• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/include/asm/
1#ifndef _ASM_IA64_BITOPS_H
2#define _ASM_IA64_BITOPS_H
3
4/*
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 *	David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
9 * O(1) scheduler patch
10 */
11
12#ifndef _LINUX_BITOPS_H
13#error only <linux/bitops.h> can be included directly
14#endif
15
16#include <linux/compiler.h>
17#include <linux/types.h>
18#include <asm/intrinsics.h>
19
20/**
21 * set_bit - Atomically set a bit in memory
22 * @nr: the bit to set
23 * @addr: the address to start counting from
24 *
25 * This function is atomic and may not be reordered.  See __set_bit()
26 * if you do not require the atomic guarantees.
27 * Note that @nr may be almost arbitrarily large; this function is not
28 * restricted to acting on a single-word quantity.
29 *
30 * The address must be (at least) "long" aligned.
31 * Note that there are driver (e.g., eepro100) which use these operations to
32 * operate on hw-defined data-structures, so we can't easily change these
33 * operations to force a bigger alignment.
34 *
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36 */
37static __inline__ void
38set_bit (int nr, volatile void *addr)
39{
40	__u32 bit, old, new;
41	volatile __u32 *m;
42	CMPXCHG_BUGCHECK_DECL
43
44	m = (volatile __u32 *) addr + (nr >> 5);
45	bit = 1 << (nr & 31);
46	do {
47		CMPXCHG_BUGCHECK(m);
48		old = *m;
49		new = old | bit;
50	} while (cmpxchg_acq(m, old, new) != old);
51}
52
53/**
54 * __set_bit - Set a bit in memory
55 * @nr: the bit to set
56 * @addr: the address to start counting from
57 *
58 * Unlike set_bit(), this function is non-atomic and may be reordered.
59 * If it's called on the same region of memory simultaneously, the effect
60 * may be that only one operation succeeds.
61 */
62static __inline__ void
63__set_bit (int nr, volatile void *addr)
64{
65	*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
66}
67
68/*
69 * clear_bit() has "acquire" semantics.
70 */
71#define smp_mb__before_clear_bit()	smp_mb()
72#define smp_mb__after_clear_bit()	do { /* skip */; } while (0)
73
74/**
75 * clear_bit - Clears a bit in memory
76 * @nr: Bit to clear
77 * @addr: Address to start counting from
78 *
79 * clear_bit() is atomic and may not be reordered.  However, it does
80 * not contain a memory barrier, so if it is used for locking purposes,
81 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
82 * in order to ensure changes are visible on other processors.
83 */
84static __inline__ void
85clear_bit (int nr, volatile void *addr)
86{
87	__u32 mask, old, new;
88	volatile __u32 *m;
89	CMPXCHG_BUGCHECK_DECL
90
91	m = (volatile __u32 *) addr + (nr >> 5);
92	mask = ~(1 << (nr & 31));
93	do {
94		CMPXCHG_BUGCHECK(m);
95		old = *m;
96		new = old & mask;
97	} while (cmpxchg_acq(m, old, new) != old);
98}
99
100/**
101 * clear_bit_unlock - Clears a bit in memory with release
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
104 *
105 * clear_bit_unlock() is atomic and may not be reordered.  It does
106 * contain a memory barrier suitable for unlock type operations.
107 */
108static __inline__ void
109clear_bit_unlock (int nr, volatile void *addr)
110{
111	__u32 mask, old, new;
112	volatile __u32 *m;
113	CMPXCHG_BUGCHECK_DECL
114
115	m = (volatile __u32 *) addr + (nr >> 5);
116	mask = ~(1 << (nr & 31));
117	do {
118		CMPXCHG_BUGCHECK(m);
119		old = *m;
120		new = old & mask;
121	} while (cmpxchg_rel(m, old, new) != old);
122}
123
124/**
125 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
126 * @nr: Bit to clear
127 * @addr: Address to start counting from
128 *
129 * Similarly to clear_bit_unlock, the implementation uses a store
130 * with release semantics. See also arch_spin_unlock().
131 */
132static __inline__ void
133__clear_bit_unlock(int nr, void *addr)
134{
135	__u32 * const m = (__u32 *) addr + (nr >> 5);
136	__u32 const new = *m & ~(1 << (nr & 31));
137
138	ia64_st4_rel_nta(m, new);
139}
140
141/**
142 * __clear_bit - Clears a bit in memory (non-atomic version)
143 * @nr: the bit to clear
144 * @addr: the address to start counting from
145 *
146 * Unlike clear_bit(), this function is non-atomic and may be reordered.
147 * If it's called on the same region of memory simultaneously, the effect
148 * may be that only one operation succeeds.
149 */
150static __inline__ void
151__clear_bit (int nr, volatile void *addr)
152{
153	*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
154}
155
156/**
157 * change_bit - Toggle a bit in memory
158 * @nr: Bit to toggle
159 * @addr: Address to start counting from
160 *
161 * change_bit() is atomic and may not be reordered.
162 * Note that @nr may be almost arbitrarily large; this function is not
163 * restricted to acting on a single-word quantity.
164 */
165static __inline__ void
166change_bit (int nr, volatile void *addr)
167{
168	__u32 bit, old, new;
169	volatile __u32 *m;
170	CMPXCHG_BUGCHECK_DECL
171
172	m = (volatile __u32 *) addr + (nr >> 5);
173	bit = (1 << (nr & 31));
174	do {
175		CMPXCHG_BUGCHECK(m);
176		old = *m;
177		new = old ^ bit;
178	} while (cmpxchg_acq(m, old, new) != old);
179}
180
181/**
182 * __change_bit - Toggle a bit in memory
183 * @nr: the bit to toggle
184 * @addr: the address to start counting from
185 *
186 * Unlike change_bit(), this function is non-atomic and may be reordered.
187 * If it's called on the same region of memory simultaneously, the effect
188 * may be that only one operation succeeds.
189 */
190static __inline__ void
191__change_bit (int nr, volatile void *addr)
192{
193	*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
194}
195
196/**
197 * test_and_set_bit - Set a bit and return its old value
198 * @nr: Bit to set
199 * @addr: Address to count from
200 *
201 * This operation is atomic and cannot be reordered.
202 * It also implies the acquisition side of the memory barrier.
203 */
204static __inline__ int
205test_and_set_bit (int nr, volatile void *addr)
206{
207	__u32 bit, old, new;
208	volatile __u32 *m;
209	CMPXCHG_BUGCHECK_DECL
210
211	m = (volatile __u32 *) addr + (nr >> 5);
212	bit = 1 << (nr & 31);
213	do {
214		CMPXCHG_BUGCHECK(m);
215		old = *m;
216		new = old | bit;
217	} while (cmpxchg_acq(m, old, new) != old);
218	return (old & bit) != 0;
219}
220
221/**
222 * test_and_set_bit_lock - Set a bit and return its old value for lock
223 * @nr: Bit to set
224 * @addr: Address to count from
225 *
226 * This is the same as test_and_set_bit on ia64
227 */
228#define test_and_set_bit_lock test_and_set_bit
229
230/**
231 * __test_and_set_bit - Set a bit and return its old value
232 * @nr: Bit to set
233 * @addr: Address to count from
234 *
235 * This operation is non-atomic and can be reordered.
236 * If two examples of this operation race, one can appear to succeed
237 * but actually fail.  You must protect multiple accesses with a lock.
238 */
239static __inline__ int
240__test_and_set_bit (int nr, volatile void *addr)
241{
242	__u32 *p = (__u32 *) addr + (nr >> 5);
243	__u32 m = 1 << (nr & 31);
244	int oldbitset = (*p & m) != 0;
245
246	*p |= m;
247	return oldbitset;
248}
249
250/**
251 * test_and_clear_bit - Clear a bit and return its old value
252 * @nr: Bit to clear
253 * @addr: Address to count from
254 *
255 * This operation is atomic and cannot be reordered.
256 * It also implies the acquisition side of the memory barrier.
257 */
258static __inline__ int
259test_and_clear_bit (int nr, volatile void *addr)
260{
261	__u32 mask, old, new;
262	volatile __u32 *m;
263	CMPXCHG_BUGCHECK_DECL
264
265	m = (volatile __u32 *) addr + (nr >> 5);
266	mask = ~(1 << (nr & 31));
267	do {
268		CMPXCHG_BUGCHECK(m);
269		old = *m;
270		new = old & mask;
271	} while (cmpxchg_acq(m, old, new) != old);
272	return (old & ~mask) != 0;
273}
274
275/**
276 * __test_and_clear_bit - Clear a bit and return its old value
277 * @nr: Bit to clear
278 * @addr: Address to count from
279 *
280 * This operation is non-atomic and can be reordered.
281 * If two examples of this operation race, one can appear to succeed
282 * but actually fail.  You must protect multiple accesses with a lock.
283 */
284static __inline__ int
285__test_and_clear_bit(int nr, volatile void * addr)
286{
287	__u32 *p = (__u32 *) addr + (nr >> 5);
288	__u32 m = 1 << (nr & 31);
289	int oldbitset = (*p & m) != 0;
290
291	*p &= ~m;
292	return oldbitset;
293}
294
295/**
296 * test_and_change_bit - Change a bit and return its old value
297 * @nr: Bit to change
298 * @addr: Address to count from
299 *
300 * This operation is atomic and cannot be reordered.
301 * It also implies the acquisition side of the memory barrier.
302 */
303static __inline__ int
304test_and_change_bit (int nr, volatile void *addr)
305{
306	__u32 bit, old, new;
307	volatile __u32 *m;
308	CMPXCHG_BUGCHECK_DECL
309
310	m = (volatile __u32 *) addr + (nr >> 5);
311	bit = (1 << (nr & 31));
312	do {
313		CMPXCHG_BUGCHECK(m);
314		old = *m;
315		new = old ^ bit;
316	} while (cmpxchg_acq(m, old, new) != old);
317	return (old & bit) != 0;
318}
319
320/**
321 * __test_and_change_bit - Change a bit and return its old value
322 * @nr: Bit to change
323 * @addr: Address to count from
324 *
325 * This operation is non-atomic and can be reordered.
326 */
327static __inline__ int
328__test_and_change_bit (int nr, void *addr)
329{
330	__u32 old, bit = (1 << (nr & 31));
331	__u32 *m = (__u32 *) addr + (nr >> 5);
332
333	old = *m;
334	*m = old ^ bit;
335	return (old & bit) != 0;
336}
337
338static __inline__ int
339test_bit (int nr, const volatile void *addr)
340{
341	return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
342}
343
344/**
345 * ffz - find the first zero bit in a long word
346 * @x: The long word to find the bit in
347 *
348 * Returns the bit-number (0..63) of the first (least significant) zero bit.
349 * Undefined if no zero exists, so code should check against ~0UL first...
350 */
351static inline unsigned long
352ffz (unsigned long x)
353{
354	unsigned long result;
355
356	result = ia64_popcnt(x & (~x - 1));
357	return result;
358}
359
360/**
361 * __ffs - find first bit in word.
362 * @x: The word to search
363 *
364 * Undefined if no bit exists, so code should check against 0 first.
365 */
366static __inline__ unsigned long
367__ffs (unsigned long x)
368{
369	unsigned long result;
370
371	result = ia64_popcnt((x-1) & ~x);
372	return result;
373}
374
375#ifdef __KERNEL__
376
377/*
378 * Return bit number of last (most-significant) bit set.  Undefined
379 * for x==0.  Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
380 */
381static inline unsigned long
382ia64_fls (unsigned long x)
383{
384	long double d = x;
385	long exp;
386
387	exp = ia64_getf_exp(d);
388	return exp - 0xffff;
389}
390
391/*
392 * Find the last (most significant) bit set.  Returns 0 for x==0 and
393 * bits are numbered from 1..32 (e.g., fls(9) == 4).
394 */
395static inline int
396fls (int t)
397{
398	unsigned long x = t & 0xffffffffu;
399
400	if (!x)
401		return 0;
402	x |= x >> 1;
403	x |= x >> 2;
404	x |= x >> 4;
405	x |= x >> 8;
406	x |= x >> 16;
407	return ia64_popcnt(x);
408}
409
410/*
411 * Find the last (most significant) bit set.  Undefined for x==0.
412 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
413 */
414static inline unsigned long
415__fls (unsigned long x)
416{
417	x |= x >> 1;
418	x |= x >> 2;
419	x |= x >> 4;
420	x |= x >> 8;
421	x |= x >> 16;
422	x |= x >> 32;
423	return ia64_popcnt(x) - 1;
424}
425
426#include <asm-generic/bitops/fls64.h>
427
428/*
429 * ffs: find first bit set. This is defined the same way as the libc and
430 * compiler builtin ffs routines, therefore differs in spirit from the above
431 * ffz (man ffs): it operates on "int" values only and the result value is the
432 * bit number + 1.  ffs(0) is defined to return zero.
433 */
434#define ffs(x)	__builtin_ffs(x)
435
436/*
437 * hweightN: returns the hamming weight (i.e. the number
438 * of bits set) of a N-bit word
439 */
440static __inline__ unsigned long __arch_hweight64(unsigned long x)
441{
442	unsigned long result;
443	result = ia64_popcnt(x);
444	return result;
445}
446
447#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
448#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
449#define __arch_hweight8(x)  ((unsigned int) __arch_hweight64((x) & 0xfful))
450
451#include <asm-generic/bitops/const_hweight.h>
452
453#endif /* __KERNEL__ */
454
455#include <asm-generic/bitops/find.h>
456
457#ifdef __KERNEL__
458
459#include <asm-generic/bitops/ext2-non-atomic.h>
460
461#define ext2_set_bit_atomic(l,n,a)	test_and_set_bit(n,a)
462#define ext2_clear_bit_atomic(l,n,a)	test_and_clear_bit(n,a)
463
464#include <asm-generic/bitops/minix.h>
465#include <asm-generic/bitops/sched.h>
466
467#endif /* __KERNEL__ */
468
469#endif /* _ASM_IA64_BITOPS_H */
470