• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/include/asm/sn/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
7 */
8
9#ifndef _ASM_IA64_SN_SHUBIO_H
10#define _ASM_IA64_SN_SHUBIO_H
11
12#define HUB_WIDGET_ID_MAX	0xf
13#define IIO_NUM_ITTES		7
14#define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)
15
16#define		IIO_WID			0x00400000	/* Crosstalk Widget Identification */
17							/* This register is also accessible from
18							 * Crosstalk at address 0x0.  */
19#define		IIO_WSTAT		0x00400008	/* Crosstalk Widget Status */
20#define		IIO_WCR			0x00400020	/* Crosstalk Widget Control Register */
21#define		IIO_ILAPR		0x00400100	/* IO Local Access Protection Register */
22#define		IIO_ILAPO		0x00400108	/* IO Local Access Protection Override */
23#define		IIO_IOWA		0x00400110	/* IO Outbound Widget Access */
24#define		IIO_IIWA		0x00400118	/* IO Inbound Widget Access */
25#define		IIO_IIDEM		0x00400120	/* IO Inbound Device Error Mask */
26#define		IIO_ILCSR		0x00400128	/* IO LLP Control and Status Register */
27#define		IIO_ILLR		0x00400130	/* IO LLP Log Register    */
28#define		IIO_IIDSR		0x00400138	/* IO Interrupt Destination */
29
30#define		IIO_IGFX0		0x00400140	/* IO Graphics Node-Widget Map 0 */
31#define		IIO_IGFX1		0x00400148	/* IO Graphics Node-Widget Map 1 */
32
33#define		IIO_ISCR0		0x00400150	/* IO Scratch Register 0 */
34#define		IIO_ISCR1		0x00400158	/* IO Scratch Register 1 */
35
36#define		IIO_ITTE1		0x00400160	/* IO Translation Table Entry 1 */
37#define		IIO_ITTE2		0x00400168	/* IO Translation Table Entry 2 */
38#define		IIO_ITTE3		0x00400170	/* IO Translation Table Entry 3 */
39#define		IIO_ITTE4		0x00400178	/* IO Translation Table Entry 4 */
40#define		IIO_ITTE5		0x00400180	/* IO Translation Table Entry 5 */
41#define		IIO_ITTE6		0x00400188	/* IO Translation Table Entry 6 */
42#define		IIO_ITTE7		0x00400190	/* IO Translation Table Entry 7 */
43
44#define		IIO_IPRB0		0x00400198	/* IO PRB Entry 0   */
45#define		IIO_IPRB8		0x004001A0	/* IO PRB Entry 8   */
46#define		IIO_IPRB9		0x004001A8	/* IO PRB Entry 9   */
47#define		IIO_IPRBA		0x004001B0	/* IO PRB Entry A   */
48#define		IIO_IPRBB		0x004001B8	/* IO PRB Entry B   */
49#define		IIO_IPRBC		0x004001C0	/* IO PRB Entry C   */
50#define		IIO_IPRBD		0x004001C8	/* IO PRB Entry D   */
51#define		IIO_IPRBE		0x004001D0	/* IO PRB Entry E   */
52#define		IIO_IPRBF		0x004001D8	/* IO PRB Entry F   */
53
54#define		IIO_IXCC		0x004001E0	/* IO Crosstalk Credit Count Timeout */
55#define		IIO_IMEM		0x004001E8	/* IO Miscellaneous Error Mask */
56#define		IIO_IXTT		0x004001F0	/* IO Crosstalk Timeout Threshold */
57#define		IIO_IECLR		0x004001F8	/* IO Error Clear Register */
58#define		IIO_IBCR		0x00400200	/* IO BTE Control Register */
59
60#define		IIO_IXSM		0x00400208	/* IO Crosstalk Spurious Message */
61#define		IIO_IXSS		0x00400210	/* IO Crosstalk Spurious Sideband */
62
63#define		IIO_ILCT		0x00400218	/* IO LLP Channel Test    */
64
65#define		IIO_IIEPH1 		0x00400220	/* IO Incoming Error Packet Header, Part 1 */
66#define		IIO_IIEPH2 		0x00400228	/* IO Incoming Error Packet Header, Part 2 */
67
68#define		IIO_ISLAPR 		0x00400230	/* IO SXB Local Access Protection Regster */
69#define		IIO_ISLAPO 		0x00400238	/* IO SXB Local Access Protection Override */
70
71#define		IIO_IWI			0x00400240	/* IO Wrapper Interrupt Register */
72#define		IIO_IWEL		0x00400248	/* IO Wrapper Error Log Register */
73#define		IIO_IWC			0x00400250	/* IO Wrapper Control Register */
74#define		IIO_IWS			0x00400258	/* IO Wrapper Status Register */
75#define		IIO_IWEIM		0x00400260	/* IO Wrapper Error Interrupt Masking Register */
76
77#define		IIO_IPCA		0x00400300	/* IO PRB Counter Adjust */
78
79#define		IIO_IPRTE0_A		0x00400308	/* IO PIO Read Address Table Entry 0, Part A */
80#define		IIO_IPRTE1_A		0x00400310	/* IO PIO Read Address Table Entry 1, Part A */
81#define		IIO_IPRTE2_A		0x00400318	/* IO PIO Read Address Table Entry 2, Part A */
82#define		IIO_IPRTE3_A		0x00400320	/* IO PIO Read Address Table Entry 3, Part A */
83#define		IIO_IPRTE4_A		0x00400328	/* IO PIO Read Address Table Entry 4, Part A */
84#define		IIO_IPRTE5_A		0x00400330	/* IO PIO Read Address Table Entry 5, Part A */
85#define		IIO_IPRTE6_A		0x00400338	/* IO PIO Read Address Table Entry 6, Part A */
86#define		IIO_IPRTE7_A		0x00400340	/* IO PIO Read Address Table Entry 7, Part A */
87
88#define		IIO_IPRTE0_B		0x00400348	/* IO PIO Read Address Table Entry 0, Part B */
89#define		IIO_IPRTE1_B		0x00400350	/* IO PIO Read Address Table Entry 1, Part B */
90#define		IIO_IPRTE2_B		0x00400358	/* IO PIO Read Address Table Entry 2, Part B */
91#define		IIO_IPRTE3_B		0x00400360	/* IO PIO Read Address Table Entry 3, Part B */
92#define		IIO_IPRTE4_B		0x00400368	/* IO PIO Read Address Table Entry 4, Part B */
93#define		IIO_IPRTE5_B		0x00400370	/* IO PIO Read Address Table Entry 5, Part B */
94#define		IIO_IPRTE6_B		0x00400378	/* IO PIO Read Address Table Entry 6, Part B */
95#define		IIO_IPRTE7_B		0x00400380	/* IO PIO Read Address Table Entry 7, Part B */
96
97#define		IIO_IPDR		0x00400388	/* IO PIO Deallocation Register */
98#define		IIO_ICDR		0x00400390	/* IO CRB Entry Deallocation Register */
99#define		IIO_IFDR		0x00400398	/* IO IOQ FIFO Depth Register */
100#define		IIO_IIAP		0x004003A0	/* IO IIQ Arbitration Parameters */
101#define		IIO_ICMR		0x004003A8	/* IO CRB Management Register */
102#define		IIO_ICCR		0x004003B0	/* IO CRB Control Register */
103#define		IIO_ICTO		0x004003B8	/* IO CRB Timeout   */
104#define		IIO_ICTP		0x004003C0	/* IO CRB Timeout Prescalar */
105
106#define		IIO_ICRB0_A		0x00400400	/* IO CRB Entry 0_A */
107#define		IIO_ICRB0_B		0x00400408	/* IO CRB Entry 0_B */
108#define		IIO_ICRB0_C		0x00400410	/* IO CRB Entry 0_C */
109#define		IIO_ICRB0_D		0x00400418	/* IO CRB Entry 0_D */
110#define		IIO_ICRB0_E		0x00400420	/* IO CRB Entry 0_E */
111
112#define		IIO_ICRB1_A		0x00400430	/* IO CRB Entry 1_A */
113#define		IIO_ICRB1_B		0x00400438	/* IO CRB Entry 1_B */
114#define		IIO_ICRB1_C		0x00400440	/* IO CRB Entry 1_C */
115#define		IIO_ICRB1_D		0x00400448	/* IO CRB Entry 1_D */
116#define		IIO_ICRB1_E		0x00400450	/* IO CRB Entry 1_E */
117
118#define		IIO_ICRB2_A		0x00400460	/* IO CRB Entry 2_A */
119#define		IIO_ICRB2_B		0x00400468	/* IO CRB Entry 2_B */
120#define		IIO_ICRB2_C		0x00400470	/* IO CRB Entry 2_C */
121#define		IIO_ICRB2_D		0x00400478	/* IO CRB Entry 2_D */
122#define		IIO_ICRB2_E		0x00400480	/* IO CRB Entry 2_E */
123
124#define		IIO_ICRB3_A		0x00400490	/* IO CRB Entry 3_A */
125#define		IIO_ICRB3_B		0x00400498	/* IO CRB Entry 3_B */
126#define		IIO_ICRB3_C		0x004004a0	/* IO CRB Entry 3_C */
127#define		IIO_ICRB3_D		0x004004a8	/* IO CRB Entry 3_D */
128#define		IIO_ICRB3_E		0x004004b0	/* IO CRB Entry 3_E */
129
130#define		IIO_ICRB4_A		0x004004c0	/* IO CRB Entry 4_A */
131#define		IIO_ICRB4_B		0x004004c8	/* IO CRB Entry 4_B */
132#define		IIO_ICRB4_C		0x004004d0	/* IO CRB Entry 4_C */
133#define		IIO_ICRB4_D		0x004004d8	/* IO CRB Entry 4_D */
134#define		IIO_ICRB4_E		0x004004e0	/* IO CRB Entry 4_E */
135
136#define		IIO_ICRB5_A		0x004004f0	/* IO CRB Entry 5_A */
137#define		IIO_ICRB5_B		0x004004f8	/* IO CRB Entry 5_B */
138#define		IIO_ICRB5_C		0x00400500	/* IO CRB Entry 5_C */
139#define		IIO_ICRB5_D		0x00400508	/* IO CRB Entry 5_D */
140#define		IIO_ICRB5_E		0x00400510	/* IO CRB Entry 5_E */
141
142#define		IIO_ICRB6_A		0x00400520	/* IO CRB Entry 6_A */
143#define		IIO_ICRB6_B		0x00400528	/* IO CRB Entry 6_B */
144#define		IIO_ICRB6_C		0x00400530	/* IO CRB Entry 6_C */
145#define		IIO_ICRB6_D		0x00400538	/* IO CRB Entry 6_D */
146#define		IIO_ICRB6_E		0x00400540	/* IO CRB Entry 6_E */
147
148#define		IIO_ICRB7_A		0x00400550	/* IO CRB Entry 7_A */
149#define		IIO_ICRB7_B		0x00400558	/* IO CRB Entry 7_B */
150#define		IIO_ICRB7_C		0x00400560	/* IO CRB Entry 7_C */
151#define		IIO_ICRB7_D		0x00400568	/* IO CRB Entry 7_D */
152#define		IIO_ICRB7_E		0x00400570	/* IO CRB Entry 7_E */
153
154#define		IIO_ICRB8_A		0x00400580	/* IO CRB Entry 8_A */
155#define		IIO_ICRB8_B		0x00400588	/* IO CRB Entry 8_B */
156#define		IIO_ICRB8_C		0x00400590	/* IO CRB Entry 8_C */
157#define		IIO_ICRB8_D		0x00400598	/* IO CRB Entry 8_D */
158#define		IIO_ICRB8_E		0x004005a0	/* IO CRB Entry 8_E */
159
160#define		IIO_ICRB9_A		0x004005b0	/* IO CRB Entry 9_A */
161#define		IIO_ICRB9_B		0x004005b8	/* IO CRB Entry 9_B */
162#define		IIO_ICRB9_C		0x004005c0	/* IO CRB Entry 9_C */
163#define		IIO_ICRB9_D		0x004005c8	/* IO CRB Entry 9_D */
164#define		IIO_ICRB9_E		0x004005d0	/* IO CRB Entry 9_E */
165
166#define		IIO_ICRBA_A		0x004005e0	/* IO CRB Entry A_A */
167#define		IIO_ICRBA_B		0x004005e8	/* IO CRB Entry A_B */
168#define		IIO_ICRBA_C		0x004005f0	/* IO CRB Entry A_C */
169#define		IIO_ICRBA_D		0x004005f8	/* IO CRB Entry A_D */
170#define		IIO_ICRBA_E		0x00400600	/* IO CRB Entry A_E */
171
172#define		IIO_ICRBB_A		0x00400610	/* IO CRB Entry B_A */
173#define		IIO_ICRBB_B		0x00400618	/* IO CRB Entry B_B */
174#define		IIO_ICRBB_C		0x00400620	/* IO CRB Entry B_C */
175#define		IIO_ICRBB_D		0x00400628	/* IO CRB Entry B_D */
176#define		IIO_ICRBB_E		0x00400630	/* IO CRB Entry B_E */
177
178#define		IIO_ICRBC_A		0x00400640	/* IO CRB Entry C_A */
179#define		IIO_ICRBC_B		0x00400648	/* IO CRB Entry C_B */
180#define		IIO_ICRBC_C		0x00400650	/* IO CRB Entry C_C */
181#define		IIO_ICRBC_D		0x00400658	/* IO CRB Entry C_D */
182#define		IIO_ICRBC_E		0x00400660	/* IO CRB Entry C_E */
183
184#define		IIO_ICRBD_A		0x00400670	/* IO CRB Entry D_A */
185#define		IIO_ICRBD_B		0x00400678	/* IO CRB Entry D_B */
186#define		IIO_ICRBD_C		0x00400680	/* IO CRB Entry D_C */
187#define		IIO_ICRBD_D		0x00400688	/* IO CRB Entry D_D */
188#define		IIO_ICRBD_E		0x00400690	/* IO CRB Entry D_E */
189
190#define		IIO_ICRBE_A		0x004006a0	/* IO CRB Entry E_A */
191#define		IIO_ICRBE_B		0x004006a8	/* IO CRB Entry E_B */
192#define		IIO_ICRBE_C		0x004006b0	/* IO CRB Entry E_C */
193#define		IIO_ICRBE_D		0x004006b8	/* IO CRB Entry E_D */
194#define		IIO_ICRBE_E		0x004006c0	/* IO CRB Entry E_E */
195
196#define		IIO_ICSML		0x00400700	/* IO CRB Spurious Message Low */
197#define		IIO_ICSMM		0x00400708	/* IO CRB Spurious Message Middle */
198#define		IIO_ICSMH		0x00400710	/* IO CRB Spurious Message High */
199
200#define		IIO_IDBSS		0x00400718	/* IO Debug Submenu Select */
201
202#define		IIO_IBLS0		0x00410000	/* IO BTE Length Status 0 */
203#define		IIO_IBSA0		0x00410008	/* IO BTE Source Address 0 */
204#define		IIO_IBDA0		0x00410010	/* IO BTE Destination Address 0 */
205#define		IIO_IBCT0		0x00410018	/* IO BTE Control Terminate 0 */
206#define		IIO_IBNA0		0x00410020	/* IO BTE Notification Address 0 */
207#define		IIO_IBIA0		0x00410028	/* IO BTE Interrupt Address 0 */
208#define		IIO_IBLS1		0x00420000	/* IO BTE Length Status 1 */
209#define		IIO_IBSA1		0x00420008	/* IO BTE Source Address 1 */
210#define		IIO_IBDA1		0x00420010	/* IO BTE Destination Address 1 */
211#define		IIO_IBCT1		0x00420018	/* IO BTE Control Terminate 1 */
212#define		IIO_IBNA1		0x00420020	/* IO BTE Notification Address 1 */
213#define		IIO_IBIA1		0x00420028	/* IO BTE Interrupt Address 1 */
214
215#define		IIO_IPCR		0x00430000	/* IO Performance Control */
216#define		IIO_IPPR		0x00430008	/* IO Performance Profiling */
217
218/************************************************************************
219 *									*
220 * Description:  This register echoes some information from the         *
221 * LB_REV_ID register. It is available through Crosstalk as described   *
222 * above. The REV_NUM and MFG_NUM fields receive their values from      *
223 * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
224 * The PART_NUM field's value is the Crosstalk device ID number that    *
225 * Steve Miller assigned to the SHub chip.                              *
226 *									*
227 ************************************************************************/
228
229typedef union ii_wid_u {
230	u64 ii_wid_regval;
231	struct {
232		u64 w_rsvd_1:1;
233		u64 w_mfg_num:11;
234		u64 w_part_num:16;
235		u64 w_rev_num:4;
236		u64 w_rsvd:32;
237	} ii_wid_fld_s;
238} ii_wid_u_t;
239
240/************************************************************************
241 *									*
242 *  The fields in this register are set upon detection of an error      *
243 * and cleared by various mechanisms, as explained in the               *
244 * description.                                                         *
245 *									*
246 ************************************************************************/
247
248typedef union ii_wstat_u {
249	u64 ii_wstat_regval;
250	struct {
251		u64 w_pending:4;
252		u64 w_xt_crd_to:1;
253		u64 w_xt_tail_to:1;
254		u64 w_rsvd_3:3;
255		u64 w_tx_mx_rty:1;
256		u64 w_rsvd_2:6;
257		u64 w_llp_tx_cnt:8;
258		u64 w_rsvd_1:8;
259		u64 w_crazy:1;
260		u64 w_rsvd:31;
261	} ii_wstat_fld_s;
262} ii_wstat_u_t;
263
264/************************************************************************
265 *									*
266 * Description:  This is a read-write enabled register. It controls     *
267 * various aspects of the Crosstalk flow control.                       *
268 *									*
269 ************************************************************************/
270
271typedef union ii_wcr_u {
272	u64 ii_wcr_regval;
273	struct {
274		u64 w_wid:4;
275		u64 w_tag:1;
276		u64 w_rsvd_1:8;
277		u64 w_dst_crd:3;
278		u64 w_f_bad_pkt:1;
279		u64 w_dir_con:1;
280		u64 w_e_thresh:5;
281		u64 w_rsvd:41;
282	} ii_wcr_fld_s;
283} ii_wcr_u_t;
284
285/************************************************************************
286 *									*
287 * Description:  This register's value is a bit vector that guards      *
288 * access to local registers within the II as well as to external       *
289 * Crosstalk widgets. Each bit in the register corresponds to a         *
290 * particular region in the system; a region consists of one, two or    *
291 * four nodes (depending on the value of the REGION_SIZE field in the   *
292 * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
293 * protection provided by this register applies to PIO read             *
294 * operations as well as PIO write operations. The II will perform a    *
295 * PIO read or write request only if the bit for the requestor's        *
296 * region is set; otherwise, the II will not perform the requested      *
297 * operation and will return an error response. When a PIO read or      *
298 * write request targets an external Crosstalk widget, then not only    *
299 * must the bit for the requestor's region be set in the ILAPR, but     *
300 * also the target widget's bit in the IOWA register must be set in     *
301 * order for the II to perform the requested operation; otherwise,      *
302 * the II will return an error response. Hence, the protection          *
303 * provided by the IOWA register supplements the protection provided    *
304 * by the ILAPR for requests that target external Crosstalk widgets.    *
305 * This register itself can be accessed only by the nodes whose         *
306 * region ID bits are enabled in this same register. It can also be     *
307 * accessed through the IAlias space by the local processors.           *
308 * The reset value of this register allows access by all nodes.         *
309 *									*
310 ************************************************************************/
311
312typedef union ii_ilapr_u {
313	u64 ii_ilapr_regval;
314	struct {
315		u64 i_region:64;
316	} ii_ilapr_fld_s;
317} ii_ilapr_u_t;
318
319/************************************************************************
320 *									*
321 * Description:  A write to this register of the 64-bit value           *
322 * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
323 * corresponding to the region of the requestor to be set (allow        *
324 * access). A write of any other value will be ignored. Access          *
325 * protection for this register is "SGIrules".                          *
326 * This register can also be accessed through the IAlias space.         *
327 * However, this access will not change the access permissions in the   *
328 * ILAPR.                                                               *
329 *									*
330 ************************************************************************/
331
332typedef union ii_ilapo_u {
333	u64 ii_ilapo_regval;
334	struct {
335		u64 i_io_ovrride:64;
336	} ii_ilapo_fld_s;
337} ii_ilapo_u_t;
338
339/************************************************************************
340 *									*
341 *  This register qualifies all the PIO and Graphics writes launched    *
342 * from the SHUB towards a widget.                                      *
343 *									*
344 ************************************************************************/
345
346typedef union ii_iowa_u {
347	u64 ii_iowa_regval;
348	struct {
349		u64 i_w0_oac:1;
350		u64 i_rsvd_1:7;
351		u64 i_wx_oac:8;
352		u64 i_rsvd:48;
353	} ii_iowa_fld_s;
354} ii_iowa_u_t;
355
356/************************************************************************
357 *									*
358 * Description:  This register qualifies all the requests launched      *
359 * from a widget towards the Shub. This register is intended to be      *
360 * used by software in case of misbehaving widgets.                     *
361 *									*
362 *									*
363 ************************************************************************/
364
365typedef union ii_iiwa_u {
366	u64 ii_iiwa_regval;
367	struct {
368		u64 i_w0_iac:1;
369		u64 i_rsvd_1:7;
370		u64 i_wx_iac:8;
371		u64 i_rsvd:48;
372	} ii_iiwa_fld_s;
373} ii_iiwa_u_t;
374
375/************************************************************************
376 *									*
377 * Description:  This register qualifies all the operations launched    *
378 * from a widget towards the SHub. It allows individual access          *
379 * control for up to 8 devices per widget. A device refers to           *
380 * individual DMA master hosted by a widget.                            *
381 * The bits in each field of this register are cleared by the Shub      *
382 * upon detection of an error which requires the device to be           *
383 * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
384 * Crosstalk). Whether or not a device has access rights to this        *
385 * Shub is determined by an AND of the device enable bit in the         *
386 * appropriate field of this register and the corresponding bit in      *
387 * the Wx_IAC field (for the widget which this device belongs to).      *
388 * The bits in this field are set by writing a 1 to them. Incoming      *
389 * replies from Crosstalk are not subject to this access control        *
390 * mechanism.                                                           *
391 *									*
392 ************************************************************************/
393
394typedef union ii_iidem_u {
395	u64 ii_iidem_regval;
396	struct {
397		u64 i_w8_dxs:8;
398		u64 i_w9_dxs:8;
399		u64 i_wa_dxs:8;
400		u64 i_wb_dxs:8;
401		u64 i_wc_dxs:8;
402		u64 i_wd_dxs:8;
403		u64 i_we_dxs:8;
404		u64 i_wf_dxs:8;
405	} ii_iidem_fld_s;
406} ii_iidem_u_t;
407
408/************************************************************************
409 *									*
410 *  This register contains the various programmable fields necessary    *
411 * for controlling and observing the LLP signals.                       *
412 *									*
413 ************************************************************************/
414
415typedef union ii_ilcsr_u {
416	u64 ii_ilcsr_regval;
417	struct {
418		u64 i_nullto:6;
419		u64 i_rsvd_4:2;
420		u64 i_wrmrst:1;
421		u64 i_rsvd_3:1;
422		u64 i_llp_en:1;
423		u64 i_bm8:1;
424		u64 i_llp_stat:2;
425		u64 i_remote_power:1;
426		u64 i_rsvd_2:1;
427		u64 i_maxrtry:10;
428		u64 i_d_avail_sel:2;
429		u64 i_rsvd_1:4;
430		u64 i_maxbrst:10;
431		u64 i_rsvd:22;
432
433	} ii_ilcsr_fld_s;
434} ii_ilcsr_u_t;
435
436/************************************************************************
437 *									*
438 *  This is simply a status registers that monitors the LLP error       *
439 * rate.								*
440 *									*
441 ************************************************************************/
442
443typedef union ii_illr_u {
444	u64 ii_illr_regval;
445	struct {
446		u64 i_sn_cnt:16;
447		u64 i_cb_cnt:16;
448		u64 i_rsvd:32;
449	} ii_illr_fld_s;
450} ii_illr_u_t;
451
452/************************************************************************
453 *									*
454 * Description:  All II-detected non-BTE error interrupts are           *
455 * specified via this register.                                         *
456 * NOTE: The PI interrupt register address is hardcoded in the II. If   *
457 * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
458 * packet) to address offset 0x0180_0090 within the local register      *
459 * address space of PI0 on the node specified by the NODE field. If     *
460 * PI_ID==1, then the II sends the interrupt request to address         *
461 * offset 0x01A0_0090 within the local register address space of PI1    *
462 * on the node specified by the NODE field.                             *
463 *									*
464 ************************************************************************/
465
466typedef union ii_iidsr_u {
467	u64 ii_iidsr_regval;
468	struct {
469		u64 i_level:8;
470		u64 i_pi_id:1;
471		u64 i_node:11;
472		u64 i_rsvd_3:4;
473		u64 i_enable:1;
474		u64 i_rsvd_2:3;
475		u64 i_int_sent:2;
476		u64 i_rsvd_1:2;
477		u64 i_pi0_forward_int:1;
478		u64 i_pi1_forward_int:1;
479		u64 i_rsvd:30;
480	} ii_iidsr_fld_s;
481} ii_iidsr_u_t;
482
483/************************************************************************
484 *									*
485 *  There are two instances of this register. This register is used     *
486 * for matching up the incoming responses from the graphics widget to   *
487 * the processor that initiated the graphics operation. The             *
488 * write-responses are converted to graphics credits and returned to    *
489 * the processor so that the processor interface can manage the flow    *
490 * control.                                                             *
491 *									*
492 ************************************************************************/
493
494typedef union ii_igfx0_u {
495	u64 ii_igfx0_regval;
496	struct {
497		u64 i_w_num:4;
498		u64 i_pi_id:1;
499		u64 i_n_num:12;
500		u64 i_p_num:1;
501		u64 i_rsvd:46;
502	} ii_igfx0_fld_s;
503} ii_igfx0_u_t;
504
505/************************************************************************
506 *									*
507 *  There are two instances of this register. This register is used     *
508 * for matching up the incoming responses from the graphics widget to   *
509 * the processor that initiated the graphics operation. The             *
510 * write-responses are converted to graphics credits and returned to    *
511 * the processor so that the processor interface can manage the flow    *
512 * control.                                                             *
513 *									*
514 ************************************************************************/
515
516typedef union ii_igfx1_u {
517	u64 ii_igfx1_regval;
518	struct {
519		u64 i_w_num:4;
520		u64 i_pi_id:1;
521		u64 i_n_num:12;
522		u64 i_p_num:1;
523		u64 i_rsvd:46;
524	} ii_igfx1_fld_s;
525} ii_igfx1_u_t;
526
527/************************************************************************
528 *									*
529 *  There are two instances of this registers. These registers are      *
530 * used as scratch registers for software use.                          *
531 *									*
532 ************************************************************************/
533
534typedef union ii_iscr0_u {
535	u64 ii_iscr0_regval;
536	struct {
537		u64 i_scratch:64;
538	} ii_iscr0_fld_s;
539} ii_iscr0_u_t;
540
541/************************************************************************
542 *									*
543 *  There are two instances of this registers. These registers are      *
544 * used as scratch registers for software use.                          *
545 *									*
546 ************************************************************************/
547
548typedef union ii_iscr1_u {
549	u64 ii_iscr1_regval;
550	struct {
551		u64 i_scratch:64;
552	} ii_iscr1_fld_s;
553} ii_iscr1_u_t;
554
555/************************************************************************
556 *									*
557 * Description:  There are seven instances of translation table entry   *
558 * registers. Each register maps a Shub Big Window to a 48-bit          *
559 * address on Crosstalk.                                                *
560 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
561 * number) are used to select one of these 7 registers. The Widget      *
562 * number field is then derived from the W_NUM field for synthesizing   *
563 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
564 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
565 * are padded with zeros. Although the maximum Crosstalk space          *
566 * addressable by the SHub is thus the lower 16 GBytes per widget       *
567 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
568 * space can be accessed.                                               *
569 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
570 * Window number) are used to select one of these 7 registers. The      *
571 * Widget number field is then derived from the W_NUM field for         *
572 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
573 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
574 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
575 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
576 * Crosstalk space addressable by the Shub is thus the lower            *
577 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
578 * of this space can be accessed.                                       *
579 *									*
580 ************************************************************************/
581
582typedef union ii_itte1_u {
583	u64 ii_itte1_regval;
584	struct {
585		u64 i_offset:5;
586		u64 i_rsvd_1:3;
587		u64 i_w_num:4;
588		u64 i_iosp:1;
589		u64 i_rsvd:51;
590	} ii_itte1_fld_s;
591} ii_itte1_u_t;
592
593/************************************************************************
594 *									*
595 * Description:  There are seven instances of translation table entry   *
596 * registers. Each register maps a Shub Big Window to a 48-bit          *
597 * address on Crosstalk.                                                *
598 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
599 * number) are used to select one of these 7 registers. The Widget      *
600 * number field is then derived from the W_NUM field for synthesizing   *
601 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
602 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
603 * are padded with zeros. Although the maximum Crosstalk space          *
604 * addressable by the Shub is thus the lower 16 GBytes per widget       *
605 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
606 * space can be accessed.                                               *
607 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
608 * Window number) are used to select one of these 7 registers. The      *
609 * Widget number field is then derived from the W_NUM field for         *
610 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
611 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
612 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
613 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
614 * Crosstalk space addressable by the Shub is thus the lower            *
615 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
616 * of this space can be accessed.                                       *
617 *									*
618 ************************************************************************/
619
620typedef union ii_itte2_u {
621	u64 ii_itte2_regval;
622	struct {
623		u64 i_offset:5;
624		u64 i_rsvd_1:3;
625		u64 i_w_num:4;
626		u64 i_iosp:1;
627		u64 i_rsvd:51;
628	} ii_itte2_fld_s;
629} ii_itte2_u_t;
630
631/************************************************************************
632 *									*
633 * Description:  There are seven instances of translation table entry   *
634 * registers. Each register maps a Shub Big Window to a 48-bit          *
635 * address on Crosstalk.                                                *
636 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
637 * number) are used to select one of these 7 registers. The Widget      *
638 * number field is then derived from the W_NUM field for synthesizing   *
639 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
640 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
641 * are padded with zeros. Although the maximum Crosstalk space          *
642 * addressable by the Shub is thus the lower 16 GBytes per widget       *
643 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
644 * space can be accessed.                                               *
645 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
646 * Window number) are used to select one of these 7 registers. The      *
647 * Widget number field is then derived from the W_NUM field for         *
648 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
649 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
650 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
651 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
652 * Crosstalk space addressable by the SHub is thus the lower            *
653 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
654 * of this space can be accessed.                                       *
655 *									*
656 ************************************************************************/
657
658typedef union ii_itte3_u {
659	u64 ii_itte3_regval;
660	struct {
661		u64 i_offset:5;
662		u64 i_rsvd_1:3;
663		u64 i_w_num:4;
664		u64 i_iosp:1;
665		u64 i_rsvd:51;
666	} ii_itte3_fld_s;
667} ii_itte3_u_t;
668
669/************************************************************************
670 *									*
671 * Description:  There are seven instances of translation table entry   *
672 * registers. Each register maps a SHub Big Window to a 48-bit          *
673 * address on Crosstalk.                                                *
674 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
675 * number) are used to select one of these 7 registers. The Widget      *
676 * number field is then derived from the W_NUM field for synthesizing   *
677 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
678 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
679 * are padded with zeros. Although the maximum Crosstalk space          *
680 * addressable by the SHub is thus the lower 16 GBytes per widget       *
681 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
682 * space can be accessed.                                               *
683 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
684 * Window number) are used to select one of these 7 registers. The      *
685 * Widget number field is then derived from the W_NUM field for         *
686 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
687 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
688 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
689 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
690 * Crosstalk space addressable by the SHub is thus the lower            *
691 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
692 * of this space can be accessed.                                       *
693 *									*
694 ************************************************************************/
695
696typedef union ii_itte4_u {
697	u64 ii_itte4_regval;
698	struct {
699		u64 i_offset:5;
700		u64 i_rsvd_1:3;
701		u64 i_w_num:4;
702		u64 i_iosp:1;
703		u64 i_rsvd:51;
704	} ii_itte4_fld_s;
705} ii_itte4_u_t;
706
707/************************************************************************
708 *									*
709 * Description:  There are seven instances of translation table entry   *
710 * registers. Each register maps a SHub Big Window to a 48-bit          *
711 * address on Crosstalk.                                                *
712 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
713 * number) are used to select one of these 7 registers. The Widget      *
714 * number field is then derived from the W_NUM field for synthesizing   *
715 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
716 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
717 * are padded with zeros. Although the maximum Crosstalk space          *
718 * addressable by the Shub is thus the lower 16 GBytes per widget       *
719 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
720 * space can be accessed.                                               *
721 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
722 * Window number) are used to select one of these 7 registers. The      *
723 * Widget number field is then derived from the W_NUM field for         *
724 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
725 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
726 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
727 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
728 * Crosstalk space addressable by the Shub is thus the lower            *
729 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
730 * of this space can be accessed.                                       *
731 *									*
732 ************************************************************************/
733
734typedef union ii_itte5_u {
735	u64 ii_itte5_regval;
736	struct {
737		u64 i_offset:5;
738		u64 i_rsvd_1:3;
739		u64 i_w_num:4;
740		u64 i_iosp:1;
741		u64 i_rsvd:51;
742	} ii_itte5_fld_s;
743} ii_itte5_u_t;
744
745/************************************************************************
746 *									*
747 * Description:  There are seven instances of translation table entry   *
748 * registers. Each register maps a Shub Big Window to a 48-bit          *
749 * address on Crosstalk.                                                *
750 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
751 * number) are used to select one of these 7 registers. The Widget      *
752 * number field is then derived from the W_NUM field for synthesizing   *
753 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
754 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
755 * are padded with zeros. Although the maximum Crosstalk space          *
756 * addressable by the Shub is thus the lower 16 GBytes per widget       *
757 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
758 * space can be accessed.                                               *
759 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
760 * Window number) are used to select one of these 7 registers. The      *
761 * Widget number field is then derived from the W_NUM field for         *
762 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
763 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
764 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
765 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
766 * Crosstalk space addressable by the Shub is thus the lower            *
767 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
768 * of this space can be accessed.                                       *
769 *									*
770 ************************************************************************/
771
772typedef union ii_itte6_u {
773	u64 ii_itte6_regval;
774	struct {
775		u64 i_offset:5;
776		u64 i_rsvd_1:3;
777		u64 i_w_num:4;
778		u64 i_iosp:1;
779		u64 i_rsvd:51;
780	} ii_itte6_fld_s;
781} ii_itte6_u_t;
782
783/************************************************************************
784 *									*
785 * Description:  There are seven instances of translation table entry   *
786 * registers. Each register maps a Shub Big Window to a 48-bit          *
787 * address on Crosstalk.                                                *
788 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
789 * number) are used to select one of these 7 registers. The Widget      *
790 * number field is then derived from the W_NUM field for synthesizing   *
791 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
792 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
793 * are padded with zeros. Although the maximum Crosstalk space          *
794 * addressable by the Shub is thus the lower 16 GBytes per widget       *
795 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
796 * space can be accessed.                                               *
797 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
798 * Window number) are used to select one of these 7 registers. The      *
799 * Widget number field is then derived from the W_NUM field for         *
800 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
801 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
802 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
803 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
804 * Crosstalk space addressable by the SHub is thus the lower            *
805 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
806 * of this space can be accessed.                                       *
807 *									*
808 ************************************************************************/
809
810typedef union ii_itte7_u {
811	u64 ii_itte7_regval;
812	struct {
813		u64 i_offset:5;
814		u64 i_rsvd_1:3;
815		u64 i_w_num:4;
816		u64 i_iosp:1;
817		u64 i_rsvd:51;
818	} ii_itte7_fld_s;
819} ii_itte7_u_t;
820
821/************************************************************************
822 *									*
823 * Description:  There are 9 instances of this register, one per        *
824 * actual widget in this implementation of SHub and Crossbow.           *
825 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
826 * refers to Crossbow's internal space.                                 *
827 * This register contains the state elements per widget that are        *
828 * necessary to manage the PIO flow control on Crosstalk and on the     *
829 * Router Network. See the PIO Flow Control chapter for a complete      *
830 * description of this register                                         *
831 * The SPUR_WR bit requires some explanation. When this register is     *
832 * written, the new value of the C field is captured in an internal     *
833 * register so the hardware can remember what the programmer wrote      *
834 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
835 * increments above this stored value, which indicates that there       *
836 * have been more responses received than requests sent. The SPUR_WR    *
837 * bit cannot be cleared until a value is written to the IPRBx          *
838 * register; the write will correct the C field and capture its new     *
839 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
840 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
841 * .    								*
842 *									*
843 ************************************************************************/
844
845typedef union ii_iprb0_u {
846	u64 ii_iprb0_regval;
847	struct {
848		u64 i_c:8;
849		u64 i_na:14;
850		u64 i_rsvd_2:2;
851		u64 i_nb:14;
852		u64 i_rsvd_1:2;
853		u64 i_m:2;
854		u64 i_f:1;
855		u64 i_of_cnt:5;
856		u64 i_error:1;
857		u64 i_rd_to:1;
858		u64 i_spur_wr:1;
859		u64 i_spur_rd:1;
860		u64 i_rsvd:11;
861		u64 i_mult_err:1;
862	} ii_iprb0_fld_s;
863} ii_iprb0_u_t;
864
865/************************************************************************
866 *									*
867 * Description:  There are 9 instances of this register, one per        *
868 * actual widget in this implementation of SHub and Crossbow.           *
869 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
870 * refers to Crossbow's internal space.                                 *
871 * This register contains the state elements per widget that are        *
872 * necessary to manage the PIO flow control on Crosstalk and on the     *
873 * Router Network. See the PIO Flow Control chapter for a complete      *
874 * description of this register                                         *
875 * The SPUR_WR bit requires some explanation. When this register is     *
876 * written, the new value of the C field is captured in an internal     *
877 * register so the hardware can remember what the programmer wrote      *
878 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
879 * increments above this stored value, which indicates that there       *
880 * have been more responses received than requests sent. The SPUR_WR    *
881 * bit cannot be cleared until a value is written to the IPRBx          *
882 * register; the write will correct the C field and capture its new     *
883 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
884 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
885 * .    								*
886 *									*
887 ************************************************************************/
888
889typedef union ii_iprb8_u {
890	u64 ii_iprb8_regval;
891	struct {
892		u64 i_c:8;
893		u64 i_na:14;
894		u64 i_rsvd_2:2;
895		u64 i_nb:14;
896		u64 i_rsvd_1:2;
897		u64 i_m:2;
898		u64 i_f:1;
899		u64 i_of_cnt:5;
900		u64 i_error:1;
901		u64 i_rd_to:1;
902		u64 i_spur_wr:1;
903		u64 i_spur_rd:1;
904		u64 i_rsvd:11;
905		u64 i_mult_err:1;
906	} ii_iprb8_fld_s;
907} ii_iprb8_u_t;
908
909/************************************************************************
910 *									*
911 * Description:  There are 9 instances of this register, one per        *
912 * actual widget in this implementation of SHub and Crossbow.           *
913 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
914 * refers to Crossbow's internal space.                                 *
915 * This register contains the state elements per widget that are        *
916 * necessary to manage the PIO flow control on Crosstalk and on the     *
917 * Router Network. See the PIO Flow Control chapter for a complete      *
918 * description of this register                                         *
919 * The SPUR_WR bit requires some explanation. When this register is     *
920 * written, the new value of the C field is captured in an internal     *
921 * register so the hardware can remember what the programmer wrote      *
922 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
923 * increments above this stored value, which indicates that there       *
924 * have been more responses received than requests sent. The SPUR_WR    *
925 * bit cannot be cleared until a value is written to the IPRBx          *
926 * register; the write will correct the C field and capture its new     *
927 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
928 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
929 * .    								*
930 *									*
931 ************************************************************************/
932
933typedef union ii_iprb9_u {
934	u64 ii_iprb9_regval;
935	struct {
936		u64 i_c:8;
937		u64 i_na:14;
938		u64 i_rsvd_2:2;
939		u64 i_nb:14;
940		u64 i_rsvd_1:2;
941		u64 i_m:2;
942		u64 i_f:1;
943		u64 i_of_cnt:5;
944		u64 i_error:1;
945		u64 i_rd_to:1;
946		u64 i_spur_wr:1;
947		u64 i_spur_rd:1;
948		u64 i_rsvd:11;
949		u64 i_mult_err:1;
950	} ii_iprb9_fld_s;
951} ii_iprb9_u_t;
952
953/************************************************************************
954 *									*
955 * Description:  There are 9 instances of this register, one per        *
956 * actual widget in this implementation of SHub and Crossbow.        *
957 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
958 * refers to Crossbow's internal space.                                 *
959 * This register contains the state elements per widget that are        *
960 * necessary to manage the PIO flow control on Crosstalk and on the     *
961 * Router Network. See the PIO Flow Control chapter for a complete      *
962 * description of this register                                         *
963 * The SPUR_WR bit requires some explanation. When this register is     *
964 * written, the new value of the C field is captured in an internal     *
965 * register so the hardware can remember what the programmer wrote      *
966 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
967 * increments above this stored value, which indicates that there       *
968 * have been more responses received than requests sent. The SPUR_WR    *
969 * bit cannot be cleared until a value is written to the IPRBx          *
970 * register; the write will correct the C field and capture its new     *
971 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
972 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
973 *									*
974 *									*
975 ************************************************************************/
976
977typedef union ii_iprba_u {
978	u64 ii_iprba_regval;
979	struct {
980		u64 i_c:8;
981		u64 i_na:14;
982		u64 i_rsvd_2:2;
983		u64 i_nb:14;
984		u64 i_rsvd_1:2;
985		u64 i_m:2;
986		u64 i_f:1;
987		u64 i_of_cnt:5;
988		u64 i_error:1;
989		u64 i_rd_to:1;
990		u64 i_spur_wr:1;
991		u64 i_spur_rd:1;
992		u64 i_rsvd:11;
993		u64 i_mult_err:1;
994	} ii_iprba_fld_s;
995} ii_iprba_u_t;
996
997/************************************************************************
998 *									*
999 * Description:  There are 9 instances of this register, one per        *
1000 * actual widget in this implementation of SHub and Crossbow.           *
1001 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1002 * refers to Crossbow's internal space.                                 *
1003 * This register contains the state elements per widget that are        *
1004 * necessary to manage the PIO flow control on Crosstalk and on the     *
1005 * Router Network. See the PIO Flow Control chapter for a complete      *
1006 * description of this register                                         *
1007 * The SPUR_WR bit requires some explanation. When this register is     *
1008 * written, the new value of the C field is captured in an internal     *
1009 * register so the hardware can remember what the programmer wrote      *
1010 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1011 * increments above this stored value, which indicates that there       *
1012 * have been more responses received than requests sent. The SPUR_WR    *
1013 * bit cannot be cleared until a value is written to the IPRBx          *
1014 * register; the write will correct the C field and capture its new     *
1015 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1016 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1017 * .    								*
1018 *									*
1019 ************************************************************************/
1020
1021typedef union ii_iprbb_u {
1022	u64 ii_iprbb_regval;
1023	struct {
1024		u64 i_c:8;
1025		u64 i_na:14;
1026		u64 i_rsvd_2:2;
1027		u64 i_nb:14;
1028		u64 i_rsvd_1:2;
1029		u64 i_m:2;
1030		u64 i_f:1;
1031		u64 i_of_cnt:5;
1032		u64 i_error:1;
1033		u64 i_rd_to:1;
1034		u64 i_spur_wr:1;
1035		u64 i_spur_rd:1;
1036		u64 i_rsvd:11;
1037		u64 i_mult_err:1;
1038	} ii_iprbb_fld_s;
1039} ii_iprbb_u_t;
1040
1041/************************************************************************
1042 *									*
1043 * Description:  There are 9 instances of this register, one per        *
1044 * actual widget in this implementation of SHub and Crossbow.           *
1045 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1046 * refers to Crossbow's internal space.                                 *
1047 * This register contains the state elements per widget that are        *
1048 * necessary to manage the PIO flow control on Crosstalk and on the     *
1049 * Router Network. See the PIO Flow Control chapter for a complete      *
1050 * description of this register                                         *
1051 * The SPUR_WR bit requires some explanation. When this register is     *
1052 * written, the new value of the C field is captured in an internal     *
1053 * register so the hardware can remember what the programmer wrote      *
1054 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1055 * increments above this stored value, which indicates that there       *
1056 * have been more responses received than requests sent. The SPUR_WR    *
1057 * bit cannot be cleared until a value is written to the IPRBx          *
1058 * register; the write will correct the C field and capture its new     *
1059 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1060 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1061 * .    								*
1062 *									*
1063 ************************************************************************/
1064
1065typedef union ii_iprbc_u {
1066	u64 ii_iprbc_regval;
1067	struct {
1068		u64 i_c:8;
1069		u64 i_na:14;
1070		u64 i_rsvd_2:2;
1071		u64 i_nb:14;
1072		u64 i_rsvd_1:2;
1073		u64 i_m:2;
1074		u64 i_f:1;
1075		u64 i_of_cnt:5;
1076		u64 i_error:1;
1077		u64 i_rd_to:1;
1078		u64 i_spur_wr:1;
1079		u64 i_spur_rd:1;
1080		u64 i_rsvd:11;
1081		u64 i_mult_err:1;
1082	} ii_iprbc_fld_s;
1083} ii_iprbc_u_t;
1084
1085/************************************************************************
1086 *									*
1087 * Description:  There are 9 instances of this register, one per        *
1088 * actual widget in this implementation of SHub and Crossbow.           *
1089 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1090 * refers to Crossbow's internal space.                                 *
1091 * This register contains the state elements per widget that are        *
1092 * necessary to manage the PIO flow control on Crosstalk and on the     *
1093 * Router Network. See the PIO Flow Control chapter for a complete      *
1094 * description of this register                                         *
1095 * The SPUR_WR bit requires some explanation. When this register is     *
1096 * written, the new value of the C field is captured in an internal     *
1097 * register so the hardware can remember what the programmer wrote      *
1098 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1099 * increments above this stored value, which indicates that there       *
1100 * have been more responses received than requests sent. The SPUR_WR    *
1101 * bit cannot be cleared until a value is written to the IPRBx          *
1102 * register; the write will correct the C field and capture its new     *
1103 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1104 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1105 * .    								*
1106 *									*
1107 ************************************************************************/
1108
1109typedef union ii_iprbd_u {
1110	u64 ii_iprbd_regval;
1111	struct {
1112		u64 i_c:8;
1113		u64 i_na:14;
1114		u64 i_rsvd_2:2;
1115		u64 i_nb:14;
1116		u64 i_rsvd_1:2;
1117		u64 i_m:2;
1118		u64 i_f:1;
1119		u64 i_of_cnt:5;
1120		u64 i_error:1;
1121		u64 i_rd_to:1;
1122		u64 i_spur_wr:1;
1123		u64 i_spur_rd:1;
1124		u64 i_rsvd:11;
1125		u64 i_mult_err:1;
1126	} ii_iprbd_fld_s;
1127} ii_iprbd_u_t;
1128
1129/************************************************************************
1130 *									*
1131 * Description:  There are 9 instances of this register, one per        *
1132 * actual widget in this implementation of SHub and Crossbow.           *
1133 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1134 * refers to Crossbow's internal space.                                 *
1135 * This register contains the state elements per widget that are        *
1136 * necessary to manage the PIO flow control on Crosstalk and on the     *
1137 * Router Network. See the PIO Flow Control chapter for a complete      *
1138 * description of this register                                         *
1139 * The SPUR_WR bit requires some explanation. When this register is     *
1140 * written, the new value of the C field is captured in an internal     *
1141 * register so the hardware can remember what the programmer wrote      *
1142 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1143 * increments above this stored value, which indicates that there       *
1144 * have been more responses received than requests sent. The SPUR_WR    *
1145 * bit cannot be cleared until a value is written to the IPRBx          *
1146 * register; the write will correct the C field and capture its new     *
1147 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1148 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1149 * .    								*
1150 *									*
1151 ************************************************************************/
1152
1153typedef union ii_iprbe_u {
1154	u64 ii_iprbe_regval;
1155	struct {
1156		u64 i_c:8;
1157		u64 i_na:14;
1158		u64 i_rsvd_2:2;
1159		u64 i_nb:14;
1160		u64 i_rsvd_1:2;
1161		u64 i_m:2;
1162		u64 i_f:1;
1163		u64 i_of_cnt:5;
1164		u64 i_error:1;
1165		u64 i_rd_to:1;
1166		u64 i_spur_wr:1;
1167		u64 i_spur_rd:1;
1168		u64 i_rsvd:11;
1169		u64 i_mult_err:1;
1170	} ii_iprbe_fld_s;
1171} ii_iprbe_u_t;
1172
1173/************************************************************************
1174 *									*
1175 * Description:  There are 9 instances of this register, one per        *
1176 * actual widget in this implementation of Shub and Crossbow.           *
1177 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1178 * refers to Crossbow's internal space.                                 *
1179 * This register contains the state elements per widget that are        *
1180 * necessary to manage the PIO flow control on Crosstalk and on the     *
1181 * Router Network. See the PIO Flow Control chapter for a complete      *
1182 * description of this register                                         *
1183 * The SPUR_WR bit requires some explanation. When this register is     *
1184 * written, the new value of the C field is captured in an internal     *
1185 * register so the hardware can remember what the programmer wrote      *
1186 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1187 * increments above this stored value, which indicates that there       *
1188 * have been more responses received than requests sent. The SPUR_WR    *
1189 * bit cannot be cleared until a value is written to the IPRBx          *
1190 * register; the write will correct the C field and capture its new     *
1191 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1192 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1193 * .    								*
1194 *									*
1195 ************************************************************************/
1196
1197typedef union ii_iprbf_u {
1198	u64 ii_iprbf_regval;
1199	struct {
1200		u64 i_c:8;
1201		u64 i_na:14;
1202		u64 i_rsvd_2:2;
1203		u64 i_nb:14;
1204		u64 i_rsvd_1:2;
1205		u64 i_m:2;
1206		u64 i_f:1;
1207		u64 i_of_cnt:5;
1208		u64 i_error:1;
1209		u64 i_rd_to:1;
1210		u64 i_spur_wr:1;
1211		u64 i_spur_rd:1;
1212		u64 i_rsvd:11;
1213		u64 i_mult_err:1;
1214	} ii_iprbe_fld_s;
1215} ii_iprbf_u_t;
1216
1217/************************************************************************
1218 *									*
1219 *  This register specifies the timeout value to use for monitoring     *
1220 * Crosstalk credits which are used outbound to Crosstalk. An           *
1221 * internal counter called the Crosstalk Credit Timeout Counter         *
1222 * increments every 128 II clocks. The counter starts counting          *
1223 * anytime the credit count drops below a threshold, and resets to      *
1224 * zero (stops counting) anytime the credit count is at or above the    *
1225 * threshold. The threshold is 1 credit in direct connect mode and 2    *
1226 * in Crossbow connect mode. When the internal Crosstalk Credit         *
1227 * Timeout Counter reaches the value programmed in this register, a     *
1228 * Crosstalk Credit Timeout has occurred. The internal counter is not   *
1229 * readable from software, and stops counting at its maximum value,     *
1230 * so it cannot cause more than one interrupt.                          *
1231 *									*
1232 ************************************************************************/
1233
1234typedef union ii_ixcc_u {
1235	u64 ii_ixcc_regval;
1236	struct {
1237		u64 i_time_out:26;
1238		u64 i_rsvd:38;
1239	} ii_ixcc_fld_s;
1240} ii_ixcc_u_t;
1241
1242/************************************************************************
1243 *									*
1244 * Description:  This register qualifies all the PIO and DMA            *
1245 * operations launched from widget 0 towards the SHub. In               *
1246 * addition, it also qualifies accesses by the BTE streams.             *
1247 * The bits in each field of this register are cleared by the SHub      *
1248 * upon detection of an error which requires widget 0 or the BTE        *
1249 * streams to be terminated. Whether or not widget x has access         *
1250 * rights to this SHub is determined by an AND of the device            *
1251 * enable bit in the appropriate field of this register and bit 0 in    *
1252 * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
1253 * them. Incoming replies from Crosstalk are not subject to this        *
1254 * access control mechanism.                                            *
1255 *									*
1256 ************************************************************************/
1257
1258typedef union ii_imem_u {
1259	u64 ii_imem_regval;
1260	struct {
1261		u64 i_w0_esd:1;
1262		u64 i_rsvd_3:3;
1263		u64 i_b0_esd:1;
1264		u64 i_rsvd_2:3;
1265		u64 i_b1_esd:1;
1266		u64 i_rsvd_1:3;
1267		u64 i_clr_precise:1;
1268		u64 i_rsvd:51;
1269	} ii_imem_fld_s;
1270} ii_imem_u_t;
1271
1272/************************************************************************
1273 *									*
1274 * Description:  This register specifies the timeout value to use for   *
1275 * monitoring Crosstalk tail flits coming into the Shub in the          *
1276 * TAIL_TO field. An internal counter associated with this register     *
1277 * is incremented every 128 II internal clocks (7 bits). The counter    *
1278 * starts counting anytime a header micropacket is received and stops   *
1279 * counting (and resets to zero) any time a micropacket with a Tail     *
1280 * bit is received. Once the counter reaches the threshold value        *
1281 * programmed in this register, it generates an interrupt to the        *
1282 * processor that is programmed into the IIDSR. The counter saturates   *
1283 * (does not roll over) at its maximum value, so it cannot cause        *
1284 * another interrupt until after it is cleared.                         *
1285 * The register also contains the Read Response Timeout values. The     *
1286 * Prescalar is 23 bits, and counts II clocks. An internal counter      *
1287 * increments on every II clock and when it reaches the value in the    *
1288 * Prescalar field, all IPRTE registers with their valid bits set       *
1289 * have their Read Response timers bumped. Whenever any of them match   *
1290 * the value in the RRSP_TO field, a Read Response Timeout has          *
1291 * occurred, and error handling occurs as described in the Error        *
1292 * Handling section of this document.                                   *
1293 *									*
1294 ************************************************************************/
1295
1296typedef union ii_ixtt_u {
1297	u64 ii_ixtt_regval;
1298	struct {
1299		u64 i_tail_to:26;
1300		u64 i_rsvd_1:6;
1301		u64 i_rrsp_ps:23;
1302		u64 i_rrsp_to:5;
1303		u64 i_rsvd:4;
1304	} ii_ixtt_fld_s;
1305} ii_ixtt_u_t;
1306
1307/************************************************************************
1308 *									*
1309 *  Writing a 1 to the fields of this register clears the appropriate   *
1310 * error bits in other areas of SHub. Note that when the                *
1311 * E_PRB_x bits are used to clear error bits in PRB registers,          *
1312 * SPUR_RD and SPUR_WR may persist, because they require additional     *
1313 * action to clear them. See the IPRBx and IXSS Register                *
1314 * specifications.                                                      *
1315 *									*
1316 ************************************************************************/
1317
1318typedef union ii_ieclr_u {
1319	u64 ii_ieclr_regval;
1320	struct {
1321		u64 i_e_prb_0:1;
1322		u64 i_rsvd:7;
1323		u64 i_e_prb_8:1;
1324		u64 i_e_prb_9:1;
1325		u64 i_e_prb_a:1;
1326		u64 i_e_prb_b:1;
1327		u64 i_e_prb_c:1;
1328		u64 i_e_prb_d:1;
1329		u64 i_e_prb_e:1;
1330		u64 i_e_prb_f:1;
1331		u64 i_e_crazy:1;
1332		u64 i_e_bte_0:1;
1333		u64 i_e_bte_1:1;
1334		u64 i_reserved_1:10;
1335		u64 i_spur_rd_hdr:1;
1336		u64 i_cam_intr_to:1;
1337		u64 i_cam_overflow:1;
1338		u64 i_cam_read_miss:1;
1339		u64 i_ioq_rep_underflow:1;
1340		u64 i_ioq_req_underflow:1;
1341		u64 i_ioq_rep_overflow:1;
1342		u64 i_ioq_req_overflow:1;
1343		u64 i_iiq_rep_overflow:1;
1344		u64 i_iiq_req_overflow:1;
1345		u64 i_ii_xn_rep_cred_overflow:1;
1346		u64 i_ii_xn_req_cred_overflow:1;
1347		u64 i_ii_xn_invalid_cmd:1;
1348		u64 i_xn_ii_invalid_cmd:1;
1349		u64 i_reserved_2:21;
1350	} ii_ieclr_fld_s;
1351} ii_ieclr_u_t;
1352
1353/************************************************************************
1354 *									*
1355 *  This register controls both BTEs. SOFT_RESET is intended for        *
1356 * recovery after an error. COUNT controls the total number of CRBs     *
1357 * that both BTEs (combined) can use, which affects total BTE           *
1358 * bandwidth.                                                           *
1359 *									*
1360 ************************************************************************/
1361
1362typedef union ii_ibcr_u {
1363	u64 ii_ibcr_regval;
1364	struct {
1365		u64 i_count:4;
1366		u64 i_rsvd_1:4;
1367		u64 i_soft_reset:1;
1368		u64 i_rsvd:55;
1369	} ii_ibcr_fld_s;
1370} ii_ibcr_u_t;
1371
1372/************************************************************************
1373 *									*
1374 *  This register contains the header of a spurious read response       *
1375 * received from Crosstalk. A spurious read response is defined as a    *
1376 * read response received by II from a widget for which (1) the SIDN    *
1377 * has a value between 1 and 7, inclusive (II never sends requests to   *
1378 * these widgets (2) there is no valid IPRTE register which             *
1379 * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
1380 * not the same as the widget recorded in the IPRTE register            *
1381 * referenced by the TNUM. If this condition is true, and if the        *
1382 * IXSS[VALID] bit is clear, then the header of the spurious read       *
1383 * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
1384 * errant header is thereby captured, and no further spurious read      *
1385 * respones are captured until IXSS[VALID] is cleared by setting the    *
1386 * appropriate bit in IECLR.Everytime a spurious read response is       *
1387 * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
1388 * message's SIDN field is set. This always happens, regarless of       *
1389 * whether a header is captured. The programmer should check            *
1390 * IXSM[SIDN] to determine which widget sent the spurious response,     *
1391 * because there may be more than one SPUR_RD bit set in the PRB        *
1392 * registers. The widget indicated by IXSM[SIDN] was the first          *
1393 * spurious read response to be received since the last time            *
1394 * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
1395 * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
1396 * spurious messages from other widets which were detected after the    *
1397 * header was captured..                                                *
1398 *									*
1399 ************************************************************************/
1400
1401typedef union ii_ixsm_u {
1402	u64 ii_ixsm_regval;
1403	struct {
1404		u64 i_byte_en:32;
1405		u64 i_reserved:1;
1406		u64 i_tag:3;
1407		u64 i_alt_pactyp:4;
1408		u64 i_bo:1;
1409		u64 i_error:1;
1410		u64 i_vbpm:1;
1411		u64 i_gbr:1;
1412		u64 i_ds:2;
1413		u64 i_ct:1;
1414		u64 i_tnum:5;
1415		u64 i_pactyp:4;
1416		u64 i_sidn:4;
1417		u64 i_didn:4;
1418	} ii_ixsm_fld_s;
1419} ii_ixsm_u_t;
1420
1421/************************************************************************
1422 *									*
1423 *  This register contains the sideband bits of a spurious read         *
1424 * response received from Crosstalk.                                    *
1425 *									*
1426 ************************************************************************/
1427
1428typedef union ii_ixss_u {
1429	u64 ii_ixss_regval;
1430	struct {
1431		u64 i_sideband:8;
1432		u64 i_rsvd:55;
1433		u64 i_valid:1;
1434	} ii_ixss_fld_s;
1435} ii_ixss_u_t;
1436
1437/************************************************************************
1438 *									*
1439 *  This register enables software to access the II LLP's test port.    *
1440 * Refer to the LLP 2.5 documentation for an explanation of the test    *
1441 * port. Software can write to this register to program the values      *
1442 * for the control fields (TestErrCapture, TestClear, TestFlit,         *
1443 * TestMask and TestSeed). Similarly, software can read from this       *
1444 * register to obtain the values of the test port's status outputs      *
1445 * (TestCBerr, TestValid and TestData).                                 *
1446 *									*
1447 ************************************************************************/
1448
1449typedef union ii_ilct_u {
1450	u64 ii_ilct_regval;
1451	struct {
1452		u64 i_test_seed:20;
1453		u64 i_test_mask:8;
1454		u64 i_test_data:20;
1455		u64 i_test_valid:1;
1456		u64 i_test_cberr:1;
1457		u64 i_test_flit:3;
1458		u64 i_test_clear:1;
1459		u64 i_test_err_capture:1;
1460		u64 i_rsvd:9;
1461	} ii_ilct_fld_s;
1462} ii_ilct_u_t;
1463
1464/************************************************************************
1465 *									*
1466 *  If the II detects an illegal incoming Duplonet packet (request or   *
1467 * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
1468 * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
1469 * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
1470 * and assigns a value to the ERR_TYPE field which indicates the        *
1471 * specific nature of the error. The II recognizes four different       *
1472 * types of errors: short request packets (ERR_TYPE==2), short reply    *
1473 * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
1474 * reply packets (ERR_TYPE==5). The encodings for these types of        *
1475 * errors were chosen to be consistent with the same types of errors    *
1476 * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
1477 * the LB unit). If the II detects an illegal incoming Duplonet         *
1478 * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
1479 * the OVERRUN bit to indicate that a subsequent error has happened,    *
1480 * and does nothing further.                                            *
1481 *									*
1482 ************************************************************************/
1483
1484typedef union ii_iieph1_u {
1485	u64 ii_iieph1_regval;
1486	struct {
1487		u64 i_command:7;
1488		u64 i_rsvd_5:1;
1489		u64 i_suppl:14;
1490		u64 i_rsvd_4:1;
1491		u64 i_source:14;
1492		u64 i_rsvd_3:1;
1493		u64 i_err_type:4;
1494		u64 i_rsvd_2:4;
1495		u64 i_overrun:1;
1496		u64 i_rsvd_1:3;
1497		u64 i_valid:1;
1498		u64 i_rsvd:13;
1499	} ii_iieph1_fld_s;
1500} ii_iieph1_u_t;
1501
1502/************************************************************************
1503 *									*
1504 *  This register holds the Address field from the header flit of an    *
1505 * incoming erroneous Duplonet packet, along with the tail bit which    *
1506 * accompanied this header flit. This register is essentially an        *
1507 * extension of IIEPH1. Two registers were necessary because the 64     *
1508 * bits available in only a single register were insufficient to        *
1509 * capture the entire header flit of an erroneous packet.               *
1510 *									*
1511 ************************************************************************/
1512
1513typedef union ii_iieph2_u {
1514	u64 ii_iieph2_regval;
1515	struct {
1516		u64 i_rsvd_0:3;
1517		u64 i_address:47;
1518		u64 i_rsvd_1:10;
1519		u64 i_tail:1;
1520		u64 i_rsvd:3;
1521	} ii_iieph2_fld_s;
1522} ii_iieph2_u_t;
1523
1524/******************************/
1525
1526/************************************************************************
1527 *									*
1528 *  This register's value is a bit vector that guards access from SXBs  *
1529 * to local registers within the II as well as to external Crosstalk    *
1530 * widgets								*
1531 *									*
1532 ************************************************************************/
1533
1534typedef union ii_islapr_u {
1535	u64 ii_islapr_regval;
1536	struct {
1537		u64 i_region:64;
1538	} ii_islapr_fld_s;
1539} ii_islapr_u_t;
1540
1541/************************************************************************
1542 *									*
1543 *  A write to this register of the 56-bit value "Pup+Bun" will cause	*
1544 * the bit in the ISLAPR register corresponding to the region of the	*
1545 * requestor to be set (access allowed).				(
1546 *									*
1547 ************************************************************************/
1548
1549typedef union ii_islapo_u {
1550	u64 ii_islapo_regval;
1551	struct {
1552		u64 i_io_sbx_ovrride:56;
1553		u64 i_rsvd:8;
1554	} ii_islapo_fld_s;
1555} ii_islapo_u_t;
1556
1557/************************************************************************
1558 *									*
1559 *  Determines how long the wrapper will wait aftr an interrupt is	*
1560 * initially issued from the II before it times out the outstanding	*
1561 * interrupt and drops it from the interrupt queue.			*
1562 *									*
1563 ************************************************************************/
1564
1565typedef union ii_iwi_u {
1566	u64 ii_iwi_regval;
1567	struct {
1568		u64 i_prescale:24;
1569		u64 i_rsvd:8;
1570		u64 i_timeout:8;
1571		u64 i_rsvd1:8;
1572		u64 i_intrpt_retry_period:8;
1573		u64 i_rsvd2:8;
1574	} ii_iwi_fld_s;
1575} ii_iwi_u_t;
1576
1577/************************************************************************
1578 *									*
1579 *  Log errors which have occurred in the II wrapper. The errors are	*
1580 * cleared by writing to the IECLR register.				*
1581 *									*
1582 ************************************************************************/
1583
1584typedef union ii_iwel_u {
1585	u64 ii_iwel_regval;
1586	struct {
1587		u64 i_intr_timed_out:1;
1588		u64 i_rsvd:7;
1589		u64 i_cam_overflow:1;
1590		u64 i_cam_read_miss:1;
1591		u64 i_rsvd1:2;
1592		u64 i_ioq_rep_underflow:1;
1593		u64 i_ioq_req_underflow:1;
1594		u64 i_ioq_rep_overflow:1;
1595		u64 i_ioq_req_overflow:1;
1596		u64 i_iiq_rep_overflow:1;
1597		u64 i_iiq_req_overflow:1;
1598		u64 i_rsvd2:6;
1599		u64 i_ii_xn_rep_cred_over_under:1;
1600		u64 i_ii_xn_req_cred_over_under:1;
1601		u64 i_rsvd3:6;
1602		u64 i_ii_xn_invalid_cmd:1;
1603		u64 i_xn_ii_invalid_cmd:1;
1604		u64 i_rsvd4:30;
1605	} ii_iwel_fld_s;
1606} ii_iwel_u_t;
1607
1608/************************************************************************
1609 *									*
1610 *  Controls the II wrapper.						*
1611 *									*
1612 ************************************************************************/
1613
1614typedef union ii_iwc_u {
1615	u64 ii_iwc_regval;
1616	struct {
1617		u64 i_dma_byte_swap:1;
1618		u64 i_rsvd:3;
1619		u64 i_cam_read_lines_reset:1;
1620		u64 i_rsvd1:3;
1621		u64 i_ii_xn_cred_over_under_log:1;
1622		u64 i_rsvd2:19;
1623		u64 i_xn_rep_iq_depth:5;
1624		u64 i_rsvd3:3;
1625		u64 i_xn_req_iq_depth:5;
1626		u64 i_rsvd4:3;
1627		u64 i_iiq_depth:6;
1628		u64 i_rsvd5:12;
1629		u64 i_force_rep_cred:1;
1630		u64 i_force_req_cred:1;
1631	} ii_iwc_fld_s;
1632} ii_iwc_u_t;
1633
1634/************************************************************************
1635 *									*
1636 *  Status in the II wrapper.						*
1637 *									*
1638 ************************************************************************/
1639
1640typedef union ii_iws_u {
1641	u64 ii_iws_regval;
1642	struct {
1643		u64 i_xn_rep_iq_credits:5;
1644		u64 i_rsvd:3;
1645		u64 i_xn_req_iq_credits:5;
1646		u64 i_rsvd1:51;
1647	} ii_iws_fld_s;
1648} ii_iws_u_t;
1649
1650/************************************************************************
1651 *									*
1652 *  Masks errors in the IWEL register.					*
1653 *									*
1654 ************************************************************************/
1655
1656typedef union ii_iweim_u {
1657	u64 ii_iweim_regval;
1658	struct {
1659		u64 i_intr_timed_out:1;
1660		u64 i_rsvd:7;
1661		u64 i_cam_overflow:1;
1662		u64 i_cam_read_miss:1;
1663		u64 i_rsvd1:2;
1664		u64 i_ioq_rep_underflow:1;
1665		u64 i_ioq_req_underflow:1;
1666		u64 i_ioq_rep_overflow:1;
1667		u64 i_ioq_req_overflow:1;
1668		u64 i_iiq_rep_overflow:1;
1669		u64 i_iiq_req_overflow:1;
1670		u64 i_rsvd2:6;
1671		u64 i_ii_xn_rep_cred_overflow:1;
1672		u64 i_ii_xn_req_cred_overflow:1;
1673		u64 i_rsvd3:6;
1674		u64 i_ii_xn_invalid_cmd:1;
1675		u64 i_xn_ii_invalid_cmd:1;
1676		u64 i_rsvd4:30;
1677	} ii_iweim_fld_s;
1678} ii_iweim_u_t;
1679
1680/************************************************************************
1681 *									*
1682 *  A write to this register causes a particular field in the           *
1683 * corresponding widget's PRB entry to be adjusted up or down by 1.     *
1684 * This counter should be used when recovering from error and reset     *
1685 * conditions. Note that software would be capable of causing           *
1686 * inadvertent overflow or underflow of these counters.                 *
1687 *									*
1688 ************************************************************************/
1689
1690typedef union ii_ipca_u {
1691	u64 ii_ipca_regval;
1692	struct {
1693		u64 i_wid:4;
1694		u64 i_adjust:1;
1695		u64 i_rsvd_1:3;
1696		u64 i_field:2;
1697		u64 i_rsvd:54;
1698	} ii_ipca_fld_s;
1699} ii_ipca_u_t;
1700
1701/************************************************************************
1702 *									*
1703 *  There are 8 instances of this register. This register contains      *
1704 * the information that the II has to remember once it has launched a   *
1705 * PIO Read operation. The contents are used to form the correct        *
1706 * Router Network packet and direct the Crosstalk reply to the          *
1707 * appropriate processor.                                               *
1708 *									*
1709 ************************************************************************/
1710
1711typedef union ii_iprte0a_u {
1712	u64 ii_iprte0a_regval;
1713	struct {
1714		u64 i_rsvd_1:54;
1715		u64 i_widget:4;
1716		u64 i_to_cnt:5;
1717		u64 i_vld:1;
1718	} ii_iprte0a_fld_s;
1719} ii_iprte0a_u_t;
1720
1721/************************************************************************
1722 *									*
1723 *  There are 8 instances of this register. This register contains      *
1724 * the information that the II has to remember once it has launched a   *
1725 * PIO Read operation. The contents are used to form the correct        *
1726 * Router Network packet and direct the Crosstalk reply to the          *
1727 * appropriate processor.                                               *
1728 *									*
1729 ************************************************************************/
1730
1731typedef union ii_iprte1a_u {
1732	u64 ii_iprte1a_regval;
1733	struct {
1734		u64 i_rsvd_1:54;
1735		u64 i_widget:4;
1736		u64 i_to_cnt:5;
1737		u64 i_vld:1;
1738	} ii_iprte1a_fld_s;
1739} ii_iprte1a_u_t;
1740
1741/************************************************************************
1742 *									*
1743 *  There are 8 instances of this register. This register contains      *
1744 * the information that the II has to remember once it has launched a   *
1745 * PIO Read operation. The contents are used to form the correct        *
1746 * Router Network packet and direct the Crosstalk reply to the          *
1747 * appropriate processor.                                               *
1748 *									*
1749 ************************************************************************/
1750
1751typedef union ii_iprte2a_u {
1752	u64 ii_iprte2a_regval;
1753	struct {
1754		u64 i_rsvd_1:54;
1755		u64 i_widget:4;
1756		u64 i_to_cnt:5;
1757		u64 i_vld:1;
1758	} ii_iprte2a_fld_s;
1759} ii_iprte2a_u_t;
1760
1761/************************************************************************
1762 *									*
1763 *  There are 8 instances of this register. This register contains      *
1764 * the information that the II has to remember once it has launched a   *
1765 * PIO Read operation. The contents are used to form the correct        *
1766 * Router Network packet and direct the Crosstalk reply to the          *
1767 * appropriate processor.                                               *
1768 *									*
1769 ************************************************************************/
1770
1771typedef union ii_iprte3a_u {
1772	u64 ii_iprte3a_regval;
1773	struct {
1774		u64 i_rsvd_1:54;
1775		u64 i_widget:4;
1776		u64 i_to_cnt:5;
1777		u64 i_vld:1;
1778	} ii_iprte3a_fld_s;
1779} ii_iprte3a_u_t;
1780
1781/************************************************************************
1782 *									*
1783 *  There are 8 instances of this register. This register contains      *
1784 * the information that the II has to remember once it has launched a   *
1785 * PIO Read operation. The contents are used to form the correct        *
1786 * Router Network packet and direct the Crosstalk reply to the          *
1787 * appropriate processor.                                               *
1788 *									*
1789 ************************************************************************/
1790
1791typedef union ii_iprte4a_u {
1792	u64 ii_iprte4a_regval;
1793	struct {
1794		u64 i_rsvd_1:54;
1795		u64 i_widget:4;
1796		u64 i_to_cnt:5;
1797		u64 i_vld:1;
1798	} ii_iprte4a_fld_s;
1799} ii_iprte4a_u_t;
1800
1801/************************************************************************
1802 *									*
1803 *  There are 8 instances of this register. This register contains      *
1804 * the information that the II has to remember once it has launched a   *
1805 * PIO Read operation. The contents are used to form the correct        *
1806 * Router Network packet and direct the Crosstalk reply to the          *
1807 * appropriate processor.                                               *
1808 *									*
1809 ************************************************************************/
1810
1811typedef union ii_iprte5a_u {
1812	u64 ii_iprte5a_regval;
1813	struct {
1814		u64 i_rsvd_1:54;
1815		u64 i_widget:4;
1816		u64 i_to_cnt:5;
1817		u64 i_vld:1;
1818	} ii_iprte5a_fld_s;
1819} ii_iprte5a_u_t;
1820
1821/************************************************************************
1822 *									*
1823 *  There are 8 instances of this register. This register contains      *
1824 * the information that the II has to remember once it has launched a   *
1825 * PIO Read operation. The contents are used to form the correct        *
1826 * Router Network packet and direct the Crosstalk reply to the          *
1827 * appropriate processor.                                               *
1828 *									*
1829 ************************************************************************/
1830
1831typedef union ii_iprte6a_u {
1832	u64 ii_iprte6a_regval;
1833	struct {
1834		u64 i_rsvd_1:54;
1835		u64 i_widget:4;
1836		u64 i_to_cnt:5;
1837		u64 i_vld:1;
1838	} ii_iprte6a_fld_s;
1839} ii_iprte6a_u_t;
1840
1841/************************************************************************
1842 *									*
1843 *  There are 8 instances of this register. This register contains      *
1844 * the information that the II has to remember once it has launched a   *
1845 * PIO Read operation. The contents are used to form the correct        *
1846 * Router Network packet and direct the Crosstalk reply to the          *
1847 * appropriate processor.                                               *
1848 *									*
1849 ************************************************************************/
1850
1851typedef union ii_iprte7a_u {
1852	u64 ii_iprte7a_regval;
1853	struct {
1854		u64 i_rsvd_1:54;
1855		u64 i_widget:4;
1856		u64 i_to_cnt:5;
1857		u64 i_vld:1;
1858	} ii_iprtea7_fld_s;
1859} ii_iprte7a_u_t;
1860
1861/************************************************************************
1862 *									*
1863 *  There are 8 instances of this register. This register contains      *
1864 * the information that the II has to remember once it has launched a   *
1865 * PIO Read operation. The contents are used to form the correct        *
1866 * Router Network packet and direct the Crosstalk reply to the          *
1867 * appropriate processor.                                               *
1868 *									*
1869 ************************************************************************/
1870
1871typedef union ii_iprte0b_u {
1872	u64 ii_iprte0b_regval;
1873	struct {
1874		u64 i_rsvd_1:3;
1875		u64 i_address:47;
1876		u64 i_init:3;
1877		u64 i_source:11;
1878	} ii_iprte0b_fld_s;
1879} ii_iprte0b_u_t;
1880
1881/************************************************************************
1882 *									*
1883 *  There are 8 instances of this register. This register contains      *
1884 * the information that the II has to remember once it has launched a   *
1885 * PIO Read operation. The contents are used to form the correct        *
1886 * Router Network packet and direct the Crosstalk reply to the          *
1887 * appropriate processor.                                               *
1888 *									*
1889 ************************************************************************/
1890
1891typedef union ii_iprte1b_u {
1892	u64 ii_iprte1b_regval;
1893	struct {
1894		u64 i_rsvd_1:3;
1895		u64 i_address:47;
1896		u64 i_init:3;
1897		u64 i_source:11;
1898	} ii_iprte1b_fld_s;
1899} ii_iprte1b_u_t;
1900
1901/************************************************************************
1902 *									*
1903 *  There are 8 instances of this register. This register contains      *
1904 * the information that the II has to remember once it has launched a   *
1905 * PIO Read operation. The contents are used to form the correct        *
1906 * Router Network packet and direct the Crosstalk reply to the          *
1907 * appropriate processor.                                               *
1908 *									*
1909 ************************************************************************/
1910
1911typedef union ii_iprte2b_u {
1912	u64 ii_iprte2b_regval;
1913	struct {
1914		u64 i_rsvd_1:3;
1915		u64 i_address:47;
1916		u64 i_init:3;
1917		u64 i_source:11;
1918	} ii_iprte2b_fld_s;
1919} ii_iprte2b_u_t;
1920
1921/************************************************************************
1922 *									*
1923 *  There are 8 instances of this register. This register contains      *
1924 * the information that the II has to remember once it has launched a   *
1925 * PIO Read operation. The contents are used to form the correct        *
1926 * Router Network packet and direct the Crosstalk reply to the          *
1927 * appropriate processor.                                               *
1928 *									*
1929 ************************************************************************/
1930
1931typedef union ii_iprte3b_u {
1932	u64 ii_iprte3b_regval;
1933	struct {
1934		u64 i_rsvd_1:3;
1935		u64 i_address:47;
1936		u64 i_init:3;
1937		u64 i_source:11;
1938	} ii_iprte3b_fld_s;
1939} ii_iprte3b_u_t;
1940
1941/************************************************************************
1942 *									*
1943 *  There are 8 instances of this register. This register contains      *
1944 * the information that the II has to remember once it has launched a   *
1945 * PIO Read operation. The contents are used to form the correct        *
1946 * Router Network packet and direct the Crosstalk reply to the          *
1947 * appropriate processor.                                               *
1948 *									*
1949 ************************************************************************/
1950
1951typedef union ii_iprte4b_u {
1952	u64 ii_iprte4b_regval;
1953	struct {
1954		u64 i_rsvd_1:3;
1955		u64 i_address:47;
1956		u64 i_init:3;
1957		u64 i_source:11;
1958	} ii_iprte4b_fld_s;
1959} ii_iprte4b_u_t;
1960
1961/************************************************************************
1962 *									*
1963 *  There are 8 instances of this register. This register contains      *
1964 * the information that the II has to remember once it has launched a   *
1965 * PIO Read operation. The contents are used to form the correct        *
1966 * Router Network packet and direct the Crosstalk reply to the          *
1967 * appropriate processor.                                               *
1968 *									*
1969 ************************************************************************/
1970
1971typedef union ii_iprte5b_u {
1972	u64 ii_iprte5b_regval;
1973	struct {
1974		u64 i_rsvd_1:3;
1975		u64 i_address:47;
1976		u64 i_init:3;
1977		u64 i_source:11;
1978	} ii_iprte5b_fld_s;
1979} ii_iprte5b_u_t;
1980
1981/************************************************************************
1982 *									*
1983 *  There are 8 instances of this register. This register contains      *
1984 * the information that the II has to remember once it has launched a   *
1985 * PIO Read operation. The contents are used to form the correct        *
1986 * Router Network packet and direct the Crosstalk reply to the          *
1987 * appropriate processor.                                               *
1988 *									*
1989 ************************************************************************/
1990
1991typedef union ii_iprte6b_u {
1992	u64 ii_iprte6b_regval;
1993	struct {
1994		u64 i_rsvd_1:3;
1995		u64 i_address:47;
1996		u64 i_init:3;
1997		u64 i_source:11;
1998
1999	} ii_iprte6b_fld_s;
2000} ii_iprte6b_u_t;
2001
2002/************************************************************************
2003 *									*
2004 *  There are 8 instances of this register. This register contains      *
2005 * the information that the II has to remember once it has launched a   *
2006 * PIO Read operation. The contents are used to form the correct        *
2007 * Router Network packet and direct the Crosstalk reply to the          *
2008 * appropriate processor.                                               *
2009 *									*
2010 ************************************************************************/
2011
2012typedef union ii_iprte7b_u {
2013	u64 ii_iprte7b_regval;
2014	struct {
2015		u64 i_rsvd_1:3;
2016		u64 i_address:47;
2017		u64 i_init:3;
2018		u64 i_source:11;
2019	} ii_iprte7b_fld_s;
2020} ii_iprte7b_u_t;
2021
2022/************************************************************************
2023 *									*
2024 * Description:  SHub II contains a feature which did not exist in      *
2025 * the Hub which automatically cleans up after a Read Response          *
2026 * timeout, including deallocation of the IPRTE and recovery of IBuf    *
2027 * space. The inclusion of this register in SHub is for backward        *
2028 * compatibility                                                        *
2029 * A write to this register causes an entry from the table of           *
2030 * outstanding PIO Read Requests to be freed and returned to the        *
2031 * stack of free entries. This register is used in handling the         *
2032 * timeout errors that result in a PIO Reply never returning from       *
2033 * Crosstalk.                                                           *
2034 * Note that this register does not affect the contents of the IPRTE    *
2035 * registers. The Valid bits in those registers have to be              *
2036 * specifically turned off by software.                                 *
2037 *									*
2038 ************************************************************************/
2039
2040typedef union ii_ipdr_u {
2041	u64 ii_ipdr_regval;
2042	struct {
2043		u64 i_te:3;
2044		u64 i_rsvd_1:1;
2045		u64 i_pnd:1;
2046		u64 i_init_rpcnt:1;
2047		u64 i_rsvd:58;
2048	} ii_ipdr_fld_s;
2049} ii_ipdr_u_t;
2050
2051/************************************************************************
2052 *									*
2053 *  A write to this register causes a CRB entry to be returned to the   *
2054 * queue of free CRBs. The entry should have previously been cleared    *
2055 * (mark bit) via backdoor access to the pertinent CRB entry. This      *
2056 * register is used in the last step of handling the errors that are    *
2057 * captured and marked in CRB entries.  Briefly: 1) first error for     *
2058 * DMA write from a particular device, and first error for a            *
2059 * particular BTE stream, lead to a marked CRB entry, and processor     *
2060 * interrupt, 2) software reads the error information captured in the   *
2061 * CRB entry, and presumably takes some corrective action, 3)           *
2062 * software clears the mark bit, and finally 4) software writes to      *
2063 * the ICDR register to return the CRB entry to the list of free CRB    *
2064 * entries.                                                             *
2065 *									*
2066 ************************************************************************/
2067
2068typedef union ii_icdr_u {
2069	u64 ii_icdr_regval;
2070	struct {
2071		u64 i_crb_num:4;
2072		u64 i_pnd:1;
2073		u64 i_rsvd:59;
2074	} ii_icdr_fld_s;
2075} ii_icdr_u_t;
2076
2077/************************************************************************
2078 *									*
2079 *  This register provides debug access to two FIFOs inside of II.      *
2080 * Both IOQ_MAX* fields of this register contain the instantaneous      *
2081 * depth (in units of the number of available entries) of the           *
2082 * associated IOQ FIFO.  A read of this register will return the        *
2083 * number of free entries on each FIFO at the time of the read.  So     *
2084 * when a FIFO is idle, the associated field contains the maximum       *
2085 * depth of the FIFO.  This register is writable for debug reasons      *
2086 * and is intended to be written with the maximum desired FIFO depth    *
2087 * while the FIFO is idle. Software must assure that II is idle when    *
2088 * this register is written. If there are any active entries in any     *
2089 * of these FIFOs when this register is written, the results are        *
2090 * undefined.                                                           *
2091 *									*
2092 ************************************************************************/
2093
2094typedef union ii_ifdr_u {
2095	u64 ii_ifdr_regval;
2096	struct {
2097		u64 i_ioq_max_rq:7;
2098		u64 i_set_ioq_rq:1;
2099		u64 i_ioq_max_rp:7;
2100		u64 i_set_ioq_rp:1;
2101		u64 i_rsvd:48;
2102	} ii_ifdr_fld_s;
2103} ii_ifdr_u_t;
2104
2105/************************************************************************
2106 *									*
2107 *  This register allows the II to become sluggish in removing          *
2108 * messages from its inbound queue (IIQ). This will cause messages to   *
2109 * back up in either virtual channel. Disabling the "molasses" mode     *
2110 * subsequently allows the II to be tested under stress. In the         *
2111 * sluggish ("Molasses") mode, the localized effects of congestion      *
2112 * can be observed.                                                     *
2113 *									*
2114 ************************************************************************/
2115
2116typedef union ii_iiap_u {
2117	u64 ii_iiap_regval;
2118	struct {
2119		u64 i_rq_mls:6;
2120		u64 i_rsvd_1:2;
2121		u64 i_rp_mls:6;
2122		u64 i_rsvd:50;
2123	} ii_iiap_fld_s;
2124} ii_iiap_u_t;
2125
2126/************************************************************************
2127 *									*
2128 *  This register allows several parameters of CRB operation to be      *
2129 * set. Note that writing to this register can have catastrophic side   *
2130 * effects, if the CRB is not quiescent, i.e. if the CRB is             *
2131 * processing protocol messages when the write occurs.                  *
2132 *									*
2133 ************************************************************************/
2134
2135typedef union ii_icmr_u {
2136	u64 ii_icmr_regval;
2137	struct {
2138		u64 i_sp_msg:1;
2139		u64 i_rd_hdr:1;
2140		u64 i_rsvd_4:2;
2141		u64 i_c_cnt:4;
2142		u64 i_rsvd_3:4;
2143		u64 i_clr_rqpd:1;
2144		u64 i_clr_rppd:1;
2145		u64 i_rsvd_2:2;
2146		u64 i_fc_cnt:4;
2147		u64 i_crb_vld:15;
2148		u64 i_crb_mark:15;
2149		u64 i_rsvd_1:2;
2150		u64 i_precise:1;
2151		u64 i_rsvd:11;
2152	} ii_icmr_fld_s;
2153} ii_icmr_u_t;
2154
2155/************************************************************************
2156 *									*
2157 *  This register allows control of the table portion of the CRB        *
2158 * logic via software. Control operations from this register have       *
2159 * priority over all incoming Crosstalk or BTE requests.                *
2160 *									*
2161 ************************************************************************/
2162
2163typedef union ii_iccr_u {
2164	u64 ii_iccr_regval;
2165	struct {
2166		u64 i_crb_num:4;
2167		u64 i_rsvd_1:4;
2168		u64 i_cmd:8;
2169		u64 i_pending:1;
2170		u64 i_rsvd:47;
2171	} ii_iccr_fld_s;
2172} ii_iccr_u_t;
2173
2174/************************************************************************
2175 *									*
2176 *  This register allows the maximum timeout value to be programmed.    *
2177 *									*
2178 ************************************************************************/
2179
2180typedef union ii_icto_u {
2181	u64 ii_icto_regval;
2182	struct {
2183		u64 i_timeout:8;
2184		u64 i_rsvd:56;
2185	} ii_icto_fld_s;
2186} ii_icto_u_t;
2187
2188/************************************************************************
2189 *									*
2190 *  This register allows the timeout prescalar to be programmed. An     *
2191 * internal counter is associated with this register. When the          *
2192 * internal counter reaches the value of the PRESCALE field, the        *
2193 * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
2194 * field). The internal counter resets to zero, and then continues      *
2195 * counting.                                                            *
2196 *									*
2197 ************************************************************************/
2198
2199typedef union ii_ictp_u {
2200	u64 ii_ictp_regval;
2201	struct {
2202		u64 i_prescale:24;
2203		u64 i_rsvd:40;
2204	} ii_ictp_fld_s;
2205} ii_ictp_u_t;
2206
2207/************************************************************************
2208 *									*
2209 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2210 * used for Crosstalk operations (both cacheline and partial            *
2211 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2212 * registers (_A to _E) are required to read and write each entry.      *
2213 * The CRB Entry registers can be conceptualized as rows and columns    *
2214 * (illustrated in the table above). Each row contains the 4            *
2215 * registers required for a single CRB Entry. The first doubleword      *
2216 * (column) for each entry is labeled A, and the second doubleword      *
2217 * (higher address) is labeled B, the third doubleword is labeled C,    *
2218 * the fourth doubleword is labeled D and the fifth doubleword is       *
2219 * labeled E. All CRB entries have their addresses on a quarter         *
2220 * cacheline aligned boundary.                   *
2221 * Upon reset, only the following fields are initialized: valid         *
2222 * (VLD), priority count, timeout, timeout valid, and context valid.    *
2223 * All other bits should be cleared by software before use (after       *
2224 * recovering any potential error state from before the reset).         *
2225 * The following four tables summarize the format for the four          *
2226 * registers that are used for each ICRB# Entry.                        *
2227 *									*
2228 ************************************************************************/
2229
2230typedef union ii_icrb0_a_u {
2231	u64 ii_icrb0_a_regval;
2232	struct {
2233		u64 ia_iow:1;
2234		u64 ia_vld:1;
2235		u64 ia_addr:47;
2236		u64 ia_tnum:5;
2237		u64 ia_sidn:4;
2238		u64 ia_rsvd:6;
2239	} ii_icrb0_a_fld_s;
2240} ii_icrb0_a_u_t;
2241
2242/************************************************************************
2243 *									*
2244 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2245 * used for Crosstalk operations (both cacheline and partial            *
2246 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2247 * registers (_A to _E) are required to read and write each entry.      *
2248 *									*
2249 ************************************************************************/
2250
2251typedef union ii_icrb0_b_u {
2252	u64 ii_icrb0_b_regval;
2253	struct {
2254		u64 ib_xt_err:1;
2255		u64 ib_mark:1;
2256		u64 ib_ln_uce:1;
2257		u64 ib_errcode:3;
2258		u64 ib_error:1;
2259		u64 ib_stall__bte_1:1;
2260		u64 ib_stall__bte_0:1;
2261		u64 ib_stall__intr:1;
2262		u64 ib_stall_ib:1;
2263		u64 ib_intvn:1;
2264		u64 ib_wb:1;
2265		u64 ib_hold:1;
2266		u64 ib_ack:1;
2267		u64 ib_resp:1;
2268		u64 ib_ack_cnt:11;
2269		u64 ib_rsvd:7;
2270		u64 ib_exc:5;
2271		u64 ib_init:3;
2272		u64 ib_imsg:8;
2273		u64 ib_imsgtype:2;
2274		u64 ib_use_old:1;
2275		u64 ib_rsvd_1:11;
2276	} ii_icrb0_b_fld_s;
2277} ii_icrb0_b_u_t;
2278
2279/************************************************************************
2280 *									*
2281 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2282 * used for Crosstalk operations (both cacheline and partial            *
2283 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2284 * registers (_A to _E) are required to read and write each entry.      *
2285 *									*
2286 ************************************************************************/
2287
2288typedef union ii_icrb0_c_u {
2289	u64 ii_icrb0_c_regval;
2290	struct {
2291		u64 ic_source:15;
2292		u64 ic_size:2;
2293		u64 ic_ct:1;
2294		u64 ic_bte_num:1;
2295		u64 ic_gbr:1;
2296		u64 ic_resprqd:1;
2297		u64 ic_bo:1;
2298		u64 ic_suppl:15;
2299		u64 ic_rsvd:27;
2300	} ii_icrb0_c_fld_s;
2301} ii_icrb0_c_u_t;
2302
2303/************************************************************************
2304 *									*
2305 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2306 * used for Crosstalk operations (both cacheline and partial            *
2307 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2308 * registers (_A to _E) are required to read and write each entry.      *
2309 *									*
2310 ************************************************************************/
2311
2312typedef union ii_icrb0_d_u {
2313	u64 ii_icrb0_d_regval;
2314	struct {
2315		u64 id_pa_be:43;
2316		u64 id_bte_op:1;
2317		u64 id_pr_psc:4;
2318		u64 id_pr_cnt:4;
2319		u64 id_sleep:1;
2320		u64 id_rsvd:11;
2321	} ii_icrb0_d_fld_s;
2322} ii_icrb0_d_u_t;
2323
2324/************************************************************************
2325 *									*
2326 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2327 * used for Crosstalk operations (both cacheline and partial            *
2328 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2329 * registers (_A to _E) are required to read and write each entry.      *
2330 *									*
2331 ************************************************************************/
2332
2333typedef union ii_icrb0_e_u {
2334	u64 ii_icrb0_e_regval;
2335	struct {
2336		u64 ie_timeout:8;
2337		u64 ie_context:15;
2338		u64 ie_rsvd:1;
2339		u64 ie_tvld:1;
2340		u64 ie_cvld:1;
2341		u64 ie_rsvd_0:38;
2342	} ii_icrb0_e_fld_s;
2343} ii_icrb0_e_u_t;
2344
2345/************************************************************************
2346 *									*
2347 *  This register contains the lower 64 bits of the header of the       *
2348 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2349 * register is set.                                                     *
2350 *									*
2351 ************************************************************************/
2352
2353typedef union ii_icsml_u {
2354	u64 ii_icsml_regval;
2355	struct {
2356		u64 i_tt_addr:47;
2357		u64 i_newsuppl_ex:14;
2358		u64 i_reserved:2;
2359		u64 i_overflow:1;
2360	} ii_icsml_fld_s;
2361} ii_icsml_u_t;
2362
2363/************************************************************************
2364 *									*
2365 *  This register contains the middle 64 bits of the header of the      *
2366 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2367 * register is set.                                                     *
2368 *									*
2369 ************************************************************************/
2370
2371typedef union ii_icsmm_u {
2372	u64 ii_icsmm_regval;
2373	struct {
2374		u64 i_tt_ack_cnt:11;
2375		u64 i_reserved:53;
2376	} ii_icsmm_fld_s;
2377} ii_icsmm_u_t;
2378
2379/************************************************************************
2380 *									*
2381 *  This register contains the microscopic state, all the inputs to     *
2382 * the protocol table, captured with the spurious message. Valid when   *
2383 * the SP_MSG bit in the ICMR register is set.                          *
2384 *									*
2385 ************************************************************************/
2386
2387typedef union ii_icsmh_u {
2388	u64 ii_icsmh_regval;
2389	struct {
2390		u64 i_tt_vld:1;
2391		u64 i_xerr:1;
2392		u64 i_ft_cwact_o:1;
2393		u64 i_ft_wact_o:1;
2394		u64 i_ft_active_o:1;
2395		u64 i_sync:1;
2396		u64 i_mnusg:1;
2397		u64 i_mnusz:1;
2398		u64 i_plusz:1;
2399		u64 i_plusg:1;
2400		u64 i_tt_exc:5;
2401		u64 i_tt_wb:1;
2402		u64 i_tt_hold:1;
2403		u64 i_tt_ack:1;
2404		u64 i_tt_resp:1;
2405		u64 i_tt_intvn:1;
2406		u64 i_g_stall_bte1:1;
2407		u64 i_g_stall_bte0:1;
2408		u64 i_g_stall_il:1;
2409		u64 i_g_stall_ib:1;
2410		u64 i_tt_imsg:8;
2411		u64 i_tt_imsgtype:2;
2412		u64 i_tt_use_old:1;
2413		u64 i_tt_respreqd:1;
2414		u64 i_tt_bte_num:1;
2415		u64 i_cbn:1;
2416		u64 i_match:1;
2417		u64 i_rpcnt_lt_34:1;
2418		u64 i_rpcnt_ge_34:1;
2419		u64 i_rpcnt_lt_18:1;
2420		u64 i_rpcnt_ge_18:1;
2421		u64 i_rpcnt_lt_2:1;
2422		u64 i_rpcnt_ge_2:1;
2423		u64 i_rqcnt_lt_18:1;
2424		u64 i_rqcnt_ge_18:1;
2425		u64 i_rqcnt_lt_2:1;
2426		u64 i_rqcnt_ge_2:1;
2427		u64 i_tt_device:7;
2428		u64 i_tt_init:3;
2429		u64 i_reserved:5;
2430	} ii_icsmh_fld_s;
2431} ii_icsmh_u_t;
2432
2433/************************************************************************
2434 *									*
2435 *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
2436 * II core and a 3-bit selection signal to the fsbclk domain in the II  *
2437 * wrapper.                                                             *
2438 *									*
2439 ************************************************************************/
2440
2441typedef union ii_idbss_u {
2442	u64 ii_idbss_regval;
2443	struct {
2444		u64 i_iioclk_core_submenu:3;
2445		u64 i_rsvd:5;
2446		u64 i_fsbclk_wrapper_submenu:3;
2447		u64 i_rsvd_1:5;
2448		u64 i_iioclk_menu:5;
2449		u64 i_rsvd_2:43;
2450	} ii_idbss_fld_s;
2451} ii_idbss_u_t;
2452
2453/************************************************************************
2454 *									*
2455 * Description:  This register is used to set up the length for a       *
2456 * transfer and then to monitor the progress of that transfer. This     *
2457 * register needs to be initialized before a transfer is started. A     *
2458 * legitimate write to this register will set the Busy bit, clear the   *
2459 * Error bit, and initialize the length to the value desired.           *
2460 * While the transfer is in progress, hardware will decrement the       *
2461 * length field with each successful block that is copied. Once the     *
2462 * transfer completes, hardware will clear the Busy bit. The length     *
2463 * field will also contain the number of cache lines left to be         *
2464 * transferred.                                                         *
2465 *									*
2466 ************************************************************************/
2467
2468typedef union ii_ibls0_u {
2469	u64 ii_ibls0_regval;
2470	struct {
2471		u64 i_length:16;
2472		u64 i_error:1;
2473		u64 i_rsvd_1:3;
2474		u64 i_busy:1;
2475		u64 i_rsvd:43;
2476	} ii_ibls0_fld_s;
2477} ii_ibls0_u_t;
2478
2479/************************************************************************
2480 *									*
2481 *  This register should be loaded before a transfer is started. The    *
2482 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2483 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2484 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2485 * transfers are always cacheline-aligned.                              *
2486 *									*
2487 ************************************************************************/
2488
2489typedef union ii_ibsa0_u {
2490	u64 ii_ibsa0_regval;
2491	struct {
2492		u64 i_rsvd_1:7;
2493		u64 i_addr:42;
2494		u64 i_rsvd:15;
2495	} ii_ibsa0_fld_s;
2496} ii_ibsa0_u_t;
2497
2498/************************************************************************
2499 *									*
2500 *  This register should be loaded before a transfer is started. The    *
2501 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2502 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2503 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2504 * transfers are always cacheline-aligned.                              *
2505 *									*
2506 ************************************************************************/
2507
2508typedef union ii_ibda0_u {
2509	u64 ii_ibda0_regval;
2510	struct {
2511		u64 i_rsvd_1:7;
2512		u64 i_addr:42;
2513		u64 i_rsvd:15;
2514	} ii_ibda0_fld_s;
2515} ii_ibda0_u_t;
2516
2517/************************************************************************
2518 *									*
2519 *  Writing to this register sets up the attributes of the transfer     *
2520 * and initiates the transfer operation. Reading this register has      *
2521 * the side effect of terminating any transfer in progress. Note:       *
2522 * stopping a transfer midstream could have an adverse impact on the    *
2523 * other BTE. If a BTE stream has to be stopped (due to error           *
2524 * handling for example), both BTE streams should be stopped and        *
2525 * their transfers discarded.                                           *
2526 *									*
2527 ************************************************************************/
2528
2529typedef union ii_ibct0_u {
2530	u64 ii_ibct0_regval;
2531	struct {
2532		u64 i_zerofill:1;
2533		u64 i_rsvd_2:3;
2534		u64 i_notify:1;
2535		u64 i_rsvd_1:3;
2536		u64 i_poison:1;
2537		u64 i_rsvd:55;
2538	} ii_ibct0_fld_s;
2539} ii_ibct0_u_t;
2540
2541/************************************************************************
2542 *									*
2543 *  This register contains the address to which the WINV is sent.       *
2544 * This address has to be cache line aligned.                           *
2545 *									*
2546 ************************************************************************/
2547
2548typedef union ii_ibna0_u {
2549	u64 ii_ibna0_regval;
2550	struct {
2551		u64 i_rsvd_1:7;
2552		u64 i_addr:42;
2553		u64 i_rsvd:15;
2554	} ii_ibna0_fld_s;
2555} ii_ibna0_u_t;
2556
2557/************************************************************************
2558 *									*
2559 *  This register contains the programmable level as well as the node   *
2560 * ID and PI unit of the processor to which the interrupt will be       *
2561 * sent.								*
2562 *									*
2563 ************************************************************************/
2564
2565typedef union ii_ibia0_u {
2566	u64 ii_ibia0_regval;
2567	struct {
2568		u64 i_rsvd_2:1;
2569		u64 i_node_id:11;
2570		u64 i_rsvd_1:4;
2571		u64 i_level:7;
2572		u64 i_rsvd:41;
2573	} ii_ibia0_fld_s;
2574} ii_ibia0_u_t;
2575
2576/************************************************************************
2577 *									*
2578 * Description:  This register is used to set up the length for a       *
2579 * transfer and then to monitor the progress of that transfer. This     *
2580 * register needs to be initialized before a transfer is started. A     *
2581 * legitimate write to this register will set the Busy bit, clear the   *
2582 * Error bit, and initialize the length to the value desired.           *
2583 * While the transfer is in progress, hardware will decrement the       *
2584 * length field with each successful block that is copied. Once the     *
2585 * transfer completes, hardware will clear the Busy bit. The length     *
2586 * field will also contain the number of cache lines left to be         *
2587 * transferred.                                                         *
2588 *									*
2589 ************************************************************************/
2590
2591typedef union ii_ibls1_u {
2592	u64 ii_ibls1_regval;
2593	struct {
2594		u64 i_length:16;
2595		u64 i_error:1;
2596		u64 i_rsvd_1:3;
2597		u64 i_busy:1;
2598		u64 i_rsvd:43;
2599	} ii_ibls1_fld_s;
2600} ii_ibls1_u_t;
2601
2602/************************************************************************
2603 *									*
2604 *  This register should be loaded before a transfer is started. The    *
2605 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2606 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2607 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2608 * transfers are always cacheline-aligned.                              *
2609 *									*
2610 ************************************************************************/
2611
2612typedef union ii_ibsa1_u {
2613	u64 ii_ibsa1_regval;
2614	struct {
2615		u64 i_rsvd_1:7;
2616		u64 i_addr:33;
2617		u64 i_rsvd:24;
2618	} ii_ibsa1_fld_s;
2619} ii_ibsa1_u_t;
2620
2621/************************************************************************
2622 *									*
2623 *  This register should be loaded before a transfer is started. The    *
2624 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2625 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2626 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2627 * transfers are always cacheline-aligned.                              *
2628 *									*
2629 ************************************************************************/
2630
2631typedef union ii_ibda1_u {
2632	u64 ii_ibda1_regval;
2633	struct {
2634		u64 i_rsvd_1:7;
2635		u64 i_addr:33;
2636		u64 i_rsvd:24;
2637	} ii_ibda1_fld_s;
2638} ii_ibda1_u_t;
2639
2640/************************************************************************
2641 *									*
2642 *  Writing to this register sets up the attributes of the transfer     *
2643 * and initiates the transfer operation. Reading this register has      *
2644 * the side effect of terminating any transfer in progress. Note:       *
2645 * stopping a transfer midstream could have an adverse impact on the    *
2646 * other BTE. If a BTE stream has to be stopped (due to error           *
2647 * handling for example), both BTE streams should be stopped and        *
2648 * their transfers discarded.                                           *
2649 *									*
2650 ************************************************************************/
2651
2652typedef union ii_ibct1_u {
2653	u64 ii_ibct1_regval;
2654	struct {
2655		u64 i_zerofill:1;
2656		u64 i_rsvd_2:3;
2657		u64 i_notify:1;
2658		u64 i_rsvd_1:3;
2659		u64 i_poison:1;
2660		u64 i_rsvd:55;
2661	} ii_ibct1_fld_s;
2662} ii_ibct1_u_t;
2663
2664/************************************************************************
2665 *									*
2666 *  This register contains the address to which the WINV is sent.       *
2667 * This address has to be cache line aligned.                           *
2668 *									*
2669 ************************************************************************/
2670
2671typedef union ii_ibna1_u {
2672	u64 ii_ibna1_regval;
2673	struct {
2674		u64 i_rsvd_1:7;
2675		u64 i_addr:33;
2676		u64 i_rsvd:24;
2677	} ii_ibna1_fld_s;
2678} ii_ibna1_u_t;
2679
2680/************************************************************************
2681 *									*
2682 *  This register contains the programmable level as well as the node   *
2683 * ID and PI unit of the processor to which the interrupt will be       *
2684 * sent.								*
2685 *									*
2686 ************************************************************************/
2687
2688typedef union ii_ibia1_u {
2689	u64 ii_ibia1_regval;
2690	struct {
2691		u64 i_pi_id:1;
2692		u64 i_node_id:8;
2693		u64 i_rsvd_1:7;
2694		u64 i_level:7;
2695		u64 i_rsvd:41;
2696	} ii_ibia1_fld_s;
2697} ii_ibia1_u_t;
2698
2699/************************************************************************
2700 *									*
2701 *  This register defines the resources that feed information into      *
2702 * the two performance counters located in the IO Performance           *
2703 * Profiling Register. There are 17 different quantities that can be    *
2704 * measured. Given these 17 different options, the two performance      *
2705 * counters have 15 of them in common; menu selections 0 through 0xE    *
2706 * are identical for each performance counter. As for the other two     *
2707 * options, one is available from one performance counter and the       *
2708 * other is available from the other performance counter. Hence, the    *
2709 * II supports all 17*16=272 possible combinations of quantities to     *
2710 * measure.                                                             *
2711 *									*
2712 ************************************************************************/
2713
2714typedef union ii_ipcr_u {
2715	u64 ii_ipcr_regval;
2716	struct {
2717		u64 i_ippr0_c:4;
2718		u64 i_ippr1_c:4;
2719		u64 i_icct:8;
2720		u64 i_rsvd:48;
2721	} ii_ipcr_fld_s;
2722} ii_ipcr_u_t;
2723
2724/************************************************************************
2725 *									*
2726 *									*
2727 *									*
2728 ************************************************************************/
2729
2730typedef union ii_ippr_u {
2731	u64 ii_ippr_regval;
2732	struct {
2733		u64 i_ippr0:32;
2734		u64 i_ippr1:32;
2735	} ii_ippr_fld_s;
2736} ii_ippr_u_t;
2737
2738/************************************************************************
2739 *									*
2740 * The following defines which were not formed into structures are	*
2741 * probably indentical to another register, and the name of the		*
2742 * register is provided against each of these registers. This		*
2743 * information needs to be checked carefully				*
2744 *									*
2745 *		IIO_ICRB1_A		IIO_ICRB0_A			*
2746 *		IIO_ICRB1_B		IIO_ICRB0_B			*
2747 *		IIO_ICRB1_C		IIO_ICRB0_C			*
2748 *		IIO_ICRB1_D		IIO_ICRB0_D			*
2749 *		IIO_ICRB1_E		IIO_ICRB0_E			*
2750 *		IIO_ICRB2_A		IIO_ICRB0_A			*
2751 *		IIO_ICRB2_B		IIO_ICRB0_B			*
2752 *		IIO_ICRB2_C		IIO_ICRB0_C			*
2753 *		IIO_ICRB2_D		IIO_ICRB0_D			*
2754 *		IIO_ICRB2_E		IIO_ICRB0_E			*
2755 *		IIO_ICRB3_A		IIO_ICRB0_A			*
2756 *		IIO_ICRB3_B		IIO_ICRB0_B			*
2757 *		IIO_ICRB3_C		IIO_ICRB0_C			*
2758 *		IIO_ICRB3_D		IIO_ICRB0_D			*
2759 *		IIO_ICRB3_E		IIO_ICRB0_E			*
2760 *		IIO_ICRB4_A		IIO_ICRB0_A			*
2761 *		IIO_ICRB4_B		IIO_ICRB0_B			*
2762 *		IIO_ICRB4_C		IIO_ICRB0_C			*
2763 *		IIO_ICRB4_D		IIO_ICRB0_D			*
2764 *		IIO_ICRB4_E		IIO_ICRB0_E			*
2765 *		IIO_ICRB5_A		IIO_ICRB0_A			*
2766 *		IIO_ICRB5_B		IIO_ICRB0_B			*
2767 *		IIO_ICRB5_C		IIO_ICRB0_C			*
2768 *		IIO_ICRB5_D		IIO_ICRB0_D			*
2769 *		IIO_ICRB5_E		IIO_ICRB0_E			*
2770 *		IIO_ICRB6_A		IIO_ICRB0_A			*
2771 *		IIO_ICRB6_B		IIO_ICRB0_B			*
2772 *		IIO_ICRB6_C		IIO_ICRB0_C			*
2773 *		IIO_ICRB6_D		IIO_ICRB0_D			*
2774 *		IIO_ICRB6_E		IIO_ICRB0_E			*
2775 *		IIO_ICRB7_A		IIO_ICRB0_A			*
2776 *		IIO_ICRB7_B		IIO_ICRB0_B			*
2777 *		IIO_ICRB7_C		IIO_ICRB0_C			*
2778 *		IIO_ICRB7_D		IIO_ICRB0_D			*
2779 *		IIO_ICRB7_E		IIO_ICRB0_E			*
2780 *		IIO_ICRB8_A		IIO_ICRB0_A			*
2781 *		IIO_ICRB8_B		IIO_ICRB0_B			*
2782 *		IIO_ICRB8_C		IIO_ICRB0_C			*
2783 *		IIO_ICRB8_D		IIO_ICRB0_D			*
2784 *		IIO_ICRB8_E		IIO_ICRB0_E			*
2785 *		IIO_ICRB9_A		IIO_ICRB0_A			*
2786 *		IIO_ICRB9_B		IIO_ICRB0_B			*
2787 *		IIO_ICRB9_C		IIO_ICRB0_C			*
2788 *		IIO_ICRB9_D		IIO_ICRB0_D			*
2789 *		IIO_ICRB9_E		IIO_ICRB0_E			*
2790 *		IIO_ICRBA_A		IIO_ICRB0_A			*
2791 *		IIO_ICRBA_B		IIO_ICRB0_B			*
2792 *		IIO_ICRBA_C		IIO_ICRB0_C			*
2793 *		IIO_ICRBA_D		IIO_ICRB0_D			*
2794 *		IIO_ICRBA_E		IIO_ICRB0_E			*
2795 *		IIO_ICRBB_A		IIO_ICRB0_A			*
2796 *		IIO_ICRBB_B		IIO_ICRB0_B			*
2797 *		IIO_ICRBB_C		IIO_ICRB0_C			*
2798 *		IIO_ICRBB_D		IIO_ICRB0_D			*
2799 *		IIO_ICRBB_E		IIO_ICRB0_E			*
2800 *		IIO_ICRBC_A		IIO_ICRB0_A			*
2801 *		IIO_ICRBC_B		IIO_ICRB0_B			*
2802 *		IIO_ICRBC_C		IIO_ICRB0_C			*
2803 *		IIO_ICRBC_D		IIO_ICRB0_D			*
2804 *		IIO_ICRBC_E		IIO_ICRB0_E			*
2805 *		IIO_ICRBD_A		IIO_ICRB0_A			*
2806 *		IIO_ICRBD_B		IIO_ICRB0_B			*
2807 *		IIO_ICRBD_C		IIO_ICRB0_C			*
2808 *		IIO_ICRBD_D		IIO_ICRB0_D			*
2809 *		IIO_ICRBD_E		IIO_ICRB0_E			*
2810 *		IIO_ICRBE_A		IIO_ICRB0_A			*
2811 *		IIO_ICRBE_B		IIO_ICRB0_B			*
2812 *		IIO_ICRBE_C		IIO_ICRB0_C			*
2813 *		IIO_ICRBE_D		IIO_ICRB0_D			*
2814 *		IIO_ICRBE_E		IIO_ICRB0_E			*
2815 *									*
2816 ************************************************************************/
2817
2818/*
2819 * Slightly friendlier names for some common registers.
2820 */
2821#define IIO_WIDGET              IIO_WID		/* Widget identification */
2822#define IIO_WIDGET_STAT         IIO_WSTAT	/* Widget status register */
2823#define IIO_WIDGET_CTRL         IIO_WCR		/* Widget control register */
2824#define IIO_PROTECT             IIO_ILAPR	/* IO interface protection */
2825#define IIO_PROTECT_OVRRD       IIO_ILAPO	/* IO protect override */
2826#define IIO_OUTWIDGET_ACCESS    IIO_IOWA	/* Outbound widget access */
2827#define IIO_INWIDGET_ACCESS     IIO_IIWA	/* Inbound widget access */
2828#define IIO_INDEV_ERR_MASK      IIO_IIDEM	/* Inbound device error mask */
2829#define IIO_LLP_CSR             IIO_ILCSR	/* LLP control and status */
2830#define IIO_LLP_LOG             IIO_ILLR	/* LLP log */
2831#define IIO_XTALKCC_TOUT        IIO_IXCC	/* Xtalk credit count timeout */
2832#define IIO_XTALKTT_TOUT        IIO_IXTT	/* Xtalk tail timeout */
2833#define IIO_IO_ERR_CLR          IIO_IECLR	/* IO error clear */
2834#define IIO_IGFX_0 		IIO_IGFX0
2835#define IIO_IGFX_1 		IIO_IGFX1
2836#define IIO_IBCT_0		IIO_IBCT0
2837#define IIO_IBCT_1		IIO_IBCT1
2838#define IIO_IBLS_0		IIO_IBLS0
2839#define IIO_IBLS_1		IIO_IBLS1
2840#define IIO_IBSA_0		IIO_IBSA0
2841#define IIO_IBSA_1		IIO_IBSA1
2842#define IIO_IBDA_0		IIO_IBDA0
2843#define IIO_IBDA_1		IIO_IBDA1
2844#define IIO_IBNA_0		IIO_IBNA0
2845#define IIO_IBNA_1		IIO_IBNA1
2846#define IIO_IBIA_0		IIO_IBIA0
2847#define IIO_IBIA_1		IIO_IBIA1
2848#define IIO_IOPRB_0		IIO_IPRB0
2849
2850#define IIO_PRTE_A(_x)		(IIO_IPRTE0_A + (8 * (_x)))
2851#define IIO_PRTE_B(_x)		(IIO_IPRTE0_B + (8 * (_x)))
2852#define IIO_NUM_PRTES		8	/* Total number of PRB table entries */
2853#define IIO_WIDPRTE_A(x)	IIO_PRTE_A(((x) - 8))	/* widget ID to its PRTE num */
2854#define IIO_WIDPRTE_B(x)	IIO_PRTE_B(((x) - 8))	/* widget ID to its PRTE num */
2855
2856#define IIO_NUM_IPRBS 		9
2857
2858#define IIO_LLP_CSR_IS_UP		0x00002000
2859#define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000
2860#define IIO_LLP_CSR_LLP_STAT_SHFT       12
2861
2862#define IIO_LLP_CB_MAX  0xffff	/* in ILLR CB_CNT, Max Check Bit errors */
2863#define IIO_LLP_SN_MAX  0xffff	/* in ILLR SN_CNT, Max Sequence Number errors */
2864
2865/* key to IIO_PROTECT_OVRRD */
2866#define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull	/* "SGIrules" */
2867
2868/* BTE register names */
2869#define IIO_BTE_STAT_0          IIO_IBLS_0	/* Also BTE length/status 0 */
2870#define IIO_BTE_SRC_0           IIO_IBSA_0	/* Also BTE source address  0 */
2871#define IIO_BTE_DEST_0          IIO_IBDA_0	/* Also BTE dest. address 0 */
2872#define IIO_BTE_CTRL_0          IIO_IBCT_0	/* Also BTE control/terminate 0 */
2873#define IIO_BTE_NOTIFY_0        IIO_IBNA_0	/* Also BTE notification 0 */
2874#define IIO_BTE_INT_0           IIO_IBIA_0	/* Also BTE interrupt 0 */
2875#define IIO_BTE_OFF_0           0	/* Base offset from BTE 0 regs. */
2876#define IIO_BTE_OFF_1   	(IIO_IBLS_1 - IIO_IBLS_0)	/* Offset from base to BTE 1 */
2877
2878/* BTE register offsets from base */
2879#define BTEOFF_STAT             0
2880#define BTEOFF_SRC      	(IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
2881#define BTEOFF_DEST     	(IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
2882#define BTEOFF_CTRL     	(IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
2883#define BTEOFF_NOTIFY   	(IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
2884#define BTEOFF_INT      	(IIO_BTE_INT_0 - IIO_BTE_STAT_0)
2885
2886/* names used in shub diags */
2887#define IIO_BASE_BTE0   IIO_IBLS_0
2888#define IIO_BASE_BTE1   IIO_IBLS_1
2889
2890/*
2891 * Macro which takes the widget number, and returns the
2892 * IO PRB address of that widget.
2893 * value _x is expected to be a widget number in the range
2894 * 0, 8 - 0xF
2895 */
2896#define IIO_IOPRB(_x)	(IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
2897                	(_x) : \
2898                	(_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
2899
2900/* GFX Flow Control Node/Widget Register */
2901#define IIO_IGFX_W_NUM_BITS	4	/* size of widget num field */
2902#define IIO_IGFX_W_NUM_MASK	((1<<IIO_IGFX_W_NUM_BITS)-1)
2903#define IIO_IGFX_W_NUM_SHIFT	0
2904#define IIO_IGFX_PI_NUM_BITS	1	/* size of PI num field */
2905#define IIO_IGFX_PI_NUM_MASK	((1<<IIO_IGFX_PI_NUM_BITS)-1)
2906#define IIO_IGFX_PI_NUM_SHIFT	4
2907#define IIO_IGFX_N_NUM_BITS	8	/* size of node num field */
2908#define IIO_IGFX_N_NUM_MASK	((1<<IIO_IGFX_N_NUM_BITS)-1)
2909#define IIO_IGFX_N_NUM_SHIFT	5
2910#define IIO_IGFX_P_NUM_BITS	1	/* size of processor num field */
2911#define IIO_IGFX_P_NUM_MASK	((1<<IIO_IGFX_P_NUM_BITS)-1)
2912#define IIO_IGFX_P_NUM_SHIFT	16
2913#define IIO_IGFX_INIT(widget, pi, node, cpu)				(\
2914	(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |	 \
2915	(((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|	 \
2916	(((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |	 \
2917	(((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
2918
2919/* Scratch registers (all bits available) */
2920#define IIO_SCRATCH_REG0        IIO_ISCR0
2921#define IIO_SCRATCH_REG1        IIO_ISCR1
2922#define IIO_SCRATCH_MASK        0xffffffffffffffffUL
2923
2924#define IIO_SCRATCH_BIT0_0      0x0000000000000001UL
2925#define IIO_SCRATCH_BIT0_1      0x0000000000000002UL
2926#define IIO_SCRATCH_BIT0_2      0x0000000000000004UL
2927#define IIO_SCRATCH_BIT0_3      0x0000000000000008UL
2928#define IIO_SCRATCH_BIT0_4      0x0000000000000010UL
2929#define IIO_SCRATCH_BIT0_5      0x0000000000000020UL
2930#define IIO_SCRATCH_BIT0_6      0x0000000000000040UL
2931#define IIO_SCRATCH_BIT0_7      0x0000000000000080UL
2932#define IIO_SCRATCH_BIT0_8      0x0000000000000100UL
2933#define IIO_SCRATCH_BIT0_9      0x0000000000000200UL
2934#define IIO_SCRATCH_BIT0_A      0x0000000000000400UL
2935
2936#define IIO_SCRATCH_BIT1_0      0x0000000000000001UL
2937#define IIO_SCRATCH_BIT1_1      0x0000000000000002UL
2938/* IO Translation Table Entries */
2939#define IIO_NUM_ITTES   7	/* ITTEs numbered 0..6 */
2940					/* Hw manuals number them 1..7! */
2941/*
2942 * IIO_IMEM Register fields.
2943 */
2944#define IIO_IMEM_W0ESD  0x1UL	/* Widget 0 shut down due to error */
2945#define IIO_IMEM_B0ESD	(1UL << 4)	/* BTE 0 shut down due to error */
2946#define IIO_IMEM_B1ESD	(1UL << 8)	/* BTE 1 Shut down due to error */
2947
2948#define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)
2949
2950/*
2951 * Use the top big window as a surrogate for the first small window
2952 */
2953#define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW
2954
2955#define ILCSR_WARM_RESET        0x100
2956
2957/*
2958 * CRB manipulation macros
2959 *	The CRB macros are slightly complicated, since there are up to
2960 *	four registers associated with each CRB entry.
2961 */
2962#define IIO_NUM_CRBS            15	/* Number of CRBs */
2963#define IIO_NUM_PC_CRBS         4	/* Number of partial cache CRBs */
2964#define IIO_ICRB_OFFSET         8
2965#define IIO_ICRB_0              IIO_ICRB0_A
2966#define IIO_ICRB_ADDR_SHFT	2	/* Shift to get proper address */
2967
2968#define IIO_ICRB_A(_x)	((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
2969#define IIO_ICRB_B(_x)	((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
2970#define IIO_ICRB_C(_x)	((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
2971#define IIO_ICRB_D(_x)	((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
2972#define IIO_ICRB_E(_x)	((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
2973
2974#define TNUM_TO_WIDGET_DEV(_tnum)	(_tnum & 0x7)
2975
2976/*
2977 * values for "ecode" field
2978 */
2979#define IIO_ICRB_ECODE_DERR     0	/* Directory error due to IIO access */
2980#define IIO_ICRB_ECODE_PERR     1	/* Poison error on IO access */
2981#define IIO_ICRB_ECODE_WERR     2	/* Write error by IIO access
2982					 * e.g. WINV to a Read only line. */
2983#define IIO_ICRB_ECODE_AERR     3	/* Access error caused by IIO access */
2984#define IIO_ICRB_ECODE_PWERR    4	/* Error on partial write */
2985#define IIO_ICRB_ECODE_PRERR    5	/* Error on partial read  */
2986#define IIO_ICRB_ECODE_TOUT     6	/* CRB timeout before deallocating */
2987#define IIO_ICRB_ECODE_XTERR    7	/* Incoming xtalk pkt had error bit */
2988
2989/*
2990 * Values for field imsgtype
2991 */
2992#define IIO_ICRB_IMSGT_XTALK    0	/* Incoming Meessage from Xtalk */
2993#define IIO_ICRB_IMSGT_BTE      1	/* Incoming message from BTE    */
2994#define IIO_ICRB_IMSGT_SN1NET   2	/* Incoming message from SN1 net */
2995#define IIO_ICRB_IMSGT_CRB      3	/* Incoming message from CRB ???  */
2996
2997/*
2998 * values for field initiator.
2999 */
3000#define IIO_ICRB_INIT_XTALK     0	/* Message originated in xtalk  */
3001#define IIO_ICRB_INIT_BTE0      0x1	/* Message originated in BTE 0  */
3002#define IIO_ICRB_INIT_SN1NET    0x2	/* Message originated in SN1net */
3003#define IIO_ICRB_INIT_CRB       0x3	/* Message originated in CRB ?  */
3004#define IIO_ICRB_INIT_BTE1      0x5	/* MEssage originated in BTE 1  */
3005
3006/*
3007 * Number of credits Hub widget has while sending req/response to
3008 * xbow.
3009 * Value of 3 is required by Xbow 1.1
3010 * We may be able to increase this to 4 with Xbow 1.2.
3011 */
3012#define		   HUBII_XBOW_CREDIT       3
3013#define		   HUBII_XBOW_REV2_CREDIT  4
3014
3015/*
3016 * Number of credits that xtalk devices should use when communicating
3017 * with a SHub (depth of SHub's queue).
3018 */
3019#define HUB_CREDIT 4
3020
3021/*
3022 * Some IIO_PRB fields
3023 */
3024#define IIO_PRB_MULTI_ERR	(1LL << 63)
3025#define IIO_PRB_SPUR_RD		(1LL << 51)
3026#define IIO_PRB_SPUR_WR		(1LL << 50)
3027#define IIO_PRB_RD_TO		(1LL << 49)
3028#define IIO_PRB_ERROR		(1LL << 48)
3029
3030/*************************************************************************
3031
3032 Some of the IIO field masks and shifts are defined here.
3033 This is in order to maintain compatibility in SN0 and SN1 code
3034
3035**************************************************************************/
3036
3037/*
3038 * ICMR register fields
3039 * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
3040 * present in SHub)
3041 */
3042
3043#define IIO_ICMR_CRB_VLD_SHFT   20
3044#define IIO_ICMR_CRB_VLD_MASK	(0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
3045
3046#define IIO_ICMR_FC_CNT_SHFT    16
3047#define IIO_ICMR_FC_CNT_MASK	(0xf << IIO_ICMR_FC_CNT_SHFT)
3048
3049#define IIO_ICMR_C_CNT_SHFT     4
3050#define IIO_ICMR_C_CNT_MASK	(0xf << IIO_ICMR_C_CNT_SHFT)
3051
3052#define IIO_ICMR_PRECISE	(1UL << 52)
3053#define IIO_ICMR_CLR_RPPD	(1UL << 13)
3054#define IIO_ICMR_CLR_RQPD	(1UL << 12)
3055
3056#define IIO_IPDR_PND    	(1 << 4)
3057
3058/*
3059 * IIO CRB deallocation register field masks: (IIO_ICDR)
3060 */
3061#define IIO_ICDR_PND    	(1 << 4)
3062
3063/*
3064 * IO BTE Length/Status (IIO_IBLS) register bit field definitions
3065 */
3066#define IBLS_BUSY		(0x1UL << 20)
3067#define IBLS_ERROR_SHFT		16
3068#define IBLS_ERROR		(0x1UL << IBLS_ERROR_SHFT)
3069#define IBLS_LENGTH_MASK	0xffff
3070
3071/*
3072 * IO BTE Control/Terminate register (IBCT) register bit field definitions
3073 */
3074#define IBCT_POISON		(0x1UL << 8)
3075#define IBCT_NOTIFY		(0x1UL << 4)
3076#define IBCT_ZFIL_MODE		(0x1UL << 0)
3077
3078/*
3079 * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
3080 */
3081#define IIEPH1_VALID		(1UL << 44)
3082#define IIEPH1_OVERRUN		(1UL << 40)
3083#define IIEPH1_ERR_TYPE_SHFT	32
3084#define IIEPH1_ERR_TYPE_MASK	0xf
3085#define IIEPH1_SOURCE_SHFT	20
3086#define IIEPH1_SOURCE_MASK	11
3087#define IIEPH1_SUPPL_SHFT	8
3088#define IIEPH1_SUPPL_MASK	11
3089#define IIEPH1_CMD_SHFT		0
3090#define IIEPH1_CMD_MASK		7
3091
3092#define IIEPH2_TAIL		(1UL << 40)
3093#define IIEPH2_ADDRESS_SHFT	0
3094#define IIEPH2_ADDRESS_MASK	38
3095
3096#define IIEPH1_ERR_SHORT_REQ	2
3097#define IIEPH1_ERR_SHORT_REPLY	3
3098#define IIEPH1_ERR_LONG_REQ	4
3099#define IIEPH1_ERR_LONG_REPLY	5
3100
3101/*
3102 * IO Error Clear register bit field definitions
3103 */
3104#define IECLR_PI1_FWD_INT	(1UL << 31)	/* clear PI1_FORWARD_INT in iidsr */
3105#define IECLR_PI0_FWD_INT	(1UL << 30)	/* clear PI0_FORWARD_INT in iidsr */
3106#define IECLR_SPUR_RD_HDR	(1UL << 29)	/* clear valid bit in ixss reg */
3107#define IECLR_BTE1		(1UL << 18)	/* clear bte error 1 */
3108#define IECLR_BTE0		(1UL << 17)	/* clear bte error 0 */
3109#define IECLR_CRAZY		(1UL << 16)	/* clear crazy bit in wstat reg */
3110#define IECLR_PRB_F		(1UL << 15)	/* clear err bit in PRB_F reg */
3111#define IECLR_PRB_E		(1UL << 14)	/* clear err bit in PRB_E reg */
3112#define IECLR_PRB_D		(1UL << 13)	/* clear err bit in PRB_D reg */
3113#define IECLR_PRB_C		(1UL << 12)	/* clear err bit in PRB_C reg */
3114#define IECLR_PRB_B		(1UL << 11)	/* clear err bit in PRB_B reg */
3115#define IECLR_PRB_A		(1UL << 10)	/* clear err bit in PRB_A reg */
3116#define IECLR_PRB_9		(1UL << 9)	/* clear err bit in PRB_9 reg */
3117#define IECLR_PRB_8		(1UL << 8)	/* clear err bit in PRB_8 reg */
3118#define IECLR_PRB_0		(1UL << 0)	/* clear err bit in PRB_0 reg */
3119
3120/*
3121 * IIO CRB control register Fields: IIO_ICCR
3122 */
3123#define	IIO_ICCR_PENDING	0x10000
3124#define	IIO_ICCR_CMD_MASK	0xFF
3125#define	IIO_ICCR_CMD_SHFT	7
3126#define	IIO_ICCR_CMD_NOP	0x0	/* No Op */
3127#define	IIO_ICCR_CMD_WAKE	0x100	/* Reactivate CRB entry and process */
3128#define	IIO_ICCR_CMD_TIMEOUT	0x200	/* Make CRB timeout & mark invalid */
3129#define	IIO_ICCR_CMD_EJECT	0x400	/* Contents of entry written to memory
3130					 * via a WB
3131					 */
3132#define	IIO_ICCR_CMD_FLUSH	0x800
3133
3134/*
3135 *
3136 * CRB Register description.
3137 *
3138 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3139 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3140 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3141 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3142 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3143 *
3144 * Many of the fields in CRB are status bits used by hardware
3145 * for implementation of the protocol. It's very dangerous to
3146 * mess around with the CRB registers.
3147 *
3148 * It's OK to read the CRB registers and try to make sense out of the
3149 * fields in CRB.
3150 *
3151 * Updating CRB requires all activities in Hub IIO to be quiesced.
3152 * otherwise, a write to CRB could corrupt other CRB entries.
3153 * CRBs are here only as a back door peek to shub IIO's status.
3154 * Quiescing implies  no dmas no PIOs
3155 * either directly from the cpu or from sn0net.
3156 * this is not something that can be done easily. So, AVOID updating
3157 * CRBs.
3158 */
3159
3160/*
3161 * Easy access macros for CRBs, all 5 registers (A-E)
3162 */
3163typedef ii_icrb0_a_u_t icrba_t;
3164#define a_sidn		ii_icrb0_a_fld_s.ia_sidn
3165#define a_tnum		ii_icrb0_a_fld_s.ia_tnum
3166#define a_addr          ii_icrb0_a_fld_s.ia_addr
3167#define a_valid         ii_icrb0_a_fld_s.ia_vld
3168#define a_iow           ii_icrb0_a_fld_s.ia_iow
3169#define a_regvalue	ii_icrb0_a_regval
3170
3171typedef ii_icrb0_b_u_t icrbb_t;
3172#define b_use_old       ii_icrb0_b_fld_s.ib_use_old
3173#define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype
3174#define b_imsg          ii_icrb0_b_fld_s.ib_imsg
3175#define b_initiator     ii_icrb0_b_fld_s.ib_init
3176#define b_exc           ii_icrb0_b_fld_s.ib_exc
3177#define b_ackcnt        ii_icrb0_b_fld_s.ib_ack_cnt
3178#define b_resp          ii_icrb0_b_fld_s.ib_resp
3179#define b_ack           ii_icrb0_b_fld_s.ib_ack
3180#define b_hold          ii_icrb0_b_fld_s.ib_hold
3181#define b_wb            ii_icrb0_b_fld_s.ib_wb
3182#define b_intvn         ii_icrb0_b_fld_s.ib_intvn
3183#define b_stall_ib      ii_icrb0_b_fld_s.ib_stall_ib
3184#define b_stall_int     ii_icrb0_b_fld_s.ib_stall__intr
3185#define b_stall_bte_0   ii_icrb0_b_fld_s.ib_stall__bte_0
3186#define b_stall_bte_1   ii_icrb0_b_fld_s.ib_stall__bte_1
3187#define b_error         ii_icrb0_b_fld_s.ib_error
3188#define b_ecode         ii_icrb0_b_fld_s.ib_errcode
3189#define b_lnetuce       ii_icrb0_b_fld_s.ib_ln_uce
3190#define b_mark          ii_icrb0_b_fld_s.ib_mark
3191#define b_xerr          ii_icrb0_b_fld_s.ib_xt_err
3192#define b_regvalue	ii_icrb0_b_regval
3193
3194typedef ii_icrb0_c_u_t icrbc_t;
3195#define c_suppl         ii_icrb0_c_fld_s.ic_suppl
3196#define c_barrop        ii_icrb0_c_fld_s.ic_bo
3197#define c_doresp        ii_icrb0_c_fld_s.ic_resprqd
3198#define c_gbr           ii_icrb0_c_fld_s.ic_gbr
3199#define c_btenum        ii_icrb0_c_fld_s.ic_bte_num
3200#define c_cohtrans      ii_icrb0_c_fld_s.ic_ct
3201#define c_xtsize        ii_icrb0_c_fld_s.ic_size
3202#define c_source        ii_icrb0_c_fld_s.ic_source
3203#define c_regvalue	ii_icrb0_c_regval
3204
3205typedef ii_icrb0_d_u_t icrbd_t;
3206#define d_sleep         ii_icrb0_d_fld_s.id_sleep
3207#define d_pricnt        ii_icrb0_d_fld_s.id_pr_cnt
3208#define d_pripsc        ii_icrb0_d_fld_s.id_pr_psc
3209#define d_bteop         ii_icrb0_d_fld_s.id_bte_op
3210#define d_bteaddr       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
3211#define d_benable       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
3212#define d_regvalue	ii_icrb0_d_regval
3213
3214typedef ii_icrb0_e_u_t icrbe_t;
3215#define icrbe_ctxtvld   ii_icrb0_e_fld_s.ie_cvld
3216#define icrbe_toutvld   ii_icrb0_e_fld_s.ie_tvld
3217#define icrbe_context   ii_icrb0_e_fld_s.ie_context
3218#define icrbe_timeout   ii_icrb0_e_fld_s.ie_timeout
3219#define e_regvalue	ii_icrb0_e_regval
3220
3221/* Number of widgets supported by shub */
3222#define HUB_NUM_WIDGET          9
3223#define HUB_WIDGET_ID_MIN       0x8
3224#define HUB_WIDGET_ID_MAX       0xf
3225
3226#define HUB_WIDGET_PART_NUM     0xc120
3227#define MAX_HUBS_PER_XBOW       2
3228
3229/* A few more #defines for backwards compatibility */
3230#define iprb_t          ii_iprb0_u_t
3231#define iprb_regval     ii_iprb0_regval
3232#define iprb_mult_err	ii_iprb0_fld_s.i_mult_err
3233#define iprb_spur_rd	ii_iprb0_fld_s.i_spur_rd
3234#define iprb_spur_wr	ii_iprb0_fld_s.i_spur_wr
3235#define iprb_rd_to	ii_iprb0_fld_s.i_rd_to
3236#define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt
3237#define iprb_error      ii_iprb0_fld_s.i_error
3238#define iprb_ff         ii_iprb0_fld_s.i_f
3239#define iprb_mode       ii_iprb0_fld_s.i_m
3240#define iprb_bnakctr    ii_iprb0_fld_s.i_nb
3241#define iprb_anakctr    ii_iprb0_fld_s.i_na
3242#define iprb_xtalkctr   ii_iprb0_fld_s.i_c
3243
3244#define LNK_STAT_WORKING        0x2		/* LLP is working */
3245
3246#define IIO_WSTAT_ECRAZY	(1ULL << 32)	/* Hub gone crazy */
3247#define IIO_WSTAT_TXRETRY	(1ULL << 9)	/* Hub Tx Retry timeout */
3248#define IIO_WSTAT_TXRETRY_MASK  0x7F		/* should be 0xFF?? */
3249#define IIO_WSTAT_TXRETRY_SHFT  16
3250#define IIO_WSTAT_TXRETRY_CNT(w)	(((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
3251                          		IIO_WSTAT_TXRETRY_MASK)
3252
3253/* Number of II perf. counters we can multiplex at once */
3254
3255#define IO_PERF_SETS	32
3256
3257/* Bit for the widget in inbound access register */
3258#define IIO_IIWA_WIDGET(_w)	((u64)(1ULL << _w))
3259/* Bit for the widget in outbound access register */
3260#define IIO_IOWA_WIDGET(_w)	((u64)(1ULL << _w))
3261
3262/* NOTE: The following define assumes that we are going to get
3263 * widget numbers from 8 thru F and the device numbers within
3264 * widget from 0 thru 7.
3265 */
3266#define IIO_IIDEM_WIDGETDEV_MASK(w, d)	((u64)(1ULL << (8 * ((w) - 8) + (d))))
3267
3268/* IO Interrupt Destination Register */
3269#define IIO_IIDSR_SENT_SHIFT    28
3270#define IIO_IIDSR_SENT_MASK     0x30000000
3271#define IIO_IIDSR_ENB_SHIFT     24
3272#define IIO_IIDSR_ENB_MASK      0x01000000
3273#define IIO_IIDSR_NODE_SHIFT    9
3274#define IIO_IIDSR_NODE_MASK     0x000ff700
3275#define IIO_IIDSR_PI_ID_SHIFT   8
3276#define IIO_IIDSR_PI_ID_MASK    0x00000100
3277#define IIO_IIDSR_LVL_SHIFT     0
3278#define IIO_IIDSR_LVL_MASK      0x000000ff
3279
3280/* Xtalk timeout threshold register (IIO_IXTT) */
3281#define IXTT_RRSP_TO_SHFT	55	/* read response timeout */
3282#define IXTT_RRSP_TO_MASK	(0x1FULL << IXTT_RRSP_TO_SHFT)
3283#define IXTT_RRSP_PS_SHFT	32	/* read responsed TO prescalar */
3284#define IXTT_RRSP_PS_MASK	(0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
3285#define IXTT_TAIL_TO_SHFT	0	/* tail timeout counter threshold */
3286#define IXTT_TAIL_TO_MASK	(0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
3287
3288/*
3289 * The IO LLP control status register and widget control register
3290 */
3291
3292typedef union hubii_wcr_u {
3293	u64 wcr_reg_value;
3294	struct {
3295		u64 wcr_widget_id:4,	/* LLP crossbar credit */
3296		 wcr_tag_mode:1,	/* Tag mode */
3297		 wcr_rsvd1:8,	/* Reserved */
3298		 wcr_xbar_crd:3,	/* LLP crossbar credit */
3299		 wcr_f_bad_pkt:1,	/* Force bad llp pkt enable */
3300		 wcr_dir_con:1,	/* widget direct connect */
3301		 wcr_e_thresh:5,	/* elasticity threshold */
3302		 wcr_rsvd:41;	/* unused */
3303	} wcr_fields_s;
3304} hubii_wcr_t;
3305
3306#define iwcr_dir_con    wcr_fields_s.wcr_dir_con
3307
3308/* The structures below are defined to extract and modify the ii
3309performance registers */
3310
3311/* io_perf_sel allows the caller to specify what tests will be
3312   performed */
3313
3314typedef union io_perf_sel {
3315	u64 perf_sel_reg;
3316	struct {
3317		u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
3318	} perf_sel_bits;
3319} io_perf_sel_t;
3320
3321/* io_perf_cnt is to extract the count from the shub registers. Due to
3322   hardware problems there is only one counter, not two. */
3323
3324typedef union io_perf_cnt {
3325	u64 perf_cnt;
3326	struct {
3327		u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
3328	} perf_cnt_bits;
3329
3330} io_perf_cnt_t;
3331
3332typedef union iprte_a {
3333	u64 entry;
3334	struct {
3335		u64 i_rsvd_1:3;
3336		u64 i_addr:38;
3337		u64 i_init:3;
3338		u64 i_source:8;
3339		u64 i_rsvd:2;
3340		u64 i_widget:4;
3341		u64 i_to_cnt:5;
3342		u64 i_vld:1;
3343	} iprte_fields;
3344} iprte_a_t;
3345
3346#endif				/* _ASM_IA64_SN_SHUBIO_H */
3347