• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/arm/mm/
1/* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2/*
3 *  linux/arch/arm/mm/dma-mapping.c
4 *
5 *  Copyright (C) 2000-2004 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *  DMA uncached mapping support.
12 */
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/gfp.h>
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
21
22#include <asm/memory.h>
23#include <asm/highmem.h>
24#include <asm/cacheflush.h>
25#include <asm/tlbflush.h>
26#include <asm/sizes.h>
27
28#include <typedefs.h>
29#include <bcmdefs.h>
30
31static u64 get_coherent_dma_mask(struct device *dev)
32{
33	u64 mask = ISA_DMA_THRESHOLD;
34
35	if (dev) {
36		mask = dev->coherent_dma_mask;
37
38		/*
39		 * Sanity check the DMA mask - it must be non-zero, and
40		 * must be able to be satisfied by a DMA allocation.
41		 */
42		if (mask == 0) {
43			dev_warn(dev, "coherent DMA mask is unset\n");
44			return 0;
45		}
46
47		if ((~mask) & ISA_DMA_THRESHOLD) {
48			dev_warn(dev, "coherent DMA mask %#llx is smaller "
49				 "than system GFP_DMA mask %#llx\n",
50				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
51			return 0;
52		}
53	}
54
55	return mask;
56}
57
58/*
59 * Allocate a DMA buffer for 'dev' of size 'size' using the
60 * specified gfp mask.  Note that 'size' must be page aligned.
61 */
62static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
63{
64	unsigned long order = get_order(size);
65	struct page *page, *p, *e;
66	void *ptr;
67	u64 mask = get_coherent_dma_mask(dev);
68
69#ifdef CONFIG_DMA_API_DEBUG
70	u64 limit = (mask + 1) & ~mask;
71	if (limit && size >= limit) {
72		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
73			size, mask);
74		return NULL;
75	}
76#endif
77
78	if (!mask)
79		return NULL;
80
81	if (mask < 0xffffffffULL)
82		gfp |= GFP_DMA;
83
84	page = alloc_pages(gfp, order);
85	if (!page)
86		return NULL;
87
88	/*
89	 * Now split the huge page and free the excess pages
90	 */
91	split_page(page, order);
92	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
93		__free_page(p);
94
95	/*
96	 * Ensure that the allocated pages are zeroed, and that any data
97	 * lurking in the kernel direct-mapped region is invalidated.
98	 */
99	ptr = page_address(page);
100	memset(ptr, 0, size);
101	dmac_flush_range(ptr, ptr + size);
102	outer_flush_range(__pa(ptr), __pa(ptr) + size);
103
104	return page;
105}
106
107/*
108 * Free a DMA buffer.  'size' must be page aligned.
109 */
110static void __dma_free_buffer(struct page *page, size_t size)
111{
112	struct page *e = page + (size >> PAGE_SHIFT);
113
114	while (page < e) {
115		__free_page(page);
116		page++;
117	}
118}
119
120#ifdef CONFIG_MMU
121/* Sanity check size */
122#if (CONSISTENT_DMA_SIZE % SZ_2M)
123#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
124#endif
125
126#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
127#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
128#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
129
130/*
131 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
132 */
133static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
134
135#include "vmregion.h"
136
137static struct arm_vmregion_head consistent_head = {
138	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
139	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
140	.vm_start	= CONSISTENT_BASE,
141	.vm_end		= CONSISTENT_END,
142};
143
144#ifdef CONFIG_HUGETLB_PAGE
145#error ARM Coherent DMA allocator does not (yet) support huge TLB
146#endif
147
148/*
149 * Initialise the consistent memory allocation.
150 */
151static int __init consistent_init(void)
152{
153	int ret = 0;
154	pgd_t *pgd;
155	pmd_t *pmd;
156	pte_t *pte;
157	int i = 0;
158	u32 base = CONSISTENT_BASE;
159
160	do {
161		pgd = pgd_offset(&init_mm, base);
162		pmd = pmd_alloc(&init_mm, pgd, base);
163		if (!pmd) {
164			printk(KERN_ERR "%s: no pmd tables\n", __func__);
165			ret = -ENOMEM;
166			break;
167		}
168		WARN_ON(!pmd_none(*pmd));
169
170		pte = pte_alloc_kernel(pmd, base);
171		if (!pte) {
172			printk(KERN_ERR "%s: no pte tables\n", __func__);
173			ret = -ENOMEM;
174			break;
175		}
176
177		consistent_pte[i++] = pte;
178		base += (1 << PGDIR_SHIFT);
179	} while (base < CONSISTENT_END);
180
181	return ret;
182}
183
184core_initcall(consistent_init);
185
186static void *
187__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
188{
189	struct arm_vmregion *c;
190	size_t align;
191	int bit;
192
193	if (!consistent_pte[0]) {
194		printk(KERN_ERR "%s: not initialised\n", __func__);
195		dump_stack();
196		return NULL;
197	}
198
199	/*
200	 * Align the virtual region allocation - maximum alignment is
201	 * a section size, minimum is a page size.  This helps reduce
202	 * fragmentation of the DMA space, and also prevents allocations
203	 * smaller than a section from crossing a section boundary.
204	 */
205	bit = fls(size - 1) + 1;
206	if (bit > SECTION_SHIFT)
207		bit = SECTION_SHIFT;
208	align = 1 << bit;
209
210	/*
211	 * Allocate a virtual address in the consistent mapping region.
212	 */
213	c = arm_vmregion_alloc(&consistent_head, align, size,
214			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
215	if (c) {
216		pte_t *pte;
217		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
218		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
219
220		pte = consistent_pte[idx] + off;
221		c->vm_pages = page;
222
223		do {
224			BUG_ON(!pte_none(*pte));
225
226			set_pte_ext(pte, mk_pte(page, prot), 0);
227			page++;
228			pte++;
229			off++;
230			if (off >= PTRS_PER_PTE) {
231				BUG_ON(idx >= (NUM_CONSISTENT_PTES-1));
232				off = 0;
233				pte = consistent_pte[++idx];
234			}
235		} while (size -= PAGE_SIZE);
236
237		dsb();
238
239		return (void *)c->vm_start;
240	}
241	return NULL;
242}
243
244static void __dma_free_remap(void *cpu_addr, size_t size)
245{
246	struct arm_vmregion *c;
247	unsigned long addr;
248	pte_t *ptep;
249	int idx;
250	u32 off;
251
252	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
253	if (!c) {
254		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
255		       __func__, cpu_addr);
256		dump_stack();
257		return;
258	}
259
260	if ((c->vm_end - c->vm_start) != size) {
261		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
262		       __func__, c->vm_end - c->vm_start, size);
263		dump_stack();
264		size = c->vm_end - c->vm_start;
265	}
266
267	idx = CONSISTENT_PTE_INDEX(c->vm_start);
268	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
269	ptep = consistent_pte[idx] + off;
270	addr = c->vm_start;
271	do {
272		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
273
274		ptep++;
275		addr += PAGE_SIZE;
276		off++;
277		if (off >= PTRS_PER_PTE) {
278			BUG_ON(idx >= (NUM_CONSISTENT_PTES-1));
279			off = 0;
280			ptep = consistent_pte[++idx];
281		}
282
283		if (pte_none(pte) || !pte_present(pte))
284			printk(KERN_CRIT "%s: bad page in kernel page table\n",
285			       __func__);
286	} while (size -= PAGE_SIZE);
287
288	flush_tlb_kernel_range(c->vm_start, c->vm_end);
289
290	arm_vmregion_free(&consistent_head, c);
291}
292
293#else	/* !CONFIG_MMU */
294
295#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
296#define __dma_free_remap(addr, size)			do { } while (0)
297
298#endif	/* CONFIG_MMU */
299
300static void *
301__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
302	    pgprot_t prot)
303{
304	struct page *page;
305	void *addr;
306
307	*handle = ~0;
308	size = PAGE_ALIGN(size);
309
310	page = __dma_alloc_buffer(dev, size, gfp);
311	if (!page)
312		return NULL;
313
314	if (!arch_is_coherent())
315		addr = __dma_alloc_remap(page, size, gfp, prot);
316	else
317		addr = page_address(page);
318
319	if (addr)
320		*handle = page_to_dma(dev, page);
321
322	return addr;
323}
324
325/*
326 * Allocate DMA-coherent memory space and return both the kernel remapped
327 * virtual and bus address for that space.
328 */
329void *
330dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
331{
332	void *memory;
333
334	if (dma_alloc_from_coherent(dev, size, handle, &memory))
335		return memory;
336
337	return __dma_alloc(dev, size, handle, gfp,
338			   pgprot_dmacoherent(pgprot_kernel));
339}
340EXPORT_SYMBOL(dma_alloc_coherent);
341
342/*
343 * Allocate a writecombining region, in much the same way as
344 * dma_alloc_coherent above.
345 */
346void *
347dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
348{
349	return __dma_alloc(dev, size, handle, gfp,
350			   pgprot_writecombine(pgprot_kernel));
351}
352EXPORT_SYMBOL(dma_alloc_writecombine);
353
354static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
355		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
356{
357	int ret = -ENXIO;
358#ifdef CONFIG_MMU
359	unsigned long user_size, kern_size;
360	struct arm_vmregion *c;
361
362	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
363
364	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
365	if (c) {
366		unsigned long off = vma->vm_pgoff;
367
368		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
369
370		if (off < kern_size &&
371		    user_size <= (kern_size - off)) {
372			ret = remap_pfn_range(vma, vma->vm_start,
373					      page_to_pfn(c->vm_pages) + off,
374					      user_size << PAGE_SHIFT,
375					      vma->vm_page_prot);
376		}
377	}
378#endif	/* CONFIG_MMU */
379
380	return ret;
381}
382
383int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
384		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
385{
386	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
387	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
388}
389EXPORT_SYMBOL(dma_mmap_coherent);
390
391int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
392			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
393{
394	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
395	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
396}
397EXPORT_SYMBOL(dma_mmap_writecombine);
398
399/*
400 * free a page as defined by the above mapping.
401 * Must not be called with IRQs disabled.
402 */
403void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
404{
405	WARN_ON(irqs_disabled());
406
407	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
408		return;
409
410	size = PAGE_ALIGN(size);
411
412	if (!arch_is_coherent())
413		__dma_free_remap(cpu_addr, size);
414
415	__dma_free_buffer(dma_to_page(dev, handle), size);
416}
417EXPORT_SYMBOL(dma_free_coherent);
418
419/*
420 * Make an area consistent for devices.
421 * Note: Drivers should NOT use this function directly, as it will break
422 * platforms with CONFIG_DMABOUNCE.
423 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
424 */
425void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
426	enum dma_data_direction dir)
427{
428	unsigned long paddr;
429
430	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
431
432	dmac_map_area(kaddr, size, dir);
433
434	paddr = __pa(kaddr);
435	if (dir == DMA_FROM_DEVICE) {
436		outer_inv_range(paddr, paddr + size);
437	} else {
438		outer_clean_range(paddr, paddr + size);
439	}
440}
441EXPORT_SYMBOL(___dma_single_cpu_to_dev);
442
443void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
444	enum dma_data_direction dir)
445{
446	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
447
448	/* don't bother invalidating if DMA to device */
449	if (dir != DMA_TO_DEVICE) {
450		unsigned long paddr = __pa(kaddr);
451		outer_inv_range(paddr, paddr + size);
452	}
453
454	dmac_unmap_area(kaddr, size, dir);
455}
456EXPORT_SYMBOL(___dma_single_dev_to_cpu);
457
458static void dma_cache_maint_page(struct page *page, unsigned long offset,
459	size_t size, enum dma_data_direction dir,
460	void (*op)(const void *, size_t, int))
461{
462	/*
463	 * A single sg entry may refer to multiple physically contiguous
464	 * pages.  But we still need to process highmem pages individually.
465	 * If highmem is not configured then the bulk of this loop gets
466	 * optimized out.
467	 */
468	size_t left = size;
469	do {
470		size_t len = left;
471		void *vaddr;
472
473		if (PageHighMem(page)) {
474			if (len + offset > PAGE_SIZE) {
475				if (offset >= PAGE_SIZE) {
476					page += offset / PAGE_SIZE;
477					offset %= PAGE_SIZE;
478				}
479				len = PAGE_SIZE - offset;
480			}
481			vaddr = kmap_high_get(page);
482			if (vaddr) {
483				vaddr += offset;
484				op(vaddr, len, dir);
485				kunmap_high(page);
486			} else if (cache_is_vipt()) {
487				pte_t saved_pte;
488				vaddr = kmap_high_l1_vipt(page, &saved_pte);
489				op(vaddr + offset, len, dir);
490				kunmap_high_l1_vipt(page, saved_pte);
491			}
492		} else {
493			vaddr = page_address(page) + offset;
494			op(vaddr, len, dir);
495		}
496		offset = 0;
497		page++;
498		left -= len;
499	} while (left);
500}
501
502void BCMFASTPATH_HOST ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
503	size_t size, enum dma_data_direction dir)
504{
505	unsigned long paddr;
506
507	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
508
509	paddr = page_to_phys(page) + off;
510	if (dir == DMA_FROM_DEVICE) {
511		outer_inv_range(paddr, paddr + size);
512	} else {
513		outer_clean_range(paddr, paddr + size);
514	}
515}
516EXPORT_SYMBOL(___dma_page_cpu_to_dev);
517
518void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
519	size_t size, enum dma_data_direction dir)
520{
521	unsigned long paddr = page_to_phys(page) + off;
522
523	/* don't bother invalidating if DMA to device */
524	if (dir != DMA_TO_DEVICE)
525		outer_inv_range(paddr, paddr + size);
526
527	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
528#ifdef CONFIG_BCM47XX
529	/*
530	 * Merged from Linux-2.6.37
531	 * Mark the D-cache clean for this page to avoid extra flushing.
532	 */
533	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
534		set_bit(PG_dcache_clean, &page->flags);
535#endif /* CONFIG_BCM47XX */
536}
537EXPORT_SYMBOL(___dma_page_dev_to_cpu);
538
539/**
540 * dma_map_sg - map a set of SG buffers for streaming mode DMA
541 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
542 * @sg: list of buffers
543 * @nents: number of buffers to map
544 * @dir: DMA transfer direction
545 *
546 * Map a set of buffers described by scatterlist in streaming mode for DMA.
547 * This is the scatter-gather version of the dma_map_single interface.
548 * Here the scatter gather list elements are each tagged with the
549 * appropriate dma address and length.  They are obtained via
550 * sg_dma_{address,length}.
551 *
552 * Device ownership issues as mentioned for dma_map_single are the same
553 * here.
554 */
555int BCMFASTPATH_HOST dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
556		enum dma_data_direction dir)
557{
558	struct scatterlist *s;
559	int i, j;
560
561	for_each_sg(sg, s, nents, i) {
562		s->dma_address = dma_map_page(dev, sg_page(s), s->offset, s->length, dir);
563		if (dma_mapping_error(dev, s->dma_address))
564			goto bad_mapping;
565	}
566	return nents;
567
568 bad_mapping:
569	for_each_sg(sg, s, i, j)
570		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
571	return 0;
572}
573EXPORT_SYMBOL(dma_map_sg);
574
575/**
576 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
577 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
578 * @sg: list of buffers
579 * @nents: number of buffers to unmap (returned from dma_map_sg)
580 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
581 *
582 * Unmap a set of streaming mode DMA translations.  Again, CPU access
583 * rules concerning calls here are the same as for dma_unmap_single().
584 */
585void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
586		enum dma_data_direction dir)
587{
588	struct scatterlist *s;
589	int i;
590
591	for_each_sg(sg, s, nents, i)
592		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
593}
594EXPORT_SYMBOL(dma_unmap_sg);
595
596/**
597 * dma_sync_sg_for_cpu
598 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
599 * @sg: list of buffers
600 * @nents: number of buffers to map (returned from dma_map_sg)
601 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
602 */
603void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
604			int nents, enum dma_data_direction dir)
605{
606	struct scatterlist *s;
607	int i;
608
609	for_each_sg(sg, s, nents, i) {
610		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
611					    sg_dma_len(s), dir))
612			continue;
613
614		__dma_page_dev_to_cpu(sg_page(s), s->offset,
615				      s->length, dir);
616	}
617}
618EXPORT_SYMBOL(dma_sync_sg_for_cpu);
619
620/**
621 * dma_sync_sg_for_device
622 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
623 * @sg: list of buffers
624 * @nents: number of buffers to map (returned from dma_map_sg)
625 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
626 */
627void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
628			int nents, enum dma_data_direction dir)
629{
630	struct scatterlist *s;
631	int i;
632
633	for_each_sg(sg, s, nents, i) {
634		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
635					sg_dma_len(s), dir))
636			continue;
637
638		__dma_page_cpu_to_dev(sg_page(s), s->offset,
639				      s->length, dir);
640	}
641}
642EXPORT_SYMBOL(dma_sync_sg_for_device);
643