			mmr wrt or read address 0x28
34 *		else
35 *			mmr wrt or read address 0x158
36 *
37 *		do desired mmr access (rd or wrt)
38 *
39 *		if(mmr address == 0x100)
40 *			mmr wrt or read address 0x38
41 *		mmr wrt or read address 0xb050
42 *	} else
43 *		do desired mmr access
44 *
45 * According to hw, we can use reads instead of writes to the above address
46 *
47 * Note this WAR can only to be used for accessing internal MMR's in the
48 * TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff.  This includes the
49 * "Local CE Registers and Memories" and "PCI Compatible Config Space" address
50 * spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
51 *
52 * All registers defined in struct tioce will meet that criteria.
53 */
54
55static void inline
56tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
57{
58	u64 mmr_base;
59	u64 mmr_offset;
60
61	if (kern->ce_common->ce_rev != TIOCE_REV_A)
62		return;
63
64	mmr_base = kern->ce_common->ce_pcibus.bs_base;
65	mmr_offset = (unsigned long)mmr_addr - mmr_base;
66
67	if (mmr_offset < 0x45000) {
68		u64 mmr_war_offset;
69
70		if (mmr_offset == 0 || mmr_offset == 0x80)
71			mmr_war_offset = 0xc0;
72		else if (mmr_offset == 0x148 || mmr_offset == 0x200)
73			mmr_war_offset = 0x28;
74		else
75			mmr_war_offset = 0x158;
76
77		readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
78	}
79}
80
81static void inline
82tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
83{
84	u64 mmr_base;
85	u64 mmr_offset;
86
87	if (kern->ce_common->ce_rev != TIOCE_REV_A)
88		return;
89
90	mmr_base = kern->ce_common->ce_pcibus.bs_base;
91	mmr_offset = (unsigned long)mmr_addr - mmr_base;
92
93	if (mmr_offset < 0x45000) {
94		if (mmr_offset == 0x100)
95			readq_relaxed((void __iomem *)(mmr_base + 0x38));
96		readq_relaxed((void __iomem *)(mmr_base + 0xb050));
97	}
98}
99
100/* load mmr contents into a variable */
101#define tioce_mmr_load(kern, mmrp, varp) do {\
102	tioce_mmr_war_pre(kern, mmrp); \
103	*(varp) = readq_relaxed(mmrp); \
104	tioce_mmr_war_post(kern, mmrp); \
105} while (0)
106
107/* store variable contents into mmr */
108#define tioce_mmr_store(kern, mmrp, varp) do {\
109	tioce_mmr_war_pre(kern, mmrp); \
110	writeq(*varp, mmrp); \
111	tioce_mmr_war_post(kern, mmrp); \
112} while (0)
113
114/* store immediate value into mmr */
115#define tioce_mmr_storei(kern, mmrp, val) do {\
116	tioce_mmr_war_pre(kern, mmrp); \
117	writeq(val, mmrp); \
118	tioce_mmr_war_post(kern, mmrp); \
119} while (0)
120
121/* set bits (immediate value) into mmr */
122#define tioce_mmr_seti(kern, mmrp, bits) do {\
123	u64 tmp; \
124	tioce_mmr_load(kern, mmrp, &tmp); \
125	tmp |= (bits); \
126	tioce_mmr_store(kern, mmrp, &tmp); \
127} while (0)
128
129/* clear bits (immediate value) into mmr */
130#define tioce_mmr_clri(kern, mmrp, bits) do { \
131	u64 tmp; \
132	tioce_mmr_load(kern, mmrp, &tmp); \
133	tmp &= ~(bits); \
134	tioce_mmr_store(kern, mmrp, &tmp); \
135} while (0)
136
137/**
138 * Bus address ranges for the 5 flavors of TIOCE DMA
139 */
140
141#define TIOCE_D64_MIN	0x8000000000000000UL
142#define TIOCE_D64_MAX	0xffffffffffffffffUL
143#define TIOCE_D64_ADDR(a)	((a) >= TIOCE_D64_MIN)
144
145#define TIOCE_D32_MIN	0x0000000080000000UL
146#define TIOCE_D32_MAX	0x00000000ffffffffUL
147#define TIOCE_D32_ADDR(a)	((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
148
149#define TIOCE_M32_MIN	0x0000000000000000UL
150#define TIOCE_M32_MAX	0x000000007fffffffUL
151#define TIOCE_M32_ADDR(a)	((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
152
153#define TIOCE_M40_MIN	0x0000004000000000UL
154#define TIOCE_M40_MAX	0x0000007fffffffffUL
155#define TIOCE_M40_ADDR(a)	((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
156
157#define TIOCE_M40S_MIN	0x0000008000000000UL
158#define TIOCE_M40S_MAX	0x000000ffffffffffUL
159#define TIOCE_M40S_ADDR(a)	((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
160
161/*
162 * ATE manipulation macros.
163 */
164
165#define ATE_PAGESHIFT(ps)	(__ffs(ps))
166#define ATE_PAGEMASK(ps)	((ps)-1)
167
168#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
169#define ATE_NPAGES(start, len, pagesize) \
170	(ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
171
172#define ATE_VALID(ate)	((ate) & (1UL << 63))
173#define ATE_MAKE(addr, ps, msi) \
174	(((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
175
176/*
177 * Flavors of ate-based mapping supported by tioce_alloc_map()
178 */
179
180#define TIOCE_ATE_M32	1
181#define TIOCE_ATE_M40	2
182#define TIOCE_ATE_M40S	3
183
184#define KB(x)	((u64)(x) << 10)
185#define MB(x)	((u64)(x) << 20)
186#define GB(x)	((u64)(x) << 30)
187
188/**
189 * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
190 * @ct_addr: system coretalk address
191 *
192 * Map @ct_addr into 64-bit CE bus space.  No device context is necessary
193 * and no CE mapping are consumed.
194 *
195 * Bits 53:0 come from the coretalk address.  The remaining bits are set as
196 * follows:
197 *
198 * 63    - must be 1 to indicate d64 mode to CE hardware
199 * 62    - barrier bit ... controlled with tioce_dma_barrier()
200 * 61    - msi bit ... specified through dma_flags
201 * 60:54 - reserved, MBZ
202 */
203static u64
204tioce_dma_d64(unsigned long ct_addr, int dma_flags)
205{
206	u64 bus_addr;
207
208	bus_addr = ct_addr | (1UL << 63);
209	if (dma_flags & SN_DMA_MSI)
210		bus_addr |= (1UL << 61);
211
212	return bus_addr;
213}
214
215/**
216 * pcidev_to_tioce - return misc ce related pointers given a pci_dev
217 * @pci_dev: pci device context
218 * @base: ptr to store struct tioce_mmr * for the CE holding this device
219 * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
220 * @port: ptr to store the CE port number that this device is on
221 *
222 * Return pointers to various CE-related structures for the CE upstream of
223 * @pci_dev.
224 */
225static inline void
226pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
227		struct tioce_kernel **kernel, int *port)
228{
229	struct pcidev_info *pcidev_info;
230	struct tioce_common *ce_common;
231	struct tioce_kernel *ce_kernel;
232
233	pcidev_info = SN_PCIDEV_INFO(pdev);
234	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
235	ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
236
237	if (base)
238		*base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
239	if (kernel)
240		*kernel = ce_kernel;
241
242	/*
243	 * we use port as a zero-based value internally, even though the
244	 * documentation is 1-based.
245	 */
246	if (port)
247		*port =
248		    (pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
249}
250
251/**
252 * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
253 * space using one of the various ATE-based address modes.
254 * @ce_kern: tioce context
255 * @type: map mode to use
256 * @port: 0-based port that the requesting device is downstream of
257 * @ct_addr: the coretalk address to map
258 * @len: number of bytes to map
259 *
260 * Given the addressing type, set up various parameters that define the
261 * ATE pool to use.  Search for a contiguous block of entries to cover the
262 * length, and if enough resources exist, fill in the ATEs and construct a
263 * tioce_dmamap struct to track the mapping.
264 */
265static u64
266tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
267		u64 ct_addr, int len, int dma_flags)
268{
269	int i;
270	int j;
271	int first;
272	int last;
273	int entries;
274	int nates;
275	u64 pagesize;
276	int msi_capable, msi_wanted;
277	u64 *ate_shadow;
278	u64 __iomem *ate_reg;
279	u64 addr;
280	struct tioce __iomem *ce_mmr;
281	u64 bus_base;
282	struct tioce_dmamap *map;
283
284	ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
285
286	switch (type) {
287	case TIOCE_ATE_M32:
288		/*
289		 * The first 64 entries of the ate3240 pool are dedicated to
290		 * super-page (TIOCE_ATE_M40S) mode.
291		 */
292		first = 64;
293		entries = TIOCE_NUM_M3240_ATES - 64;
294		ate_shadow = ce_kern->ce_ate3240_shadow;
295		ate_reg = ce_mmr->ce_ure_ate3240;
296		pagesize = ce_kern->ce_ate3240_pagesize;
297		bus_base = TIOCE_M32_MIN;
298		msi_capable = 1;
299		break;
300	case TIOCE_ATE_M40:
301		first = 0;
302		entries = TIOCE_NUM_M40_ATES;
303		ate_shadow = ce_kern->ce_ate40_shadow;
304		ate_reg = ce_mmr->ce_ure_ate40;
305		pagesize = MB(64);
306		bus_base = TIOCE_M40_MIN;
307		msi_capable = 0;
308		break;
309	case TIOCE_ATE_M40S:
310		/*
311		 * ate3240 entries 0-31 are dedicated to port1 super-page
312		 * mappings.  ate3240 entries 32-63 are dedicated to port2.
313		 */
314		first = port * 32;
315		entries = 32;
316		ate_shadow = ce_kern->ce_ate3240_shadow;
317		ate_reg = ce_mmr->ce_ure_ate3240;
318		pagesize = GB(16);
319		bus_base = TIOCE_M40S_MIN;
320		msi_capable = 0;
321		break;
322	default:
323		return 0;
324	}
325
326	msi_wanted = dma_flags & SN_DMA_MSI;
327	if (msi_wanted && !msi_capable)
328		return 0;
329
330	nates = ATE_NPAGES(ct_addr, len, pagesize);
331	if (nates > entries)
332		return 0;
333
334	last = first + entries - nates;
335	for (i = first; i <= last; i++) {
336		if (ATE_VALID(ate_shadow[i]))
337			continue;
338
339		for (j = i; j < i + nates; j++)
340			if (ATE_VALID(ate_shadow[j]))
341				break;
342
343		if (j >= i + nates)
344			break;
345	}
346
347	if (i > last)
348		return 0;
349
350	map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
351	if (!map)
352		return 0;
353
354	addr = ct_addr;
355	for (j = 0; j < nates; j++) {
356		u64 ate;
357
358		ate = ATE_MAKE(addr, pagesize, msi_wanted);
359		ate_shadow[i + j] = ate;
360		tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
361		addr += pagesize;
362	}
363
364	map->refcnt = 1;
365	map->nbytes = nates * pagesize;
366	map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
367	map->pci_start = bus_base + (i * pagesize);
368	map->ate_hw = &ate_reg[i];
369	map->ate_shadow = &ate_shadow[i];
370	map->ate_count = nates;
371
372	list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
373
374	return (map->pci_start + (ct_addr - map->ct_start));
375}
376
377/**
378 * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
379 * @pdev: linux pci_dev representing the function
380 * @paddr: system physical address
381 *
382 * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
383 */
384static u64
385tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
386{
387	int dma_ok;
388	int port;
389	struct tioce __iomem *ce_mmr;
390	struct tioce_kernel *ce_kern;
391	u64 ct_upper;
392	u64 ct_lower;
393	dma_addr_t bus_addr;
394
395	if (dma_flags & SN_DMA_MSI)
396		return 0;
397
398	ct_upper = ct_addr & ~0x3fffffffUL;
399	ct_lower = ct_addr & 0x3fffffffUL;
400
401	pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
402
403	if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
404		u64 tmp;
405
406		ce_kern->ce_port[port].dirmap_shadow = ct_upper;
407		tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
408				 ct_upper);
409		tmp = ce_mmr->ce_ure_dir_map[port];
410		dma_ok = 1;
411	} else
412		dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
413
414	if (dma_ok) {
415		ce_kern->ce_port[port].dirmap_refcnt++;
416		bus_addr = TIOCE_D32_MIN + ct_lower;
417	} else
418		bus_addr = 0;
419
420	return bus_addr;
421}
422
423/**
424 * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
425 * the barrier bit.
426 * @bus_addr:  bus address to swizzle
427 *
428 * Given a TIOCE bus address, set the appropriate bit to indicate barrier
429 * attributes.
430 */
431static u64
432tioce_dma_barrier(u64 bus_addr, int on)
433{
434	u64 barrier_bit;
435
436	/* barrier not supported in M40/M40S mode */
437	if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
438		return bus_addr;
439
440	if (TIOCE_D64_ADDR(bus_addr))
441		barrier_bit = (1UL << 62);
442	else			/* must be m32 or d32 */
443		barrier_bit = (1UL << 30);
444
445	return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
446}
447
448/**
449 * tioce_dma_unmap - release CE mapping resources
450 * @pdev: linux pci_dev representing the function
451 * @bus_addr: bus address returned by an earlier tioce_dma_map
452 * @dir: mapping direction (unused)
453 *
454 * Locate mapping resources associated with @bus_addr and release them.
455 * For mappings created using the direct modes there are no resources
456 * to release.
457 */
458void
459tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
460{
461	int i;
462	int port;
463	struct tioce_kernel *ce_kern;
464	struct tioce __iomem *ce_mmr;
465	unsigned long flags;
466
467	bus_addr = tioce_dma_barrier(bus_addr, 0);
468	pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
469
470	/* nothing to do for D64 */
471
472	if (TIOCE_D64_ADDR(bus_addr))
473		return;
474
475	spin_lock_irqsave(&ce_kern->ce_lock, flags);
476
477	if (TIOCE_D32_ADDR(bus_addr)) {
478		if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
479			ce_kern->ce_port[port].dirmap_shadow = 0;
480			tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
481					 0);
482		}
483	} else {
484		struct tioce_dmamap *map;
485
486		list_for_each_entry(map, &ce_kern->ce_dmamap_list,
487				    ce_dmamap_list) {
488			u64 last;
489
490			last = map->pci_start + map->nbytes - 1;
491			if (bus_addr >= map->pci_start && bus_addr <= last)
492				break;
493		}
494
495		if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
496			printk(KERN_WARNING
497			       "%s:  %s - no map found for bus_addr 0x%llx\n",
498			       __func__, pci_name(pdev), bus_addr);
499		} else if (--map->refcnt == 0) {
500			for (i = 0; i < map->ate_count; i++) {
501				map->ate_shadow[i] = 0;
502				tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
503			}
504
505			list_del(&map->ce_dmamap_list);
506			kfree(map);
507		}
508	}
509
510	spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
511}
512
513/**
514 * tioce_do_dma_map - map pages for PCI DMA
515 * @pdev: linux pci_dev representing the function
516 * @paddr: host physical address to map
517 * @byte_count: bytes to map
518 *
519 * This is the main wrapper for mapping host physical pages to CE PCI space.
520 * The mapping mode used is based on the device's dma_mask.
521 */
522static u64
523tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
524		 int barrier, int dma_flags)
525{
526	unsigned long flags;
527	u64 ct_addr;
528	u64 mapaddr = 0;
529	struct tioce_kernel *ce_kern;
530	struct tioce_dmamap *map;
531	int port;
532	u64 dma_mask;
533
534	dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
535
536	/* cards must be able to address at least 31 bits */
537	if (dma_mask < 0x7fffffffUL)
538		return 0;
539
540	if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
541		ct_addr = PHYS_TO_TIODMA(paddr);
542	else
543		ct_addr = paddr;
544
545	/*
546	 * If the device can generate 64 bit addresses, create a D64 map.
547	 */
548	if (dma_mask == ~0UL) {
549		mapaddr = tioce_dma_d64(ct_addr, dma_flags);
550		if (mapaddr)
551			goto dma_map_done;
552	}
553
554	pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
555
556	spin_lock_irqsave(&ce_kern->ce_lock, flags);
557
558	/*
559	 * D64 didn't work ... See if we have an existing map that covers
560	 * this address range.  Must account for devices dma_mask here since
561	 * an existing map might have been done in a mode using more pci
562	 * address bits than this device can support.
563	 */
564	list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
565		u64 last;
566
567		last = map->ct_start + map->nbytes - 1;
568		if (ct_addr >= map->ct_start &&
569		    ct_addr + byte_count - 1 <= last &&
570		    map->pci_start <= dma_mask) {
571			map->refcnt++;
572			mapaddr = map->pci_start + (ct_addr - map->ct_start);
573			break;
574		}
575	}
576
577	/*
578	 * If we don't have a map yet, and the card can generate 40
579	 * bit addresses, try the M40/M40S modes.  Note these modes do not
580	 * support a barrier bit, so if we need a consistent map these
581	 * won't work.
582	 */
583	if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
584		/*
585		 * We have two options for 40-bit mappings:  16GB "super" ATEs
586		 * and 64MB "regular" ATEs.  We'll try both if needed for a
587		 * given mapping but which one we try first depends on the
588		 * size.  For requests >64MB, prefer to use a super page with
589		 * regular as the fallback. Otherwise, try in the reverse order.
590		 */
591
592		if (byte_count > MB(64)) {
593			mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
594						  port, ct_addr, byte_count,
595						  dma_flags);
596			if (!mapaddr)
597				mapaddr =
598				    tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
599						    ct_addr, byte_count,
600						    dma_flags);
601		} else {
602			mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
603						  ct_addr, byte_count,
604						  dma_flags);
605			if (!mapaddr)
606				mapaddr =
607				    tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
608						    port, ct_addr, byte_count,
609						    dma_flags);
610		}
611	}
612
613	/*
614	 * 32-bit direct is the next mode to try
615	 */
616	if (!mapaddr && dma_mask >= 0xffffffffUL)
617		mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
618
619	/*
620	 * Last resort, try 32-bit ATE-based map.
621	 */
622	if (!mapaddr)
623		mapaddr =
624		    tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
625				    byte_count, dma_flags);
626
627	spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
628
629dma_map_done:
630	if (mapaddr && barrier)
631		mapaddr = tioce_dma_barrier(mapaddr, 1);
632
633	return mapaddr;
634}
635
636/**
637 * tioce_dma - standard pci dma map interface
638 * @pdev: pci device requesting the map
639 * @paddr: system physical address to map into pci space
640 * @byte_count: # bytes to map
641 *
642 * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
643 * in the address.
644 */
645static u64
646tioce_dma(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
647{
648	return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
649}
650
651/**
652 * tioce_dma_consistent - consistent pci dma map interface
653 * @pdev: pci device requesting the map
654 * @paddr: system physical address to map into pci space
655 * @byte_count: # bytes to map
656 *
657 * Simply call tioce_do_dma_map() to create a map with the barrier bit set
658 * in the address.
659 */
660static u64
661tioce_dma_consistent(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
662{
663	return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
664}
665
666/**
667 * tioce_error_intr_handler - SGI TIO CE error interrupt handler
668 * @irq: unused
669 * @arg: pointer to tioce_common struct for the given CE
670 *
671 * Handle a CE error interrupt.  Simply a wrapper around a SAL call which
672 * defers processing to the SGI prom.
673 */
674static irqreturn_t
675tioce_error_intr_handler(int irq, void *arg)
676{
677	struct tioce_common *soft = arg;
678	struct ia64_sal_retval ret_stuff;
679	ret_stuff.status = 0;
680	ret_stuff.v0 = 0;
681
682	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
683			soft->ce_pcibus.bs_persist_segment,
684			soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
685
686	if (ret_stuff.v0)
687		panic("tioce_error_intr_handler:  Fatal TIOCE error");
688
689	return IRQ_HANDLED;
690}
691
692/**
693 * tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
694 * @tioce_kernel: TIOCE context to reserve ATEs for
695 * @base: starting bus address to reserve
696 * @limit: last bus address to reserve
697 *
698 * If base/limit falls within the range of bus space mapped through the
699 * M32 space, reserve the resources corresponding to the range.
700 */
701static void
702tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
703{
704	int ate_index, last_ate, ps;
705	struct tioce __iomem *ce_mmr;
706
707	ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
708	ps = ce_kern->ce_ate3240_pagesize;
709	ate_index = ATE_PAGE(base, ps);
710	last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
711
712	if (ate_index < 64)
713		ate_index = 64;
714
715	if (last_ate >= TIOCE_NUM_M3240_ATES)
716		last_ate = TIOCE_NUM_M3240_ATES - 1;
717
718	while (ate_index <= last_ate) {
719		u64 ate;
720
721		ate = ATE_MAKE(0xdeadbeef, ps, 0);
722		ce_kern->ce_ate3240_shadow[ate_index] = ate;
723		tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
724				 ate);
725		ate_index++;
726	}
727}
728
729/**
730 * tioce_kern_init - init kernel structures related to a given TIOCE
731 * @tioce_common: ptr to a cached tioce_common struct that originated in prom
732 */
733static struct tioce_kernel *
734tioce_kern_init(struct tioce_common *tioce_common)
735{
736	int i;
737	int ps;
738	int dev;
739	u32 tmp;
740	unsigned int seg, bus;
741	struct tioce __iomem *tioce_mmr;
742	struct tioce_kernel *tioce_kern;
743
744	tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
745	if (!tioce_kern) {
746		return NULL;
747	}
748
749	tioce_kern->ce_common = tioce_common;
750	spin_lock_init(&tioce_kern->ce_lock);
751	INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
752	tioce_common->ce_kernel_private = (u64) tioce_kern;
753
754	/*
755	 * Determine the secondary bus number of the port2 logical PPB.
756	 * This is used to decide whether a given pci device resides on
757	 * port1 or port2.  Note:  We don't have enough plumbing set up
758	 * here to use pci_read_config_xxx() so use raw_pci_read().
759	 */
760
761	seg = tioce_common->ce_pcibus.bs_persist_segment;
762	bus = tioce_common->ce_pcibus.bs_persist_busnum;
763
764	raw_pci_read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
765	tioce_kern->ce_port1_secondary = (u8) tmp;
766
767	/*
768	 * Set PMU pagesize to the largest size available, and zero out
769	 * the ATEs.
770	 */
771
772	tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
773	tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
774		       CE_URE_PAGESIZE_MASK);
775	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
776		       CE_URE_256K_PAGESIZE);
777	ps = tioce_kern->ce_ate3240_pagesize = KB(256);
778
779	for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
780		tioce_kern->ce_ate40_shadow[i] = 0;
781		tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
782	}
783
784	for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
785		tioce_kern->ce_ate3240_shadow[i] = 0;
786		tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
787	}
788
789	/*
790	 * Reserve ATEs corresponding to reserved address ranges.  These
791	 * include:
792	 *
793	 *	Memory space covered by each PPB mem base/limit register
794	 * 	Memory space covered by each PPB prefetch base/limit register
795	 *
796	 * These bus ranges are for pio (downstream) traffic only, and so
797	 * cannot be used for DMA.
798	 */
799
800	for (dev = 1; dev <= 2; dev++) {
801		u64 base, limit;
802
803		/* mem base/limit */
804
805		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
806				  PCI_MEMORY_BASE, 2, &tmp);
807		base = (u64)tmp << 16;
808
809		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
810				  PCI_MEMORY_LIMIT, 2, &tmp);
811		limit = (u64)tmp << 16;
812		limit |= 0xfffffUL;
813
814		if (base < limit)
815			tioce_reserve_m32(tioce_kern, base, limit);
816
817		/*
818		 * prefetch mem base/limit.  The tioce ppb's have 64-bit
819		 * decoders, so read the upper portions w/o checking the
820		 * attributes.
821		 */
822
823		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
824				  PCI_PREF_MEMORY_BASE, 2, &tmp);
825		base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
826
827		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
828				  PCI_PREF_BASE_UPPER32, 4, &tmp);
829		base |= (u64)tmp << 32;
830
831		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
832				  PCI_PREF_MEMORY_LIMIT, 2, &tmp);
833
834		limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
835		limit |= 0xfffffUL;
836
837		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
838				  PCI_PREF_LIMIT_UPPER32, 4, &tmp);
839		limit |= (u64)tmp << 32;
840
841		if ((base < limit) && TIOCE_M32_ADDR(base))
842			tioce_reserve_m32(tioce_kern, base, limit);
843	}
844
845	return tioce_kern;
846}
847
848static void
849tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
850{
851	struct pcidev_info *pcidev_info;
852	struct tioce_common *ce_common;
853	struct tioce_kernel *ce_kern;
854	struct tioce __iomem *ce_mmr;
855	u64 force_int_val;
856
857	if (!sn_irq_info->irq_bridge)
858		return;
859
860	if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
861		return;
862
863	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
864	if (!pcidev_info)
865		return;
866
867	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
868	ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
869	ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
870
871	if (ce_common->ce_rev == TIOCE_REV_A) {
872		u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
873		u64 status;
874
875		tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
876		if (status & int_bit_mask) {
877			u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
878			u64 ctalk = sn_irq_info->irq_xtalkaddr;
879			u64 nasid, offset;
880
881			nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
882			offset = (ctalk & CTALK_NODE_OFFSET);
883			HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
884		}
885
886		return;
887	}
888
889	/*
890	 * irq_int_bit is originally set up by prom, and holds the interrupt
891	 * bit shift (not mask) as defined by the bit definitions in the
892	 * ce_adm_int mmr.  These shifts are not the same for the
893	 * ce_adm_force_int register, so do an explicit mapping here to make
894	 * things clearer.
895	 */
896
897	switch (sn_irq_info->irq_int_bit) {
898	case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
899		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
900		break;
901	case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
902		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
903		break;
904	case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
905		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
906		break;
907	case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
908		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
909		break;
910	case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
911		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
912		break;
913	case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
914		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
915		break;
916	case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
917		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
918		break;
919	case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
920		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
921		break;
922	default:
923		return;
924	}
925	tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
926}
927
928/**
929 * tioce_target_interrupt - implement set_irq_affinity for tioce resident
930 * functions.  Note:  only applies to line interrupts, not MSI's.
931 *
932 * @sn_irq_info: SN IRQ context
933 *
934 * Given an sn_irq_info, set the associated CE device's interrupt destination
935 * register.  Since the interrupt destination registers are on a per-ce-slot
936 * basis, this will retarget line interrupts for all functions downstream of
937 * the slot.
938 */
939static void
940tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
941{
942	struct pcidev_info *pcidev_info;
943	struct tioce_common *ce_common;
944	struct tioce_kernel *ce_kern;
945	struct tioce __iomem *ce_mmr;
946	int bit;
947	u64 vector;
948
949	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
950	if (!pcidev_info)
951		return;
952
953	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
954	ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
955	ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
956
957	bit = sn_irq_info->irq_int_bit;
958
959	tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
960	vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
961	vector |= sn_irq_info->irq_xtalkaddr;
962	tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
963	tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
964
965	tioce_force_interrupt(sn_irq_info);
966}
967
968/**
969 * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
970 * @prom_bussoft: Common prom/kernel struct representing the bus
971 *
972 * Replicates the tioce_common pointed to by @prom_bussoft in kernel
973 * space.  Allocates and initializes a kernel-only area for a given CE,
974 * and sets up an irq for handling CE error interrupts.
975 *
976 * On successful setup, returns the kernel version of tioce_common back to
977 * the caller.
978 */
979static void *
980tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
981{
982	struct tioce_common *tioce_common;
983	struct tioce_kernel *tioce_kern;
984	struct tioce __iomem *tioce_mmr;
985
986	/*
987	 * Allocate kernel bus soft and copy from prom.
988	 */
989
990	tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
991	if (!tioce_common)
992		return NULL;
993
994	memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
995	tioce_common->ce_pcibus.bs_base = (unsigned long)
996		ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
997			sizeof(struct tioce_common));
998
999	tioce_kern = tioce_kern_init(tioce_common);
1000	if (tioce_kern == NULL) {
1001		kfree(tioce_common);
1002		return NULL;
1003	}
1004
1005	/*
1006	 * Clear out any transient errors before registering the error
1007	 * interrupt handler.
1008	 */
1009
1010	tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
1011	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
1012	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
1013		       ~0ULL);
1014	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
1015
1016	if (request_irq(SGI_PCIASIC_ERROR,
1017			tioce_error_intr_handler,
1018			IRQF_SHARED, "TIOCE error", (void *)tioce_common))
1019		printk(KERN_WARNING
1020		       "%s:  Unable to get irq %d.  "
1021		       "Error interrupts won't be routed for "
1022		       "TIOCE bus %04x:%02x\n",
1023		       __func__, SGI_PCIASIC_ERROR,
1024		       tioce_common->ce_pcibus.bs_persist_segment,
1025		       tioce_common->ce_pcibus.bs_persist_busnum);
1026
1027	sn_set_err_irq_affinity(SGI_PCIASIC_ERROR);
1028	return tioce_common;
1029}
1030
1031static struct sn_pcibus_provider tioce_pci_interfaces = {
1032	.dma_map = tioce_dma,
1033	.dma_map_consistent = tioce_dma_consistent,
1034	.dma_unmap = tioce_dma_unmap,
1035	.bus_fixup = tioce_bus_fixup,
1036	.force_interrupt = tioce_force_interrupt,
1037	.target_interrupt = tioce_target_interrupt
1038};
1039
1040/**
1041 * tioce_init_provider - init SN PCI provider ops for TIO CE
1042 */
1043int
1044tioce_init_provider(void)
1045{
1046	sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
1047	return 0;
1048}
1049