• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/sn/kernel/sn2/
1/*
2 * SN2 Platform specific SMP Support
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/spinlock.h>
14#include <linux/threads.h>
15#include <linux/sched.h>
16#include <linux/smp.h>
17#include <linux/interrupt.h>
18#include <linux/irq.h>
19#include <linux/mmzone.h>
20#include <linux/module.h>
21#include <linux/bitops.h>
22#include <linux/nodemask.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25
26#include <asm/processor.h>
27#include <asm/irq.h>
28#include <asm/sal.h>
29#include <asm/system.h>
30#include <asm/delay.h>
31#include <asm/io.h>
32#include <asm/smp.h>
33#include <asm/tlb.h>
34#include <asm/numa.h>
35#include <asm/hw_irq.h>
36#include <asm/current.h>
37#include <asm/sn/sn_cpuid.h>
38#include <asm/sn/sn_sal.h>
39#include <asm/sn/addrs.h>
40#include <asm/sn/shub_mmr.h>
41#include <asm/sn/nodepda.h>
42#include <asm/sn/rw_mmr.h>
43#include <asm/sn/sn_feature_sets.h>
44
45DEFINE_PER_CPU(struct ptc_stats, ptcstats);
46DECLARE_PER_CPU(struct ptc_stats, ptcstats);
47
48static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
49
50/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
51static int sn2_flush_opt = 0;
52
53extern unsigned long
54sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
55			       volatile unsigned long *, unsigned long,
56			       volatile unsigned long *, unsigned long);
57void
58sn2_ptc_deadlock_recovery(short *, short, short, int,
59			  volatile unsigned long *, unsigned long,
60			  volatile unsigned long *, unsigned long);
61
62/*
63 * Note: some is the following is captured here to make degugging easier
64 * (the macros make more sense if you see the debug patch - not posted)
65 */
66#define sn2_ptctest	0
67#define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
68#define max_active_pio(sh1)		((sh1) ? 32 : 7)
69#define reset_max_active_on_deadlock()	1
70#define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
71
72struct ptc_stats {
73	unsigned long ptc_l;
74	unsigned long change_rid;
75	unsigned long shub_ptc_flushes;
76	unsigned long nodes_flushed;
77	unsigned long deadlocks;
78	unsigned long deadlocks2;
79	unsigned long lock_itc_clocks;
80	unsigned long shub_itc_clocks;
81	unsigned long shub_itc_clocks_max;
82	unsigned long shub_ptc_flushes_not_my_mm;
83	unsigned long shub_ipi_flushes;
84	unsigned long shub_ipi_flushes_itc_clocks;
85};
86
87#define sn2_ptctest	0
88
89static inline unsigned long wait_piowc(void)
90{
91	volatile unsigned long *piows;
92	unsigned long zeroval, ws;
93
94	piows = pda->pio_write_status_addr;
95	zeroval = pda->pio_write_status_val;
96	do {
97		cpu_relax();
98	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
99	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
100}
101
102/**
103 * sn_migrate - SN-specific task migration actions
104 * @task: Task being migrated to new CPU
105 *
106 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
107 * Context switching user threads which have memory-mapped MMIO may cause
108 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
109 * from the previous CPU's Shub before execution resumes on the new CPU.
110 */
111void sn_migrate(struct task_struct *task)
112{
113	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
114	volatile unsigned long *adr = last_pda->pio_write_status_addr;
115	unsigned long val = last_pda->pio_write_status_val;
116
117	/* Drain PIO writes from old CPU's Shub */
118	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
119			!= val))
120		cpu_relax();
121}
122
123void sn_tlb_migrate_finish(struct mm_struct *mm)
124{
125	/* flush_tlb_mm is inefficient if more than 1 users of mm */
126	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
127		flush_tlb_mm(mm);
128}
129
130static void
131sn2_ipi_flush_all_tlb(struct mm_struct *mm)
132{
133	unsigned long itc;
134
135	itc = ia64_get_itc();
136	smp_flush_tlb_cpumask(*mm_cpumask(mm));
137	itc = ia64_get_itc() - itc;
138	__get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
139	__get_cpu_var(ptcstats).shub_ipi_flushes++;
140}
141
142/**
143 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
144 * @mm: mm_struct containing virtual address range
145 * @start: start of virtual address range
146 * @end: end of virtual address range
147 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
148 *
149 * Purges the translation caches of all processors of the given virtual address
150 * range.
151 *
152 * Note:
153 * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
154 * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
155 * 	  cpus in cpu_vm_mask.
156 *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
157 *	  process is purging its own virtual address range, then only the
158 *	  local TLB needs to be flushed. This flushing can be done using
159 *	  ptc.l. This is the common case & avoids the global spinlock.
160 *	- if multiple cpus have loaded the context, then flushing has to be
161 *	  done with ptc.g/MMRs under protection of the global ptc_lock.
162 */
163
164void
165sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
166		     unsigned long end, unsigned long nbits)
167{
168	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
169	int mymm = (mm == current->active_mm && mm == current->mm);
170	int use_cpu_ptcga;
171	volatile unsigned long *ptc0, *ptc1;
172	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
173	short nasids[MAX_NUMNODES], nix;
174	nodemask_t nodes_flushed;
175	int active, max_active, deadlock, flush_opt = sn2_flush_opt;
176
177	if (flush_opt > 2) {
178		sn2_ipi_flush_all_tlb(mm);
179		return;
180	}
181
182	nodes_clear(nodes_flushed);
183	i = 0;
184
185	for_each_cpu(cpu, mm_cpumask(mm)) {
186		cnode = cpu_to_node(cpu);
187		node_set(cnode, nodes_flushed);
188		lcpu = cpu;
189		i++;
190	}
191
192	if (i == 0)
193		return;
194
195	preempt_disable();
196
197	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
198		do {
199			ia64_ptcl(start, nbits << 2);
200			start += (1UL << nbits);
201		} while (start < end);
202		ia64_srlz_i();
203		__get_cpu_var(ptcstats).ptc_l++;
204		preempt_enable();
205		return;
206	}
207
208	if (atomic_read(&mm->mm_users) == 1 && mymm) {
209		flush_tlb_mm(mm);
210		__get_cpu_var(ptcstats).change_rid++;
211		preempt_enable();
212		return;
213	}
214
215	if (flush_opt == 2) {
216		sn2_ipi_flush_all_tlb(mm);
217		preempt_enable();
218		return;
219	}
220
221	itc = ia64_get_itc();
222	nix = 0;
223	for_each_node_mask(cnode, nodes_flushed)
224		nasids[nix++] = cnodeid_to_nasid(cnode);
225
226	rr_value = (mm->context << 3) | REGION_NUMBER(start);
227
228	shub1 = is_shub1();
229	if (shub1) {
230		data0 = (1UL << SH1_PTC_0_A_SHFT) |
231		    	(nbits << SH1_PTC_0_PS_SHFT) |
232			(rr_value << SH1_PTC_0_RID_SHFT) |
233		    	(1UL << SH1_PTC_0_START_SHFT);
234		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
235		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
236	} else {
237		data0 = (1UL << SH2_PTC_A_SHFT) |
238			(nbits << SH2_PTC_PS_SHFT) |
239		    	(1UL << SH2_PTC_START_SHFT);
240		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
241			(rr_value << SH2_PTC_RID_SHFT));
242		ptc1 = NULL;
243	}
244
245
246	mynasid = get_nasid();
247	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
248	max_active = max_active_pio(shub1);
249
250	itc = ia64_get_itc();
251	spin_lock_irqsave(PTC_LOCK(shub1), flags);
252	itc2 = ia64_get_itc();
253
254	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
255	__get_cpu_var(ptcstats).shub_ptc_flushes++;
256	__get_cpu_var(ptcstats).nodes_flushed += nix;
257	if (!mymm)
258		 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
259
260	if (use_cpu_ptcga && !mymm) {
261		old_rr = ia64_get_rr(start);
262		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
263		ia64_srlz_d();
264	}
265
266	wait_piowc();
267	do {
268		if (shub1)
269			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
270		else
271			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
272		deadlock = 0;
273		active = 0;
274		for (ibegin = 0, i = 0; i < nix; i++) {
275			nasid = nasids[i];
276			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
277				ia64_ptcga(start, nbits << 2);
278				ia64_srlz_i();
279			} else {
280				ptc0 = CHANGE_NASID(nasid, ptc0);
281				if (ptc1)
282					ptc1 = CHANGE_NASID(nasid, ptc1);
283				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
284				active++;
285			}
286			if (active >= max_active || i == (nix - 1)) {
287				if ((deadlock = wait_piowc())) {
288					if (flush_opt == 1)
289						goto done;
290					sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
291					if (reset_max_active_on_deadlock())
292						max_active = 1;
293				}
294				active = 0;
295				ibegin = i + 1;
296			}
297		}
298		start += (1UL << nbits);
299	} while (start < end);
300
301done:
302	itc2 = ia64_get_itc() - itc2;
303	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
304	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
305		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
306
307	if (old_rr) {
308		ia64_set_rr(start, old_rr);
309		ia64_srlz_d();
310	}
311
312	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
313
314	if (flush_opt == 1 && deadlock) {
315		__get_cpu_var(ptcstats).deadlocks++;
316		sn2_ipi_flush_all_tlb(mm);
317	}
318
319	preempt_enable();
320}
321
322/*
323 * sn2_ptc_deadlock_recovery
324 *
325 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
326 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
327 * coded in assembly language.
328 */
329
330void
331sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
332			  volatile unsigned long *ptc0, unsigned long data0,
333			  volatile unsigned long *ptc1, unsigned long data1)
334{
335	short nasid, i;
336	unsigned long *piows, zeroval, n;
337
338	__get_cpu_var(ptcstats).deadlocks++;
339
340	piows = (unsigned long *) pda->pio_write_status_addr;
341	zeroval = pda->pio_write_status_val;
342
343
344	for (i=ib; i <= ie; i++) {
345		nasid = nasids[i];
346		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
347			continue;
348		ptc0 = CHANGE_NASID(nasid, ptc0);
349		if (ptc1)
350			ptc1 = CHANGE_NASID(nasid, ptc1);
351
352		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
353		__get_cpu_var(ptcstats).deadlocks2 += n;
354	}
355
356}
357
358/**
359 * sn_send_IPI_phys - send an IPI to a Nasid and slice
360 * @nasid: nasid to receive the interrupt (may be outside partition)
361 * @physid: physical cpuid to receive the interrupt.
362 * @vector: command to send
363 * @delivery_mode: delivery mechanism
364 *
365 * Sends an IPI (interprocessor interrupt) to the processor specified by
366 * @physid
367 *
368 * @delivery_mode can be one of the following
369 *
370 * %IA64_IPI_DM_INT - pend an interrupt
371 * %IA64_IPI_DM_PMI - pend a PMI
372 * %IA64_IPI_DM_NMI - pend an NMI
373 * %IA64_IPI_DM_INIT - pend an INIT interrupt
374 */
375void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
376{
377	long val;
378	unsigned long flags = 0;
379	volatile long *p;
380
381	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
382	val = (1UL << SH_IPI_INT_SEND_SHFT) |
383	    (physid << SH_IPI_INT_PID_SHFT) |
384	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
385	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
386	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
387
388	mb();
389	if (enable_shub_wars_1_1()) {
390		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
391	}
392	pio_phys_write_mmr(p, val);
393	if (enable_shub_wars_1_1()) {
394		wait_piowc();
395		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
396	}
397
398}
399
400EXPORT_SYMBOL(sn_send_IPI_phys);
401
402/**
403 * sn2_send_IPI - send an IPI to a processor
404 * @cpuid: target of the IPI
405 * @vector: command to send
406 * @delivery_mode: delivery mechanism
407 * @redirect: redirect the IPI?
408 *
409 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
410 * @cpuid.  @vector specifies the command to send, while @delivery_mode can
411 * be one of the following
412 *
413 * %IA64_IPI_DM_INT - pend an interrupt
414 * %IA64_IPI_DM_PMI - pend a PMI
415 * %IA64_IPI_DM_NMI - pend an NMI
416 * %IA64_IPI_DM_INIT - pend an INIT interrupt
417 */
418void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
419{
420	long physid;
421	int nasid;
422
423	physid = cpu_physical_id(cpuid);
424	nasid = cpuid_to_nasid(cpuid);
425
426	/* the following is used only when starting cpus at boot time */
427	if (unlikely(nasid == -1))
428		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
429
430	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
431}
432
433#ifdef CONFIG_HOTPLUG_CPU
434/**
435 * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
436 * @cpu - CPU that is requested to be disabled.
437 *
438 * CPU disable is only allowed on SHub2 systems running with a PROM
439 * that supports CPU disable. It is not permitted to disable the boot processor.
440 */
441bool sn_cpu_disable_allowed(int cpu)
442{
443	if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
444		if (cpu != 0)
445			return true;
446		else
447			printk(KERN_WARNING
448			      "Disabling the boot processor is not allowed.\n");
449
450	} else
451		printk(KERN_WARNING
452		       "CPU disable is not supported on this system.\n");
453
454	return false;
455}
456#endif /* CONFIG_HOTPLUG_CPU */
457
458#ifdef CONFIG_PROC_FS
459
460#define PTC_BASENAME	"sgi_sn/ptc_statistics"
461
462static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
463{
464	if (*offset < nr_cpu_ids)
465		return offset;
466	return NULL;
467}
468
469static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
470{
471	(*offset)++;
472	if (*offset < nr_cpu_ids)
473		return offset;
474	return NULL;
475}
476
477static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
478{
479}
480
481static int sn2_ptc_seq_show(struct seq_file *file, void *data)
482{
483	struct ptc_stats *stat;
484	int cpu;
485
486	cpu = *(loff_t *) data;
487
488	if (!cpu) {
489		seq_printf(file,
490			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
491		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
492	}
493
494	if (cpu < nr_cpu_ids && cpu_online(cpu)) {
495		stat = &per_cpu(ptcstats, cpu);
496		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
497				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
498				stat->deadlocks,
499				1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
500				1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
501				1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
502				stat->shub_ptc_flushes_not_my_mm,
503				stat->deadlocks2,
504				stat->shub_ipi_flushes,
505				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
506	}
507	return 0;
508}
509
510static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
511{
512	int cpu;
513	char optstr[64];
514
515	if (count == 0 || count > sizeof(optstr))
516		return -EINVAL;
517	if (copy_from_user(optstr, user, count))
518		return -EFAULT;
519	optstr[count - 1] = '\0';
520	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
521
522	for_each_online_cpu(cpu)
523		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
524
525	return count;
526}
527
528static const struct seq_operations sn2_ptc_seq_ops = {
529	.start = sn2_ptc_seq_start,
530	.next = sn2_ptc_seq_next,
531	.stop = sn2_ptc_seq_stop,
532	.show = sn2_ptc_seq_show
533};
534
535static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
536{
537	return seq_open(file, &sn2_ptc_seq_ops);
538}
539
540static const struct file_operations proc_sn2_ptc_operations = {
541	.open = sn2_ptc_proc_open,
542	.read = seq_read,
543	.write = sn2_ptc_proc_write,
544	.llseek = seq_lseek,
545	.release = seq_release,
546};
547
548static struct proc_dir_entry *proc_sn2_ptc;
549
550static int __init sn2_ptc_init(void)
551{
552	if (!ia64_platform_is("sn2"))
553		return 0;
554
555	proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
556				   NULL, &proc_sn2_ptc_operations);
557	if (!proc_sn2_ptc) {
558		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
559		return -EINVAL;
560	}
561	spin_lock_init(&sn2_global_ptc_lock);
562	return 0;
563}
564
565static void __exit sn2_ptc_exit(void)
566{
567	remove_proc_entry(PTC_BASENAME, NULL);
568}
569
570module_init(sn2_ptc_init);
571module_exit(sn2_ptc_exit);
572#endif /* CONFIG_PROC_FS */
573