• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/kernel/
1/*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 *	Stephane Eranian <eranian@hpl.hp.com>
6 *	David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11
12#include <linux/cpu.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/profile.h>
17#include <linux/sched.h>
18#include <linux/time.h>
19#include <linux/interrupt.h>
20#include <linux/efi.h>
21#include <linux/timex.h>
22#include <linux/clocksource.h>
23#include <linux/platform_device.h>
24
25#include <asm/machvec.h>
26#include <asm/delay.h>
27#include <asm/hw_irq.h>
28#include <asm/paravirt.h>
29#include <asm/ptrace.h>
30#include <asm/sal.h>
31#include <asm/sections.h>
32#include <asm/system.h>
33
34#include "fsyscall_gtod_data.h"
35
36static cycle_t itc_get_cycles(struct clocksource *cs);
37
38struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39	.lock = SEQLOCK_UNLOCKED,
40};
41
42struct itc_jitter_data_t itc_jitter_data;
43
44volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45
46#ifdef CONFIG_IA64_DEBUG_IRQ
47
48unsigned long last_cli_ip;
49EXPORT_SYMBOL(last_cli_ip);
50
51#endif
52
53#ifdef CONFIG_PARAVIRT
54/* We need to define a real function for sched_clock, to override the
55   weak default version */
56unsigned long long sched_clock(void)
57{
58        return paravirt_sched_clock();
59}
60#endif
61
62#ifdef CONFIG_PARAVIRT
63static void
64paravirt_clocksource_resume(struct clocksource *cs)
65{
66	if (pv_time_ops.clocksource_resume)
67		pv_time_ops.clocksource_resume();
68}
69#endif
70
71static struct clocksource clocksource_itc = {
72	.name           = "itc",
73	.rating         = 350,
74	.read           = itc_get_cycles,
75	.mask           = CLOCKSOURCE_MASK(64),
76	.mult           = 0, /*to be calculated*/
77	.shift          = 16,
78	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
79#ifdef CONFIG_PARAVIRT
80	.resume		= paravirt_clocksource_resume,
81#endif
82};
83static struct clocksource *itc_clocksource;
84
85#ifdef CONFIG_VIRT_CPU_ACCOUNTING
86
87#include <linux/kernel_stat.h>
88
89extern cputime_t cycle_to_cputime(u64 cyc);
90
91/*
92 * Called from the context switch with interrupts disabled, to charge all
93 * accumulated times to the current process, and to prepare accounting on
94 * the next process.
95 */
96void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
97{
98	struct thread_info *pi = task_thread_info(prev);
99	struct thread_info *ni = task_thread_info(next);
100	cputime_t delta_stime, delta_utime;
101	__u64 now;
102
103	now = ia64_get_itc();
104
105	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
106	if (idle_task(smp_processor_id()) != prev)
107		account_system_time(prev, 0, delta_stime, delta_stime);
108	else
109		account_idle_time(delta_stime);
110
111	if (pi->ac_utime) {
112		delta_utime = cycle_to_cputime(pi->ac_utime);
113		account_user_time(prev, delta_utime, delta_utime);
114	}
115
116	pi->ac_stamp = ni->ac_stamp = now;
117	ni->ac_stime = ni->ac_utime = 0;
118}
119
120/*
121 * Account time for a transition between system, hard irq or soft irq state.
122 * Note that this function is called with interrupts enabled.
123 */
124void account_system_vtime(struct task_struct *tsk)
125{
126	struct thread_info *ti = task_thread_info(tsk);
127	unsigned long flags;
128	cputime_t delta_stime;
129	__u64 now;
130
131	local_irq_save(flags);
132
133	now = ia64_get_itc();
134
135	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
136	if (irq_count() || idle_task(smp_processor_id()) != tsk)
137		account_system_time(tsk, 0, delta_stime, delta_stime);
138	else
139		account_idle_time(delta_stime);
140	ti->ac_stime = 0;
141
142	ti->ac_stamp = now;
143
144	local_irq_restore(flags);
145}
146EXPORT_SYMBOL_GPL(account_system_vtime);
147
148/*
149 * Called from the timer interrupt handler to charge accumulated user time
150 * to the current process.  Must be called with interrupts disabled.
151 */
152void account_process_tick(struct task_struct *p, int user_tick)
153{
154	struct thread_info *ti = task_thread_info(p);
155	cputime_t delta_utime;
156
157	if (ti->ac_utime) {
158		delta_utime = cycle_to_cputime(ti->ac_utime);
159		account_user_time(p, delta_utime, delta_utime);
160		ti->ac_utime = 0;
161	}
162}
163
164#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
165
166static irqreturn_t
167timer_interrupt (int irq, void *dev_id)
168{
169	unsigned long new_itm;
170
171	if (unlikely(cpu_is_offline(smp_processor_id()))) {
172		return IRQ_HANDLED;
173	}
174
175	platform_timer_interrupt(irq, dev_id);
176
177	new_itm = local_cpu_data->itm_next;
178
179	if (!time_after(ia64_get_itc(), new_itm))
180		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
181		       ia64_get_itc(), new_itm);
182
183	profile_tick(CPU_PROFILING);
184
185	if (paravirt_do_steal_accounting(&new_itm))
186		goto skip_process_time_accounting;
187
188	while (1) {
189		update_process_times(user_mode(get_irq_regs()));
190
191		new_itm += local_cpu_data->itm_delta;
192
193		if (smp_processor_id() == time_keeper_id) {
194			/*
195			 * Here we are in the timer irq handler. We have irqs locally
196			 * disabled, but we don't know if the timer_bh is running on
197			 * another CPU. We need to avoid to SMP race by acquiring the
198			 * xtime_lock.
199			 */
200			write_seqlock(&xtime_lock);
201			do_timer(1);
202			local_cpu_data->itm_next = new_itm;
203			write_sequnlock(&xtime_lock);
204		} else
205			local_cpu_data->itm_next = new_itm;
206
207		if (time_after(new_itm, ia64_get_itc()))
208			break;
209
210		/*
211		 * Allow IPIs to interrupt the timer loop.
212		 */
213		local_irq_enable();
214		local_irq_disable();
215	}
216
217skip_process_time_accounting:
218
219	do {
220		/*
221		 * If we're too close to the next clock tick for
222		 * comfort, we increase the safety margin by
223		 * intentionally dropping the next tick(s).  We do NOT
224		 * update itm.next because that would force us to call
225		 * do_timer() which in turn would let our clock run
226		 * too fast (with the potentially devastating effect
227		 * of losing monotony of time).
228		 */
229		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
230			new_itm += local_cpu_data->itm_delta;
231		ia64_set_itm(new_itm);
232		/* double check, in case we got hit by a (slow) PMI: */
233	} while (time_after_eq(ia64_get_itc(), new_itm));
234	return IRQ_HANDLED;
235}
236
237/*
238 * Encapsulate access to the itm structure for SMP.
239 */
240void
241ia64_cpu_local_tick (void)
242{
243	int cpu = smp_processor_id();
244	unsigned long shift = 0, delta;
245
246	/* arrange for the cycle counter to generate a timer interrupt: */
247	ia64_set_itv(IA64_TIMER_VECTOR);
248
249	delta = local_cpu_data->itm_delta;
250	/*
251	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
252	 * same time:
253	 */
254	if (cpu) {
255		unsigned long hi = 1UL << ia64_fls(cpu);
256		shift = (2*(cpu - hi) + 1) * delta/hi/2;
257	}
258	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
259	ia64_set_itm(local_cpu_data->itm_next);
260}
261
262static int nojitter;
263
264static int __init nojitter_setup(char *str)
265{
266	nojitter = 1;
267	printk("Jitter checking for ITC timers disabled\n");
268	return 1;
269}
270
271__setup("nojitter", nojitter_setup);
272
273
274void __devinit
275ia64_init_itm (void)
276{
277	unsigned long platform_base_freq, itc_freq;
278	struct pal_freq_ratio itc_ratio, proc_ratio;
279	long status, platform_base_drift, itc_drift;
280
281	/*
282	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
283	 * frequency and then a PAL call to determine the frequency ratio between the ITC
284	 * and the base frequency.
285	 */
286	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
287				    &platform_base_freq, &platform_base_drift);
288	if (status != 0) {
289		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
290	} else {
291		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
292		if (status != 0)
293			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
294	}
295	if (status != 0) {
296		/* invent "random" values */
297		printk(KERN_ERR
298		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
299		platform_base_freq = 100000000;
300		platform_base_drift = -1;	/* no drift info */
301		itc_ratio.num = 3;
302		itc_ratio.den = 1;
303	}
304	if (platform_base_freq < 40000000) {
305		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
306		       platform_base_freq);
307		platform_base_freq = 75000000;
308		platform_base_drift = -1;
309	}
310	if (!proc_ratio.den)
311		proc_ratio.den = 1;	/* avoid division by zero */
312	if (!itc_ratio.den)
313		itc_ratio.den = 1;	/* avoid division by zero */
314
315	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
316
317	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
318	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
319	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
320	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
321	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
322
323	if (platform_base_drift != -1) {
324		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
325		printk("+/-%ldppm\n", itc_drift);
326	} else {
327		itc_drift = -1;
328		printk("\n");
329	}
330
331	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
332	local_cpu_data->itc_freq = itc_freq;
333	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
334	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
335					+ itc_freq/2)/itc_freq;
336
337	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
338#ifdef CONFIG_SMP
339		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
340		 * Jitter compensation requires a cmpxchg which may limit
341		 * the scalability of the syscalls for retrieving time.
342		 * The ITC synchronization is usually successful to within a few
343		 * ITC ticks but this is not a sure thing. If you need to improve
344		 * timer performance in SMP situations then boot the kernel with the
345		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
346		 * even going backward) if the ITC offsets between the individual CPUs
347		 * are too large.
348		 */
349		if (!nojitter)
350			itc_jitter_data.itc_jitter = 1;
351#endif
352	} else
353		/*
354		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
355		 * ITC values may fluctuate significantly between processors.
356		 * Clock should not be used for hrtimers. Mark itc as only
357		 * useful for boot and testing.
358		 *
359		 * Note that jitter compensation is off! There is no point of
360		 * synchronizing ITCs since they may be large differentials
361		 * that change over time.
362		 *
363		 * The only way to fix this would be to repeatedly sync the
364		 * ITCs. Until that time we have to avoid ITC.
365		 */
366		clocksource_itc.rating = 50;
367
368	paravirt_init_missing_ticks_accounting(smp_processor_id());
369
370	/* avoid softlock up message when cpu is unplug and plugged again. */
371	touch_softlockup_watchdog();
372
373	/* Setup the CPU local timer tick */
374	ia64_cpu_local_tick();
375
376	if (!itc_clocksource) {
377		/* Sort out mult/shift values: */
378		clocksource_itc.mult =
379			clocksource_hz2mult(local_cpu_data->itc_freq,
380						clocksource_itc.shift);
381		clocksource_register(&clocksource_itc);
382		itc_clocksource = &clocksource_itc;
383	}
384}
385
386static cycle_t itc_get_cycles(struct clocksource *cs)
387{
388	unsigned long lcycle, now, ret;
389
390	if (!itc_jitter_data.itc_jitter)
391		return get_cycles();
392
393	lcycle = itc_jitter_data.itc_lastcycle;
394	now = get_cycles();
395	if (lcycle && time_after(lcycle, now))
396		return lcycle;
397
398	/*
399	 * Keep track of the last timer value returned.
400	 * In an SMP environment, you could lose out in contention of
401	 * cmpxchg. If so, your cmpxchg returns new value which the
402	 * winner of contention updated to. Use the new value instead.
403	 */
404	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
405	if (unlikely(ret != lcycle))
406		return ret;
407
408	return now;
409}
410
411
412static struct irqaction timer_irqaction = {
413	.handler =	timer_interrupt,
414	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
415	.name =		"timer"
416};
417
418static struct platform_device rtc_efi_dev = {
419	.name = "rtc-efi",
420	.id = -1,
421};
422
423static int __init rtc_init(void)
424{
425	if (platform_device_register(&rtc_efi_dev) < 0)
426		printk(KERN_ERR "unable to register rtc device...\n");
427
428	/* not necessarily an error */
429	return 0;
430}
431module_init(rtc_init);
432
433void read_persistent_clock(struct timespec *ts)
434{
435	efi_gettimeofday(ts);
436}
437
438void __init
439time_init (void)
440{
441	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
442	ia64_init_itm();
443}
444
445/*
446 * Generic udelay assumes that if preemption is allowed and the thread
447 * migrates to another CPU, that the ITC values are synchronized across
448 * all CPUs.
449 */
450static void
451ia64_itc_udelay (unsigned long usecs)
452{
453	unsigned long start = ia64_get_itc();
454	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
455
456	while (time_before(ia64_get_itc(), end))
457		cpu_relax();
458}
459
460void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
461
462void
463udelay (unsigned long usecs)
464{
465	(*ia64_udelay)(usecs);
466}
467EXPORT_SYMBOL(udelay);
468
469/* IA64 doesn't cache the timezone */
470void update_vsyscall_tz(void)
471{
472}
473
474void update_vsyscall(struct timespec *wall, struct timespec *wtm,
475			struct clocksource *c, u32 mult)
476{
477        unsigned long flags;
478
479        write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
480
481        /* copy fsyscall clock data */
482        fsyscall_gtod_data.clk_mask = c->mask;
483        fsyscall_gtod_data.clk_mult = mult;
484        fsyscall_gtod_data.clk_shift = c->shift;
485        fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
486        fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
487
488	/* copy kernel time structures */
489        fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
490        fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
491	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
492							+ wall->tv_sec;
493	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
494							+ wall->tv_nsec;
495
496	/* normalize */
497	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
498		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
499		fsyscall_gtod_data.monotonic_time.tv_sec++;
500	}
501
502        write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
503}
504