• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/kernel/
1/*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9
5 * April 30, 1999
6 *
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 *	David Mosberger-Tang <davidm@hpl.hp.com>
11 *	Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14 *
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version.  --drummond 1999-07-20
18 *
19 * Implemented EFI runtime services and virtual mode calls.  --davidm
20 *
21 * Goutham Rao: <goutham.rao@intel.com>
22 *	Skip non-WB memory and ignore empty memory ranges.
23 */
24#include <linux/module.h>
25#include <linux/bootmem.h>
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/time.h>
31#include <linux/efi.h>
32#include <linux/kexec.h>
33#include <linux/mm.h>
34
35#include <asm/io.h>
36#include <asm/kregs.h>
37#include <asm/meminit.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
40#include <asm/mca.h>
41#include <asm/tlbflush.h>
42
43#define EFI_DEBUG	0
44
45extern efi_status_t efi_call_phys (void *, ...);
46
47struct efi efi;
48EXPORT_SYMBOL(efi);
49static efi_runtime_services_t *runtime;
50static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
51
52#define efi_call_virt(f, args...)	(*(f))(args)
53
54#define STUB_GET_TIME(prefix, adjust_arg)				       \
55static efi_status_t							       \
56prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
57{									       \
58	struct ia64_fpreg fr[6];					       \
59	efi_time_cap_t *atc = NULL;					       \
60	efi_status_t ret;						       \
61									       \
62	if (tc)								       \
63		atc = adjust_arg(tc);					       \
64	ia64_save_scratch_fpregs(fr);					       \
65	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
66				adjust_arg(tm), atc);			       \
67	ia64_load_scratch_fpregs(fr);					       \
68	return ret;							       \
69}
70
71#define STUB_SET_TIME(prefix, adjust_arg)				       \
72static efi_status_t							       \
73prefix##_set_time (efi_time_t *tm)					       \
74{									       \
75	struct ia64_fpreg fr[6];					       \
76	efi_status_t ret;						       \
77									       \
78	ia64_save_scratch_fpregs(fr);					       \
79	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
80				adjust_arg(tm));			       \
81	ia64_load_scratch_fpregs(fr);					       \
82	return ret;							       \
83}
84
85#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
86static efi_status_t							       \
87prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
88			  efi_time_t *tm)				       \
89{									       \
90	struct ia64_fpreg fr[6];					       \
91	efi_status_t ret;						       \
92									       \
93	ia64_save_scratch_fpregs(fr);					       \
94	ret = efi_call_##prefix(					       \
95		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
96		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
97	ia64_load_scratch_fpregs(fr);					       \
98	return ret;							       \
99}
100
101#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
102static efi_status_t							       \
103prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
104{									       \
105	struct ia64_fpreg fr[6];					       \
106	efi_time_t *atm = NULL;						       \
107	efi_status_t ret;						       \
108									       \
109	if (tm)								       \
110		atm = adjust_arg(tm);					       \
111	ia64_save_scratch_fpregs(fr);					       \
112	ret = efi_call_##prefix(					       \
113		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
114		enabled, atm);						       \
115	ia64_load_scratch_fpregs(fr);					       \
116	return ret;							       \
117}
118
119#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
120static efi_status_t							       \
121prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
122		       unsigned long *data_size, void *data)		       \
123{									       \
124	struct ia64_fpreg fr[6];					       \
125	u32 *aattr = NULL;						       \
126	efi_status_t ret;						       \
127									       \
128	if (attr)							       \
129		aattr = adjust_arg(attr);				       \
130	ia64_save_scratch_fpregs(fr);					       \
131	ret = efi_call_##prefix(					       \
132		(efi_get_variable_t *) __va(runtime->get_variable),	       \
133		adjust_arg(name), adjust_arg(vendor), aattr,		       \
134		adjust_arg(data_size), adjust_arg(data));		       \
135	ia64_load_scratch_fpregs(fr);					       \
136	return ret;							       \
137}
138
139#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
140static efi_status_t							       \
141prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
142			    efi_guid_t *vendor)				       \
143{									       \
144	struct ia64_fpreg fr[6];					       \
145	efi_status_t ret;						       \
146									       \
147	ia64_save_scratch_fpregs(fr);					       \
148	ret = efi_call_##prefix(					       \
149		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
150		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
151	ia64_load_scratch_fpregs(fr);					       \
152	return ret;							       \
153}
154
155#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
156static efi_status_t							       \
157prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
158		       unsigned long attr, unsigned long data_size,	       \
159		       void *data)					       \
160{									       \
161	struct ia64_fpreg fr[6];					       \
162	efi_status_t ret;						       \
163									       \
164	ia64_save_scratch_fpregs(fr);					       \
165	ret = efi_call_##prefix(					       \
166		(efi_set_variable_t *) __va(runtime->set_variable),	       \
167		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
168		adjust_arg(data));					       \
169	ia64_load_scratch_fpregs(fr);					       \
170	return ret;							       \
171}
172
173#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
174static efi_status_t							       \
175prefix##_get_next_high_mono_count (u32 *count)				       \
176{									       \
177	struct ia64_fpreg fr[6];					       \
178	efi_status_t ret;						       \
179									       \
180	ia64_save_scratch_fpregs(fr);					       \
181	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
182				__va(runtime->get_next_high_mono_count),       \
183				adjust_arg(count));			       \
184	ia64_load_scratch_fpregs(fr);					       \
185	return ret;							       \
186}
187
188#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
189static void								       \
190prefix##_reset_system (int reset_type, efi_status_t status,		       \
191		       unsigned long data_size, efi_char16_t *data)	       \
192{									       \
193	struct ia64_fpreg fr[6];					       \
194	efi_char16_t *adata = NULL;					       \
195									       \
196	if (data)							       \
197		adata = adjust_arg(data);				       \
198									       \
199	ia64_save_scratch_fpregs(fr);					       \
200	efi_call_##prefix(						       \
201		(efi_reset_system_t *) __va(runtime->reset_system),	       \
202		reset_type, status, data_size, adata);			       \
203	/* should not return, but just in case... */			       \
204	ia64_load_scratch_fpregs(fr);					       \
205}
206
207#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
208
209STUB_GET_TIME(phys, phys_ptr)
210STUB_SET_TIME(phys, phys_ptr)
211STUB_GET_WAKEUP_TIME(phys, phys_ptr)
212STUB_SET_WAKEUP_TIME(phys, phys_ptr)
213STUB_GET_VARIABLE(phys, phys_ptr)
214STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
215STUB_SET_VARIABLE(phys, phys_ptr)
216STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
217STUB_RESET_SYSTEM(phys, phys_ptr)
218
219#define id(arg)	arg
220
221STUB_GET_TIME(virt, id)
222STUB_SET_TIME(virt, id)
223STUB_GET_WAKEUP_TIME(virt, id)
224STUB_SET_WAKEUP_TIME(virt, id)
225STUB_GET_VARIABLE(virt, id)
226STUB_GET_NEXT_VARIABLE(virt, id)
227STUB_SET_VARIABLE(virt, id)
228STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
229STUB_RESET_SYSTEM(virt, id)
230
231void
232efi_gettimeofday (struct timespec *ts)
233{
234	efi_time_t tm;
235
236	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
237		memset(ts, 0, sizeof(*ts));
238		return;
239	}
240
241	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
242			    tm.hour, tm.minute, tm.second);
243	ts->tv_nsec = tm.nanosecond;
244}
245
246static int
247is_memory_available (efi_memory_desc_t *md)
248{
249	if (!(md->attribute & EFI_MEMORY_WB))
250		return 0;
251
252	switch (md->type) {
253	      case EFI_LOADER_CODE:
254	      case EFI_LOADER_DATA:
255	      case EFI_BOOT_SERVICES_CODE:
256	      case EFI_BOOT_SERVICES_DATA:
257	      case EFI_CONVENTIONAL_MEMORY:
258		return 1;
259	}
260	return 0;
261}
262
263typedef struct kern_memdesc {
264	u64 attribute;
265	u64 start;
266	u64 num_pages;
267} kern_memdesc_t;
268
269static kern_memdesc_t *kern_memmap;
270
271#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
272
273static inline u64
274kmd_end(kern_memdesc_t *kmd)
275{
276	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
277}
278
279static inline u64
280efi_md_end(efi_memory_desc_t *md)
281{
282	return (md->phys_addr + efi_md_size(md));
283}
284
285static inline int
286efi_wb(efi_memory_desc_t *md)
287{
288	return (md->attribute & EFI_MEMORY_WB);
289}
290
291static inline int
292efi_uc(efi_memory_desc_t *md)
293{
294	return (md->attribute & EFI_MEMORY_UC);
295}
296
297static void
298walk (efi_freemem_callback_t callback, void *arg, u64 attr)
299{
300	kern_memdesc_t *k;
301	u64 start, end, voff;
302
303	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
304	for (k = kern_memmap; k->start != ~0UL; k++) {
305		if (k->attribute != attr)
306			continue;
307		start = PAGE_ALIGN(k->start);
308		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
309		if (start < end)
310			if ((*callback)(start + voff, end + voff, arg) < 0)
311				return;
312	}
313}
314
315/*
316 * Walk the EFI memory map and call CALLBACK once for each EFI memory
317 * descriptor that has memory that is available for OS use.
318 */
319void
320efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
321{
322	walk(callback, arg, EFI_MEMORY_WB);
323}
324
325/*
326 * Walk the EFI memory map and call CALLBACK once for each EFI memory
327 * descriptor that has memory that is available for uncached allocator.
328 */
329void
330efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
331{
332	walk(callback, arg, EFI_MEMORY_UC);
333}
334
335/*
336 * Look for the PAL_CODE region reported by EFI and map it using an
337 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
338 * Abstraction Layer chapter 11 in ADAG
339 */
340void *
341efi_get_pal_addr (void)
342{
343	void *efi_map_start, *efi_map_end, *p;
344	efi_memory_desc_t *md;
345	u64 efi_desc_size;
346	int pal_code_count = 0;
347	u64 vaddr, mask;
348
349	efi_map_start = __va(ia64_boot_param->efi_memmap);
350	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
351	efi_desc_size = ia64_boot_param->efi_memdesc_size;
352
353	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
354		md = p;
355		if (md->type != EFI_PAL_CODE)
356			continue;
357
358		if (++pal_code_count > 1) {
359			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
360			       "dropped @ %llx\n", md->phys_addr);
361			continue;
362		}
363		/*
364		 * The only ITLB entry in region 7 that is used is the one
365		 * installed by __start().  That entry covers a 64MB range.
366		 */
367		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
368		vaddr = PAGE_OFFSET + md->phys_addr;
369
370		/*
371		 * We must check that the PAL mapping won't overlap with the
372		 * kernel mapping.
373		 *
374		 * PAL code is guaranteed to be aligned on a power of 2 between
375		 * 4k and 256KB and that only one ITR is needed to map it. This
376		 * implies that the PAL code is always aligned on its size,
377		 * i.e., the closest matching page size supported by the TLB.
378		 * Therefore PAL code is guaranteed never to cross a 64MB unless
379		 * it is bigger than 64MB (very unlikely!).  So for now the
380		 * following test is enough to determine whether or not we need
381		 * a dedicated ITR for the PAL code.
382		 */
383		if ((vaddr & mask) == (KERNEL_START & mask)) {
384			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
385			       __func__);
386			continue;
387		}
388
389		if (efi_md_size(md) > IA64_GRANULE_SIZE)
390			panic("Whoa!  PAL code size bigger than a granule!");
391
392#if EFI_DEBUG
393		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
394
395		printk(KERN_INFO "CPU %d: mapping PAL code "
396                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
397                       smp_processor_id(), md->phys_addr,
398                       md->phys_addr + efi_md_size(md),
399                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
400#endif
401		return __va(md->phys_addr);
402	}
403	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
404	       __func__);
405	return NULL;
406}
407
408
409static u8 __init palo_checksum(u8 *buffer, u32 length)
410{
411	u8 sum = 0;
412	u8 *end = buffer + length;
413
414	while (buffer < end)
415		sum = (u8) (sum + *(buffer++));
416
417	return sum;
418}
419
420/*
421 * Parse and handle PALO table which is published at:
422 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
423 */
424static void __init handle_palo(unsigned long palo_phys)
425{
426	struct palo_table *palo = __va(palo_phys);
427	u8  checksum;
428
429	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
430		printk(KERN_INFO "PALO signature incorrect.\n");
431		return;
432	}
433
434	checksum = palo_checksum((u8 *)palo, palo->length);
435	if (checksum) {
436		printk(KERN_INFO "PALO checksum incorrect.\n");
437		return;
438	}
439
440	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
441}
442
443void
444efi_map_pal_code (void)
445{
446	void *pal_vaddr = efi_get_pal_addr ();
447	u64 psr;
448
449	if (!pal_vaddr)
450		return;
451
452	/*
453	 * Cannot write to CRx with PSR.ic=1
454	 */
455	psr = ia64_clear_ic();
456	ia64_itr(0x1, IA64_TR_PALCODE,
457		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
458		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
459		 IA64_GRANULE_SHIFT);
460	paravirt_dv_serialize_data();
461	ia64_set_psr(psr);		/* restore psr */
462}
463
464void __init
465efi_init (void)
466{
467	void *efi_map_start, *efi_map_end;
468	efi_config_table_t *config_tables;
469	efi_char16_t *c16;
470	u64 efi_desc_size;
471	char *cp, vendor[100] = "unknown";
472	int i;
473	unsigned long palo_phys;
474
475	/*
476	 * It's too early to be able to use the standard kernel command line
477	 * support...
478	 */
479	for (cp = boot_command_line; *cp; ) {
480		if (memcmp(cp, "mem=", 4) == 0) {
481			mem_limit = memparse(cp + 4, &cp);
482		} else if (memcmp(cp, "max_addr=", 9) == 0) {
483			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
484		} else if (memcmp(cp, "min_addr=", 9) == 0) {
485			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
486		} else {
487			while (*cp != ' ' && *cp)
488				++cp;
489			while (*cp == ' ')
490				++cp;
491		}
492	}
493	if (min_addr != 0UL)
494		printk(KERN_INFO "Ignoring memory below %lluMB\n",
495		       min_addr >> 20);
496	if (max_addr != ~0UL)
497		printk(KERN_INFO "Ignoring memory above %lluMB\n",
498		       max_addr >> 20);
499
500	efi.systab = __va(ia64_boot_param->efi_systab);
501
502	/*
503	 * Verify the EFI Table
504	 */
505	if (efi.systab == NULL)
506		panic("Whoa! Can't find EFI system table.\n");
507	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
508		panic("Whoa! EFI system table signature incorrect\n");
509	if ((efi.systab->hdr.revision >> 16) == 0)
510		printk(KERN_WARNING "Warning: EFI system table version "
511		       "%d.%02d, expected 1.00 or greater\n",
512		       efi.systab->hdr.revision >> 16,
513		       efi.systab->hdr.revision & 0xffff);
514
515	config_tables = __va(efi.systab->tables);
516
517	/* Show what we know for posterity */
518	c16 = __va(efi.systab->fw_vendor);
519	if (c16) {
520		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
521			vendor[i] = *c16++;
522		vendor[i] = '\0';
523	}
524
525	printk(KERN_INFO "EFI v%u.%.02u by %s:",
526	       efi.systab->hdr.revision >> 16,
527	       efi.systab->hdr.revision & 0xffff, vendor);
528
529	efi.mps        = EFI_INVALID_TABLE_ADDR;
530	efi.acpi       = EFI_INVALID_TABLE_ADDR;
531	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
532	efi.smbios     = EFI_INVALID_TABLE_ADDR;
533	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
534	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
535	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
536	efi.uga        = EFI_INVALID_TABLE_ADDR;
537
538	palo_phys      = EFI_INVALID_TABLE_ADDR;
539
540	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
541		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
542			efi.mps = config_tables[i].table;
543			printk(" MPS=0x%lx", config_tables[i].table);
544		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
545			efi.acpi20 = config_tables[i].table;
546			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
547		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
548			efi.acpi = config_tables[i].table;
549			printk(" ACPI=0x%lx", config_tables[i].table);
550		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
551			efi.smbios = config_tables[i].table;
552			printk(" SMBIOS=0x%lx", config_tables[i].table);
553		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
554			efi.sal_systab = config_tables[i].table;
555			printk(" SALsystab=0x%lx", config_tables[i].table);
556		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
557			efi.hcdp = config_tables[i].table;
558			printk(" HCDP=0x%lx", config_tables[i].table);
559		} else if (efi_guidcmp(config_tables[i].guid,
560			 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
561			palo_phys = config_tables[i].table;
562			printk(" PALO=0x%lx", config_tables[i].table);
563		}
564	}
565	printk("\n");
566
567	if (palo_phys != EFI_INVALID_TABLE_ADDR)
568		handle_palo(palo_phys);
569
570	runtime = __va(efi.systab->runtime);
571	efi.get_time = phys_get_time;
572	efi.set_time = phys_set_time;
573	efi.get_wakeup_time = phys_get_wakeup_time;
574	efi.set_wakeup_time = phys_set_wakeup_time;
575	efi.get_variable = phys_get_variable;
576	efi.get_next_variable = phys_get_next_variable;
577	efi.set_variable = phys_set_variable;
578	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
579	efi.reset_system = phys_reset_system;
580
581	efi_map_start = __va(ia64_boot_param->efi_memmap);
582	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
583	efi_desc_size = ia64_boot_param->efi_memdesc_size;
584
585#if EFI_DEBUG
586	/* print EFI memory map: */
587	{
588		efi_memory_desc_t *md;
589		void *p;
590
591		for (i = 0, p = efi_map_start; p < efi_map_end;
592		     ++i, p += efi_desc_size)
593		{
594			const char *unit;
595			unsigned long size;
596
597			md = p;
598			size = md->num_pages << EFI_PAGE_SHIFT;
599
600			if ((size >> 40) > 0) {
601				size >>= 40;
602				unit = "TB";
603			} else if ((size >> 30) > 0) {
604				size >>= 30;
605				unit = "GB";
606			} else if ((size >> 20) > 0) {
607				size >>= 20;
608				unit = "MB";
609			} else {
610				size >>= 10;
611				unit = "KB";
612			}
613
614			printk("mem%02d: type=%2u, attr=0x%016lx, "
615			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
616			       i, md->type, md->attribute, md->phys_addr,
617			       md->phys_addr + efi_md_size(md), size, unit);
618		}
619	}
620#endif
621
622	efi_map_pal_code();
623	efi_enter_virtual_mode();
624}
625
626void
627efi_enter_virtual_mode (void)
628{
629	void *efi_map_start, *efi_map_end, *p;
630	efi_memory_desc_t *md;
631	efi_status_t status;
632	u64 efi_desc_size;
633
634	efi_map_start = __va(ia64_boot_param->efi_memmap);
635	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
636	efi_desc_size = ia64_boot_param->efi_memdesc_size;
637
638	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
639		md = p;
640		if (md->attribute & EFI_MEMORY_RUNTIME) {
641			/*
642			 * Some descriptors have multiple bits set, so the
643			 * order of the tests is relevant.
644			 */
645			if (md->attribute & EFI_MEMORY_WB) {
646				md->virt_addr = (u64) __va(md->phys_addr);
647			} else if (md->attribute & EFI_MEMORY_UC) {
648				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
649			} else if (md->attribute & EFI_MEMORY_WC) {
650				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
651				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
652			} else if (md->attribute & EFI_MEMORY_WT) {
653				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
654				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
655			}
656		}
657	}
658
659	status = efi_call_phys(__va(runtime->set_virtual_address_map),
660			       ia64_boot_param->efi_memmap_size,
661			       efi_desc_size,
662			       ia64_boot_param->efi_memdesc_version,
663			       ia64_boot_param->efi_memmap);
664	if (status != EFI_SUCCESS) {
665		printk(KERN_WARNING "warning: unable to switch EFI into "
666		       "virtual mode (status=%lu)\n", status);
667		return;
668	}
669
670	/*
671	 * Now that EFI is in virtual mode, we call the EFI functions more
672	 * efficiently:
673	 */
674	efi.get_time = virt_get_time;
675	efi.set_time = virt_set_time;
676	efi.get_wakeup_time = virt_get_wakeup_time;
677	efi.set_wakeup_time = virt_set_wakeup_time;
678	efi.get_variable = virt_get_variable;
679	efi.get_next_variable = virt_get_next_variable;
680	efi.set_variable = virt_set_variable;
681	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
682	efi.reset_system = virt_reset_system;
683}
684
685/*
686 * Walk the EFI memory map looking for the I/O port range.  There can only be
687 * one entry of this type, other I/O port ranges should be described via ACPI.
688 */
689u64
690efi_get_iobase (void)
691{
692	void *efi_map_start, *efi_map_end, *p;
693	efi_memory_desc_t *md;
694	u64 efi_desc_size;
695
696	efi_map_start = __va(ia64_boot_param->efi_memmap);
697	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
698	efi_desc_size = ia64_boot_param->efi_memdesc_size;
699
700	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
701		md = p;
702		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
703			if (md->attribute & EFI_MEMORY_UC)
704				return md->phys_addr;
705		}
706	}
707	return 0;
708}
709
710static struct kern_memdesc *
711kern_memory_descriptor (unsigned long phys_addr)
712{
713	struct kern_memdesc *md;
714
715	for (md = kern_memmap; md->start != ~0UL; md++) {
716		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
717			 return md;
718	}
719	return NULL;
720}
721
722static efi_memory_desc_t *
723efi_memory_descriptor (unsigned long phys_addr)
724{
725	void *efi_map_start, *efi_map_end, *p;
726	efi_memory_desc_t *md;
727	u64 efi_desc_size;
728
729	efi_map_start = __va(ia64_boot_param->efi_memmap);
730	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
731	efi_desc_size = ia64_boot_param->efi_memdesc_size;
732
733	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
734		md = p;
735
736		if (phys_addr - md->phys_addr < efi_md_size(md))
737			 return md;
738	}
739	return NULL;
740}
741
742static int
743efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
744{
745	void *efi_map_start, *efi_map_end, *p;
746	efi_memory_desc_t *md;
747	u64 efi_desc_size;
748	unsigned long end;
749
750	efi_map_start = __va(ia64_boot_param->efi_memmap);
751	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
752	efi_desc_size = ia64_boot_param->efi_memdesc_size;
753
754	end = phys_addr + size;
755
756	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
757		md = p;
758		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
759			return 1;
760	}
761	return 0;
762}
763
764u32
765efi_mem_type (unsigned long phys_addr)
766{
767	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
768
769	if (md)
770		return md->type;
771	return 0;
772}
773
774u64
775efi_mem_attributes (unsigned long phys_addr)
776{
777	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
778
779	if (md)
780		return md->attribute;
781	return 0;
782}
783EXPORT_SYMBOL(efi_mem_attributes);
784
785u64
786efi_mem_attribute (unsigned long phys_addr, unsigned long size)
787{
788	unsigned long end = phys_addr + size;
789	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
790	u64 attr;
791
792	if (!md)
793		return 0;
794
795	/*
796	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
797	 * the kernel that firmware needs this region mapped.
798	 */
799	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
800	do {
801		unsigned long md_end = efi_md_end(md);
802
803		if (end <= md_end)
804			return attr;
805
806		md = efi_memory_descriptor(md_end);
807		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
808			return 0;
809	} while (md);
810	return 0;	/* never reached */
811}
812
813u64
814kern_mem_attribute (unsigned long phys_addr, unsigned long size)
815{
816	unsigned long end = phys_addr + size;
817	struct kern_memdesc *md;
818	u64 attr;
819
820	/*
821	 * This is a hack for ioremap calls before we set up kern_memmap.
822	 * Maybe we should do efi_memmap_init() earlier instead.
823	 */
824	if (!kern_memmap) {
825		attr = efi_mem_attribute(phys_addr, size);
826		if (attr & EFI_MEMORY_WB)
827			return EFI_MEMORY_WB;
828		return 0;
829	}
830
831	md = kern_memory_descriptor(phys_addr);
832	if (!md)
833		return 0;
834
835	attr = md->attribute;
836	do {
837		unsigned long md_end = kmd_end(md);
838
839		if (end <= md_end)
840			return attr;
841
842		md = kern_memory_descriptor(md_end);
843		if (!md || md->attribute != attr)
844			return 0;
845	} while (md);
846	return 0;	/* never reached */
847}
848EXPORT_SYMBOL(kern_mem_attribute);
849
850int
851valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
852{
853	u64 attr;
854
855	/*
856	 * /dev/mem reads and writes use copy_to_user(), which implicitly
857	 * uses a granule-sized kernel identity mapping.  It's really
858	 * only safe to do this for regions in kern_memmap.  For more
859	 * details, see Documentation/ia64/aliasing.txt.
860	 */
861	attr = kern_mem_attribute(phys_addr, size);
862	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
863		return 1;
864	return 0;
865}
866
867int
868valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
869{
870	unsigned long phys_addr = pfn << PAGE_SHIFT;
871	u64 attr;
872
873	attr = efi_mem_attribute(phys_addr, size);
874
875	/*
876	 * /dev/mem mmap uses normal user pages, so we don't need the entire
877	 * granule, but the entire region we're mapping must support the same
878	 * attribute.
879	 */
880	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
881		return 1;
882
883	/*
884	 * Intel firmware doesn't tell us about all the MMIO regions, so
885	 * in general we have to allow mmap requests.  But if EFI *does*
886	 * tell us about anything inside this region, we should deny it.
887	 * The user can always map a smaller region to avoid the overlap.
888	 */
889	if (efi_memmap_intersects(phys_addr, size))
890		return 0;
891
892	return 1;
893}
894
895pgprot_t
896phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
897		     pgprot_t vma_prot)
898{
899	unsigned long phys_addr = pfn << PAGE_SHIFT;
900	u64 attr;
901
902	/*
903	 * For /dev/mem mmap, we use user mappings, but if the region is
904	 * in kern_memmap (and hence may be covered by a kernel mapping),
905	 * we must use the same attribute as the kernel mapping.
906	 */
907	attr = kern_mem_attribute(phys_addr, size);
908	if (attr & EFI_MEMORY_WB)
909		return pgprot_cacheable(vma_prot);
910	else if (attr & EFI_MEMORY_UC)
911		return pgprot_noncached(vma_prot);
912
913	/*
914	 * Some chipsets don't support UC access to memory.  If
915	 * WB is supported, we prefer that.
916	 */
917	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
918		return pgprot_cacheable(vma_prot);
919
920	return pgprot_noncached(vma_prot);
921}
922
923int __init
924efi_uart_console_only(void)
925{
926	efi_status_t status;
927	char *s, name[] = "ConOut";
928	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
929	efi_char16_t *utf16, name_utf16[32];
930	unsigned char data[1024];
931	unsigned long size = sizeof(data);
932	struct efi_generic_dev_path *hdr, *end_addr;
933	int uart = 0;
934
935	/* Convert to UTF-16 */
936	utf16 = name_utf16;
937	s = name;
938	while (*s)
939		*utf16++ = *s++ & 0x7f;
940	*utf16 = 0;
941
942	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
943	if (status != EFI_SUCCESS) {
944		printk(KERN_ERR "No EFI %s variable?\n", name);
945		return 0;
946	}
947
948	hdr = (struct efi_generic_dev_path *) data;
949	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
950	while (hdr < end_addr) {
951		if (hdr->type == EFI_DEV_MSG &&
952		    hdr->sub_type == EFI_DEV_MSG_UART)
953			uart = 1;
954		else if (hdr->type == EFI_DEV_END_PATH ||
955			  hdr->type == EFI_DEV_END_PATH2) {
956			if (!uart)
957				return 0;
958			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
959				return 1;
960			uart = 0;
961		}
962		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
963	}
964	printk(KERN_ERR "Malformed %s value\n", name);
965	return 0;
966}
967
968/*
969 * Look for the first granule aligned memory descriptor memory
970 * that is big enough to hold EFI memory map. Make sure this
971 * descriptor is atleast granule sized so it does not get trimmed
972 */
973struct kern_memdesc *
974find_memmap_space (void)
975{
976	u64	contig_low=0, contig_high=0;
977	u64	as = 0, ae;
978	void *efi_map_start, *efi_map_end, *p, *q;
979	efi_memory_desc_t *md, *pmd = NULL, *check_md;
980	u64	space_needed, efi_desc_size;
981	unsigned long total_mem = 0;
982
983	efi_map_start = __va(ia64_boot_param->efi_memmap);
984	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
985	efi_desc_size = ia64_boot_param->efi_memdesc_size;
986
987	/*
988	 * Worst case: we need 3 kernel descriptors for each efi descriptor
989	 * (if every entry has a WB part in the middle, and UC head and tail),
990	 * plus one for the end marker.
991	 */
992	space_needed = sizeof(kern_memdesc_t) *
993		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
994
995	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
996		md = p;
997		if (!efi_wb(md)) {
998			continue;
999		}
1000		if (pmd == NULL || !efi_wb(pmd) ||
1001		    efi_md_end(pmd) != md->phys_addr) {
1002			contig_low = GRANULEROUNDUP(md->phys_addr);
1003			contig_high = efi_md_end(md);
1004			for (q = p + efi_desc_size; q < efi_map_end;
1005			     q += efi_desc_size) {
1006				check_md = q;
1007				if (!efi_wb(check_md))
1008					break;
1009				if (contig_high != check_md->phys_addr)
1010					break;
1011				contig_high = efi_md_end(check_md);
1012			}
1013			contig_high = GRANULEROUNDDOWN(contig_high);
1014		}
1015		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1016			continue;
1017
1018		/* Round ends inward to granule boundaries */
1019		as = max(contig_low, md->phys_addr);
1020		ae = min(contig_high, efi_md_end(md));
1021
1022		/* keep within max_addr= and min_addr= command line arg */
1023		as = max(as, min_addr);
1024		ae = min(ae, max_addr);
1025		if (ae <= as)
1026			continue;
1027
1028		/* avoid going over mem= command line arg */
1029		if (total_mem + (ae - as) > mem_limit)
1030			ae -= total_mem + (ae - as) - mem_limit;
1031
1032		if (ae <= as)
1033			continue;
1034
1035		if (ae - as > space_needed)
1036			break;
1037	}
1038	if (p >= efi_map_end)
1039		panic("Can't allocate space for kernel memory descriptors");
1040
1041	return __va(as);
1042}
1043
1044/*
1045 * Walk the EFI memory map and gather all memory available for kernel
1046 * to use.  We can allocate partial granules only if the unavailable
1047 * parts exist, and are WB.
1048 */
1049unsigned long
1050efi_memmap_init(u64 *s, u64 *e)
1051{
1052	struct kern_memdesc *k, *prev = NULL;
1053	u64	contig_low=0, contig_high=0;
1054	u64	as, ae, lim;
1055	void *efi_map_start, *efi_map_end, *p, *q;
1056	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1057	u64	efi_desc_size;
1058	unsigned long total_mem = 0;
1059
1060	k = kern_memmap = find_memmap_space();
1061
1062	efi_map_start = __va(ia64_boot_param->efi_memmap);
1063	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1064	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1065
1066	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1067		md = p;
1068		if (!efi_wb(md)) {
1069			if (efi_uc(md) &&
1070			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1071			     md->type == EFI_BOOT_SERVICES_DATA)) {
1072				k->attribute = EFI_MEMORY_UC;
1073				k->start = md->phys_addr;
1074				k->num_pages = md->num_pages;
1075				k++;
1076			}
1077			continue;
1078		}
1079		if (pmd == NULL || !efi_wb(pmd) ||
1080		    efi_md_end(pmd) != md->phys_addr) {
1081			contig_low = GRANULEROUNDUP(md->phys_addr);
1082			contig_high = efi_md_end(md);
1083			for (q = p + efi_desc_size; q < efi_map_end;
1084			     q += efi_desc_size) {
1085				check_md = q;
1086				if (!efi_wb(check_md))
1087					break;
1088				if (contig_high != check_md->phys_addr)
1089					break;
1090				contig_high = efi_md_end(check_md);
1091			}
1092			contig_high = GRANULEROUNDDOWN(contig_high);
1093		}
1094		if (!is_memory_available(md))
1095			continue;
1096
1097#ifdef CONFIG_CRASH_DUMP
1098		/* saved_max_pfn should ignore max_addr= command line arg */
1099		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1100			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1101#endif
1102		/*
1103		 * Round ends inward to granule boundaries
1104		 * Give trimmings to uncached allocator
1105		 */
1106		if (md->phys_addr < contig_low) {
1107			lim = min(efi_md_end(md), contig_low);
1108			if (efi_uc(md)) {
1109				if (k > kern_memmap &&
1110				    (k-1)->attribute == EFI_MEMORY_UC &&
1111				    kmd_end(k-1) == md->phys_addr) {
1112					(k-1)->num_pages +=
1113						(lim - md->phys_addr)
1114						>> EFI_PAGE_SHIFT;
1115				} else {
1116					k->attribute = EFI_MEMORY_UC;
1117					k->start = md->phys_addr;
1118					k->num_pages = (lim - md->phys_addr)
1119						>> EFI_PAGE_SHIFT;
1120					k++;
1121				}
1122			}
1123			as = contig_low;
1124		} else
1125			as = md->phys_addr;
1126
1127		if (efi_md_end(md) > contig_high) {
1128			lim = max(md->phys_addr, contig_high);
1129			if (efi_uc(md)) {
1130				if (lim == md->phys_addr && k > kern_memmap &&
1131				    (k-1)->attribute == EFI_MEMORY_UC &&
1132				    kmd_end(k-1) == md->phys_addr) {
1133					(k-1)->num_pages += md->num_pages;
1134				} else {
1135					k->attribute = EFI_MEMORY_UC;
1136					k->start = lim;
1137					k->num_pages = (efi_md_end(md) - lim)
1138						>> EFI_PAGE_SHIFT;
1139					k++;
1140				}
1141			}
1142			ae = contig_high;
1143		} else
1144			ae = efi_md_end(md);
1145
1146		/* keep within max_addr= and min_addr= command line arg */
1147		as = max(as, min_addr);
1148		ae = min(ae, max_addr);
1149		if (ae <= as)
1150			continue;
1151
1152		/* avoid going over mem= command line arg */
1153		if (total_mem + (ae - as) > mem_limit)
1154			ae -= total_mem + (ae - as) - mem_limit;
1155
1156		if (ae <= as)
1157			continue;
1158		if (prev && kmd_end(prev) == md->phys_addr) {
1159			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1160			total_mem += ae - as;
1161			continue;
1162		}
1163		k->attribute = EFI_MEMORY_WB;
1164		k->start = as;
1165		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1166		total_mem += ae - as;
1167		prev = k++;
1168	}
1169	k->start = ~0L; /* end-marker */
1170
1171	/* reserve the memory we are using for kern_memmap */
1172	*s = (u64)kern_memmap;
1173	*e = (u64)++k;
1174
1175	return total_mem;
1176}
1177
1178void
1179efi_initialize_iomem_resources(struct resource *code_resource,
1180			       struct resource *data_resource,
1181			       struct resource *bss_resource)
1182{
1183	struct resource *res;
1184	void *efi_map_start, *efi_map_end, *p;
1185	efi_memory_desc_t *md;
1186	u64 efi_desc_size;
1187	char *name;
1188	unsigned long flags;
1189
1190	efi_map_start = __va(ia64_boot_param->efi_memmap);
1191	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1192	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1193
1194	res = NULL;
1195
1196	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1197		md = p;
1198
1199		if (md->num_pages == 0) /* should not happen */
1200			continue;
1201
1202		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1203		switch (md->type) {
1204
1205			case EFI_MEMORY_MAPPED_IO:
1206			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1207				continue;
1208
1209			case EFI_LOADER_CODE:
1210			case EFI_LOADER_DATA:
1211			case EFI_BOOT_SERVICES_DATA:
1212			case EFI_BOOT_SERVICES_CODE:
1213			case EFI_CONVENTIONAL_MEMORY:
1214				if (md->attribute & EFI_MEMORY_WP) {
1215					name = "System ROM";
1216					flags |= IORESOURCE_READONLY;
1217				} else if (md->attribute == EFI_MEMORY_UC)
1218					name = "Uncached RAM";
1219				else
1220					name = "System RAM";
1221				break;
1222
1223			case EFI_ACPI_MEMORY_NVS:
1224				name = "ACPI Non-volatile Storage";
1225				break;
1226
1227			case EFI_UNUSABLE_MEMORY:
1228				name = "reserved";
1229				flags |= IORESOURCE_DISABLED;
1230				break;
1231
1232			case EFI_RESERVED_TYPE:
1233			case EFI_RUNTIME_SERVICES_CODE:
1234			case EFI_RUNTIME_SERVICES_DATA:
1235			case EFI_ACPI_RECLAIM_MEMORY:
1236			default:
1237				name = "reserved";
1238				break;
1239		}
1240
1241		if ((res = kzalloc(sizeof(struct resource),
1242				   GFP_KERNEL)) == NULL) {
1243			printk(KERN_ERR
1244			       "failed to allocate resource for iomem\n");
1245			return;
1246		}
1247
1248		res->name = name;
1249		res->start = md->phys_addr;
1250		res->end = md->phys_addr + efi_md_size(md) - 1;
1251		res->flags = flags;
1252
1253		if (insert_resource(&iomem_resource, res) < 0)
1254			kfree(res);
1255		else {
1256			/*
1257			 * We don't know which region contains
1258			 * kernel data so we try it repeatedly and
1259			 * let the resource manager test it.
1260			 */
1261			insert_resource(res, code_resource);
1262			insert_resource(res, data_resource);
1263			insert_resource(res, bss_resource);
1264#ifdef CONFIG_KEXEC
1265                        insert_resource(res, &efi_memmap_res);
1266                        insert_resource(res, &boot_param_res);
1267			if (crashk_res.end > crashk_res.start)
1268				insert_resource(res, &crashk_res);
1269#endif
1270		}
1271	}
1272}
1273
1274#ifdef CONFIG_KEXEC
1275/* find a block of memory aligned to 64M exclude reserved regions
1276   rsvd_regions are sorted
1277 */
1278unsigned long __init
1279kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1280{
1281	int i;
1282	u64 start, end;
1283	u64 alignment = 1UL << _PAGE_SIZE_64M;
1284	void *efi_map_start, *efi_map_end, *p;
1285	efi_memory_desc_t *md;
1286	u64 efi_desc_size;
1287
1288	efi_map_start = __va(ia64_boot_param->efi_memmap);
1289	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1290	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1291
1292	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1293		md = p;
1294		if (!efi_wb(md))
1295			continue;
1296		start = ALIGN(md->phys_addr, alignment);
1297		end = efi_md_end(md);
1298		for (i = 0; i < n; i++) {
1299			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1300				if (__pa(r[i].start) > start + size)
1301					return start;
1302				start = ALIGN(__pa(r[i].end), alignment);
1303				if (i < n-1 &&
1304				    __pa(r[i+1].start) < start + size)
1305					continue;
1306				else
1307					break;
1308			}
1309		}
1310		if (end > start + size)
1311			return start;
1312	}
1313
1314	printk(KERN_WARNING
1315	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1316	return ~0UL;
1317}
1318#endif
1319
1320#ifdef CONFIG_CRASH_DUMP
1321/* locate the size find a the descriptor at a certain address */
1322unsigned long __init
1323vmcore_find_descriptor_size (unsigned long address)
1324{
1325	void *efi_map_start, *efi_map_end, *p;
1326	efi_memory_desc_t *md;
1327	u64 efi_desc_size;
1328	unsigned long ret = 0;
1329
1330	efi_map_start = __va(ia64_boot_param->efi_memmap);
1331	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1332	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1333
1334	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1335		md = p;
1336		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1337		    && md->phys_addr == address) {
1338			ret = efi_md_size(md);
1339			break;
1340		}
1341	}
1342
1343	if (ret == 0)
1344		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1345
1346	return ret;
1347}
1348#endif
1349