• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/arm/mach-lpc32xx/
1/*
2 * arch/arm/mach-lpc32xx/clock.c
3 *
4 * Author: Kevin Wells <kevin.wells@nxp.com>
5 *
6 * Copyright (C) 2010 NXP Semiconductors
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 */
18
19/*
20 * LPC32xx clock management driver overview
21 *
22 * The LPC32XX contains a number of high level system clocks that can be
23 * generated from different sources. These system clocks are used to
24 * generate the CPU and bus rates and the individual peripheral clocks in
25 * the system. When Linux is started by the boot loader, the system
26 * clocks are already running. Stopping a system clock during normal
27 * Linux operation should never be attempted, as peripherals that require
28 * those clocks will quit working (ie, DRAM).
29 *
30 * The LPC32xx high level clock tree looks as follows. Clocks marked with
31 * an asterisk are always on and cannot be disabled. Clocks marked with
32 * an ampersand can only be disabled in CPU suspend mode. Clocks marked
33 * with a caret are always on if it is the selected clock for the SYSCLK
34 * source. The clock that isn't used for SYSCLK can be enabled and
35 * disabled normally.
36 *                               32KHz oscillator*
37 *                               /      |      \
38 *                             RTC*   PLL397^ TOUCH
39 *                                     /
40 *               Main oscillator^     /
41 *                   |        \      /
42 *                   |         SYSCLK&
43 *                   |            \
44 *                   |             \
45 *                USB_PLL       HCLK_PLL&
46 *                   |           |    |
47 *            USB host/device  PCLK&  |
48 *                               |    |
49 *                             Peripherals
50 *
51 * The CPU and chip bus rates are derived from the HCLK PLL, which can
52 * generate various clock rates up to 266MHz and beyond. The internal bus
53 * rates (PCLK and HCLK) are generated from dividers based on the HCLK
54 * PLL rate. HCLK can be a ratio of 1:1, 1:2, or 1:4 or HCLK PLL rate,
55 * while PCLK can be 1:1 to 1:32 of HCLK PLL rate. Most peripherals high
56 * level clocks are based on either HCLK or PCLK, but have their own
57 * dividers as part of the IP itself. Because of this, the system clock
58 * rates should not be changed.
59 *
60 * The HCLK PLL is clocked from SYSCLK, which can be derived from the
61 * main oscillator or PLL397. PLL397 generates a rate that is 397 times
62 * the 32KHz oscillator rate. The main oscillator runs at the selected
63 * oscillator/crystal rate on the mosc_in pin of the LPC32xx. This rate
64 * is normally 13MHz, but depends on the selection of external crystals
65 * or oscillators. If USB operation is required, the main oscillator must
66 * be used in the system.
67 *
68 * Switching SYSCLK between sources during normal Linux operation is not
69 * supported. SYSCLK is preset in the bootloader. Because of the
70 * complexities of clock management during clock frequency changes,
71 * there are some limitations to the clock driver explained below:
72 * - The PLL397 and main oscillator can be enabled and disabled by the
73 *   clk_enable() and clk_disable() functions unless SYSCLK is based
74 *   on that clock. This allows the other oscillator that isn't driving
75 *   the HCLK PLL to be used as another system clock that can be routed
76 *   to an external pin.
77 * - The muxed SYSCLK input and HCLK_PLL rate cannot be changed with
78 *   this driver.
79 * - HCLK and PCLK rates cannot be changed as part of this driver.
80 * - Most peripherals have their own dividers are part of the peripheral
81 *   block. Changing SYSCLK, HCLK PLL, HCLK, or PCLK sources or rates
82 *   will also impact the individual peripheral rates.
83 */
84
85#include <linux/kernel.h>
86#include <linux/list.h>
87#include <linux/errno.h>
88#include <linux/device.h>
89#include <linux/err.h>
90#include <linux/clk.h>
91#include <linux/amba/bus.h>
92#include <linux/amba/clcd.h>
93
94#include <mach/hardware.h>
95#include <asm/clkdev.h>
96#include <mach/clkdev.h>
97#include <mach/platform.h>
98#include "clock.h"
99#include "common.h"
100
101static struct clk clk_armpll;
102static struct clk clk_usbpll;
103static DEFINE_MUTEX(clkm_lock);
104
105/*
106 * Post divider values for PLLs based on selected register value
107 */
108static const u32 pll_postdivs[4] = {1, 2, 4, 8};
109
110static unsigned long local_return_parent_rate(struct clk *clk)
111{
112	/*
113	 * If a clock has a rate of 0, then it inherits it's parent
114	 * clock rate
115	 */
116	while (clk->rate == 0)
117		clk = clk->parent;
118
119	return clk->rate;
120}
121
122/* 32KHz clock has a fixed rate and is not stoppable */
123static struct clk osc_32KHz = {
124	.rate		= LPC32XX_CLOCK_OSC_FREQ,
125	.get_rate	= local_return_parent_rate,
126};
127
128static int local_pll397_enable(struct clk *clk, int enable)
129{
130	u32 reg;
131	unsigned long timeout = 1 + msecs_to_jiffies(10);
132
133	reg = __raw_readl(LPC32XX_CLKPWR_PLL397_CTRL);
134
135	if (enable == 0) {
136		reg |= LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
137		__raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
138	} else {
139		/* Enable PLL397 */
140		reg &= ~LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
141		__raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
142
143		/* Wait for PLL397 lock */
144		while (((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
145			LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0) &&
146			(timeout > jiffies))
147			cpu_relax();
148
149		if ((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
150			LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0)
151			return -ENODEV;
152	}
153
154	return 0;
155}
156
157static int local_oscmain_enable(struct clk *clk, int enable)
158{
159	u32 reg;
160	unsigned long timeout = 1 + msecs_to_jiffies(10);
161
162	reg = __raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL);
163
164	if (enable == 0) {
165		reg |= LPC32XX_CLKPWR_MOSC_DISABLE;
166		__raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
167	} else {
168		/* Enable main oscillator */
169		reg &= ~LPC32XX_CLKPWR_MOSC_DISABLE;
170		__raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
171
172		/* Wait for main oscillator to start */
173		while (((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
174			LPC32XX_CLKPWR_MOSC_DISABLE) != 0) &&
175			(timeout > jiffies))
176			cpu_relax();
177
178		if ((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
179			LPC32XX_CLKPWR_MOSC_DISABLE) != 0)
180			return -ENODEV;
181	}
182
183	return 0;
184}
185
186static struct clk osc_pll397 = {
187	.parent		= &osc_32KHz,
188	.enable		= local_pll397_enable,
189	.rate		= LPC32XX_CLOCK_OSC_FREQ * 397,
190	.get_rate	= local_return_parent_rate,
191};
192
193static struct clk osc_main = {
194	.enable		= local_oscmain_enable,
195	.rate		= LPC32XX_MAIN_OSC_FREQ,
196	.get_rate	= local_return_parent_rate,
197};
198
199static struct clk clk_sys;
200
201/*
202 * Convert a PLL register value to a PLL output frequency
203 */
204u32 clk_get_pllrate_from_reg(u32 inputclk, u32 regval)
205{
206	struct clk_pll_setup pllcfg;
207
208	pllcfg.cco_bypass_b15 = 0;
209	pllcfg.direct_output_b14 = 0;
210	pllcfg.fdbk_div_ctrl_b13 = 0;
211	if ((regval & LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS) != 0)
212		pllcfg.cco_bypass_b15 = 1;
213	if ((regval & LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS) != 0)
214		pllcfg.direct_output_b14 = 1;
215	if ((regval & LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK) != 0)
216		pllcfg.fdbk_div_ctrl_b13 = 1;
217	pllcfg.pll_m = 1 + ((regval >> 1) & 0xFF);
218	pllcfg.pll_n = 1 + ((regval >> 9) & 0x3);
219	pllcfg.pll_p = pll_postdivs[((regval >> 11) & 0x3)];
220
221	return clk_check_pll_setup(inputclk, &pllcfg);
222}
223
224/*
225 * Setup the HCLK PLL with a PLL structure
226 */
227static u32 local_clk_pll_setup(struct clk_pll_setup *PllSetup)
228{
229	u32 tv, tmp = 0;
230
231	if (PllSetup->analog_on != 0)
232		tmp |= LPC32XX_CLKPWR_HCLKPLL_POWER_UP;
233	if (PllSetup->cco_bypass_b15 != 0)
234		tmp |= LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS;
235	if (PllSetup->direct_output_b14 != 0)
236		tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS;
237	if (PllSetup->fdbk_div_ctrl_b13 != 0)
238		tmp |= LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK;
239
240	tv = ffs(PllSetup->pll_p) - 1;
241	if ((!is_power_of_2(PllSetup->pll_p)) || (tv > 3))
242		return 0;
243
244	tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_2POW(tv);
245	tmp |= LPC32XX_CLKPWR_HCLKPLL_PREDIV_PLUS1(PllSetup->pll_n - 1);
246	tmp |= LPC32XX_CLKPWR_HCLKPLL_PLLM(PllSetup->pll_m - 1);
247
248	return tmp;
249}
250
251/*
252 * Update the ARM core PLL frequency rate variable from the actual PLL setting
253 */
254static void local_update_armpll_rate(void)
255{
256	u32 clkin, pllreg;
257
258	clkin = clk_armpll.parent->rate;
259	pllreg = __raw_readl(LPC32XX_CLKPWR_HCLKPLL_CTRL) & 0x1FFFF;
260
261	clk_armpll.rate = clk_get_pllrate_from_reg(clkin, pllreg);
262}
263
264/*
265 * Find a PLL configuration for the selected input frequency
266 */
267static u32 local_clk_find_pll_cfg(u32 pllin_freq, u32 target_freq,
268	struct clk_pll_setup *pllsetup)
269{
270	u32 ifreq, freqtol, m, n, p, fclkout;
271
272	/* Determine frequency tolerance limits */
273	freqtol = target_freq / 250;
274	ifreq = pllin_freq;
275
276	/* Is direct bypass mode possible? */
277	if (abs(pllin_freq - target_freq) <= freqtol) {
278		pllsetup->analog_on = 0;
279		pllsetup->cco_bypass_b15 = 1;
280		pllsetup->direct_output_b14 = 1;
281		pllsetup->fdbk_div_ctrl_b13 = 1;
282		pllsetup->pll_p = pll_postdivs[0];
283		pllsetup->pll_n = 1;
284		pllsetup->pll_m = 1;
285		return clk_check_pll_setup(ifreq, pllsetup);
286	} else if (target_freq <= ifreq) {
287		pllsetup->analog_on = 0;
288		pllsetup->cco_bypass_b15 = 1;
289		pllsetup->direct_output_b14 = 0;
290		pllsetup->fdbk_div_ctrl_b13 = 1;
291		pllsetup->pll_n = 1;
292		pllsetup->pll_m = 1;
293		for (p = 0; p <= 3; p++) {
294			pllsetup->pll_p = pll_postdivs[p];
295			fclkout = clk_check_pll_setup(ifreq, pllsetup);
296			if (abs(target_freq - fclkout) <= freqtol)
297				return fclkout;
298		}
299	}
300
301	/* Is direct mode possible? */
302	pllsetup->analog_on = 1;
303	pllsetup->cco_bypass_b15 = 0;
304	pllsetup->direct_output_b14 = 1;
305	pllsetup->fdbk_div_ctrl_b13 = 0;
306	pllsetup->pll_p = pll_postdivs[0];
307	for (m = 1; m <= 256; m++) {
308		for (n = 1; n <= 4; n++) {
309			/* Compute output frequency for this value */
310			pllsetup->pll_n = n;
311			pllsetup->pll_m = m;
312			fclkout = clk_check_pll_setup(ifreq,
313				pllsetup);
314			if (abs(target_freq - fclkout) <=
315				freqtol)
316				return fclkout;
317		}
318	}
319
320	/* Is integer mode possible? */
321	pllsetup->analog_on = 1;
322	pllsetup->cco_bypass_b15 = 0;
323	pllsetup->direct_output_b14 = 0;
324	pllsetup->fdbk_div_ctrl_b13 = 1;
325	for (m = 1; m <= 256; m++) {
326		for (n = 1; n <= 4; n++) {
327			for (p = 0; p < 4; p++) {
328				/* Compute output frequency */
329				pllsetup->pll_p = pll_postdivs[p];
330				pllsetup->pll_n = n;
331				pllsetup->pll_m = m;
332				fclkout = clk_check_pll_setup(
333					ifreq, pllsetup);
334				if (abs(target_freq - fclkout) <= freqtol)
335					return fclkout;
336			}
337		}
338	}
339
340	/* Try non-integer mode */
341	pllsetup->analog_on = 1;
342	pllsetup->cco_bypass_b15 = 0;
343	pllsetup->direct_output_b14 = 0;
344	pllsetup->fdbk_div_ctrl_b13 = 0;
345	for (m = 1; m <= 256; m++) {
346		for (n = 1; n <= 4; n++) {
347			for (p = 0; p < 4; p++) {
348				/* Compute output frequency */
349				pllsetup->pll_p = pll_postdivs[p];
350				pllsetup->pll_n = n;
351				pllsetup->pll_m = m;
352				fclkout = clk_check_pll_setup(
353					ifreq, pllsetup);
354				if (abs(target_freq - fclkout) <= freqtol)
355					return fclkout;
356			}
357		}
358	}
359
360	return 0;
361}
362
363static struct clk clk_armpll = {
364	.parent		= &clk_sys,
365	.get_rate	= local_return_parent_rate,
366};
367
368/*
369 * Setup the USB PLL with a PLL structure
370 */
371static u32 local_clk_usbpll_setup(struct clk_pll_setup *pHCLKPllSetup)
372{
373	u32 reg, tmp = local_clk_pll_setup(pHCLKPllSetup);
374
375	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL) & ~0x1FFFF;
376	reg |= tmp;
377	__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
378
379	return clk_check_pll_setup(clk_usbpll.parent->rate,
380		pHCLKPllSetup);
381}
382
383static int local_usbpll_enable(struct clk *clk, int enable)
384{
385	u32 reg;
386	int ret = -ENODEV;
387	unsigned long timeout = 1 + msecs_to_jiffies(10);
388
389	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
390
391	if (enable == 0) {
392		reg &= ~(LPC32XX_CLKPWR_USBCTRL_CLK_EN1 |
393			LPC32XX_CLKPWR_USBCTRL_CLK_EN2);
394		__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
395	} else if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_PWRUP) {
396		reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1;
397		__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
398
399		/* Wait for PLL lock */
400		while ((timeout > jiffies) & (ret == -ENODEV)) {
401			reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
402			if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_STS)
403				ret = 0;
404		}
405
406		if (ret == 0) {
407			reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2;
408			__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
409		}
410	}
411
412	return ret;
413}
414
415static unsigned long local_usbpll_round_rate(struct clk *clk,
416	unsigned long rate)
417{
418	u32 clkin, usbdiv;
419	struct clk_pll_setup pllsetup;
420
421	/*
422	 * Unlike other clocks, this clock has a KHz input rate, so bump
423	 * it up to work with the PLL function
424	 */
425	rate = rate * 1000;
426
427	clkin = clk->parent->rate;
428	usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
429		LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
430	clkin = clkin / usbdiv;
431
432	/* Try to find a good rate setup */
433	if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
434		return 0;
435
436	return clk_check_pll_setup(clkin, &pllsetup);
437}
438
439static int local_usbpll_set_rate(struct clk *clk, unsigned long rate)
440{
441	u32 clkin, reg, usbdiv;
442	struct clk_pll_setup pllsetup;
443
444	/*
445	 * Unlike other clocks, this clock has a KHz input rate, so bump
446	 * it up to work with the PLL function
447	 */
448	rate = rate * 1000;
449
450	clkin = clk->get_rate(clk);
451	usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
452		LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
453	clkin = clkin / usbdiv;
454
455	/* Try to find a good rate setup */
456	if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
457		return -EINVAL;
458
459	local_usbpll_enable(clk, 0);
460
461	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
462	reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1;
463	__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
464
465	pllsetup.analog_on = 1;
466	local_clk_usbpll_setup(&pllsetup);
467
468	clk->rate = clk_check_pll_setup(clkin, &pllsetup);
469
470	reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
471	reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2;
472	__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
473
474	return 0;
475}
476
477static struct clk clk_usbpll = {
478	.parent		= &osc_main,
479	.set_rate	= local_usbpll_set_rate,
480	.enable		= local_usbpll_enable,
481	.rate		= 48000, /* In KHz */
482	.get_rate	= local_return_parent_rate,
483	.round_rate	= local_usbpll_round_rate,
484};
485
486static u32 clk_get_hclk_div(void)
487{
488	static const u32 hclkdivs[4] = {1, 2, 4, 4};
489	return hclkdivs[LPC32XX_CLKPWR_HCLKDIV_DIV_2POW(
490		__raw_readl(LPC32XX_CLKPWR_HCLK_DIV))];
491}
492
493static struct clk clk_hclk = {
494	.parent		= &clk_armpll,
495	.get_rate	= local_return_parent_rate,
496};
497
498static struct clk clk_pclk = {
499	.parent		= &clk_armpll,
500	.get_rate	= local_return_parent_rate,
501};
502
503static int local_onoff_enable(struct clk *clk, int enable)
504{
505	u32 tmp;
506
507	tmp = __raw_readl(clk->enable_reg);
508
509	if (enable == 0)
510		tmp &= ~clk->enable_mask;
511	else
512		tmp |= clk->enable_mask;
513
514	__raw_writel(tmp, clk->enable_reg);
515
516	return 0;
517}
518
519/* Peripheral clock sources */
520static struct clk clk_timer0 = {
521	.parent		= &clk_pclk,
522	.enable		= local_onoff_enable,
523	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
524	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER0_EN,
525	.get_rate	= local_return_parent_rate,
526};
527static struct clk clk_timer1 = {
528	.parent		= &clk_pclk,
529	.enable		= local_onoff_enable,
530	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
531	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER1_EN,
532	.get_rate	= local_return_parent_rate,
533};
534static struct clk clk_timer2 = {
535	.parent		= &clk_pclk,
536	.enable		= local_onoff_enable,
537	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
538	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER2_EN,
539	.get_rate	= local_return_parent_rate,
540};
541static struct clk clk_timer3 = {
542	.parent		= &clk_pclk,
543	.enable		= local_onoff_enable,
544	.enable_reg	= LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
545	.enable_mask	= LPC32XX_CLKPWR_TMRPWMCLK_TIMER3_EN,
546	.get_rate	= local_return_parent_rate,
547};
548static struct clk clk_wdt = {
549	.parent		= &clk_pclk,
550	.enable		= local_onoff_enable,
551	.enable_reg	= LPC32XX_CLKPWR_TIMER_CLK_CTRL,
552	.enable_mask	= LPC32XX_CLKPWR_PWMCLK_WDOG_EN,
553	.get_rate	= local_return_parent_rate,
554};
555static struct clk clk_vfp9 = {
556	.parent		= &clk_pclk,
557	.enable		= local_onoff_enable,
558	.enable_reg	= LPC32XX_CLKPWR_DEBUG_CTRL,
559	.enable_mask	= LPC32XX_CLKPWR_VFP_CLOCK_ENABLE_BIT,
560	.get_rate	= local_return_parent_rate,
561};
562static struct clk clk_dma = {
563	.parent		= &clk_hclk,
564	.enable		= local_onoff_enable,
565	.enable_reg	= LPC32XX_CLKPWR_DMA_CLK_CTRL,
566	.enable_mask	= LPC32XX_CLKPWR_DMACLKCTRL_CLK_EN,
567	.get_rate	= local_return_parent_rate,
568};
569
570static struct clk clk_uart3 = {
571	.parent		= &clk_pclk,
572	.enable		= local_onoff_enable,
573	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
574	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART3_EN,
575	.get_rate	= local_return_parent_rate,
576};
577
578static struct clk clk_uart4 = {
579	.parent		= &clk_pclk,
580	.enable		= local_onoff_enable,
581	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
582	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART4_EN,
583	.get_rate	= local_return_parent_rate,
584};
585
586static struct clk clk_uart5 = {
587	.parent		= &clk_pclk,
588	.enable		= local_onoff_enable,
589	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
590	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART5_EN,
591	.get_rate	= local_return_parent_rate,
592};
593
594static struct clk clk_uart6 = {
595	.parent		= &clk_pclk,
596	.enable		= local_onoff_enable,
597	.enable_reg	= LPC32XX_CLKPWR_UART_CLK_CTRL,
598	.enable_mask	= LPC32XX_CLKPWR_UARTCLKCTRL_UART6_EN,
599	.get_rate	= local_return_parent_rate,
600};
601
602static struct clk clk_i2c0 = {
603	.parent		= &clk_hclk,
604	.enable		= local_onoff_enable,
605	.enable_reg	= LPC32XX_CLKPWR_I2C_CLK_CTRL,
606	.enable_mask	= LPC32XX_CLKPWR_I2CCLK_I2C1CLK_EN,
607	.get_rate	= local_return_parent_rate,
608};
609
610static struct clk clk_i2c1 = {
611	.parent		= &clk_hclk,
612	.enable		= local_onoff_enable,
613	.enable_reg	= LPC32XX_CLKPWR_I2C_CLK_CTRL,
614	.enable_mask	= LPC32XX_CLKPWR_I2CCLK_I2C2CLK_EN,
615	.get_rate	= local_return_parent_rate,
616};
617
618static struct clk clk_i2c2 = {
619	.parent		= &clk_pclk,
620	.enable		= local_onoff_enable,
621	.enable_reg	= io_p2v(LPC32XX_USB_BASE + 0xFF4),
622	.enable_mask	= 0x4,
623	.get_rate	= local_return_parent_rate,
624};
625
626static struct clk clk_ssp0 = {
627	.parent		= &clk_hclk,
628	.enable		= local_onoff_enable,
629	.enable_reg	= LPC32XX_CLKPWR_SSP_CLK_CTRL,
630	.enable_mask	= LPC32XX_CLKPWR_SSPCTRL_SSPCLK0_EN,
631	.get_rate	= local_return_parent_rate,
632};
633
634static struct clk clk_ssp1 = {
635	.parent		= &clk_hclk,
636	.enable		= local_onoff_enable,
637	.enable_reg	= LPC32XX_CLKPWR_SSP_CLK_CTRL,
638	.enable_mask	= LPC32XX_CLKPWR_SSPCTRL_SSPCLK1_EN,
639	.get_rate	= local_return_parent_rate,
640};
641
642static struct clk clk_kscan = {
643	.parent		= &osc_32KHz,
644	.enable		= local_onoff_enable,
645	.enable_reg	= LPC32XX_CLKPWR_KEY_CLK_CTRL,
646	.enable_mask	= LPC32XX_CLKPWR_KEYCLKCTRL_CLK_EN,
647	.get_rate	= local_return_parent_rate,
648};
649
650static struct clk clk_nand = {
651	.parent		= &clk_hclk,
652	.enable		= local_onoff_enable,
653	.enable_reg	= LPC32XX_CLKPWR_NAND_CLK_CTRL,
654	.enable_mask	= LPC32XX_CLKPWR_NANDCLK_SLCCLK_EN,
655	.get_rate	= local_return_parent_rate,
656};
657
658static struct clk clk_i2s0 = {
659	.parent		= &clk_hclk,
660	.enable		= local_onoff_enable,
661	.enable_reg	= LPC32XX_CLKPWR_I2S_CLK_CTRL,
662	.enable_mask	= LPC32XX_CLKPWR_I2SCTRL_I2SCLK0_EN,
663	.get_rate	= local_return_parent_rate,
664};
665
666static struct clk clk_i2s1 = {
667	.parent		= &clk_hclk,
668	.enable		= local_onoff_enable,
669	.enable_reg	= LPC32XX_CLKPWR_I2S_CLK_CTRL,
670	.enable_mask	= LPC32XX_CLKPWR_I2SCTRL_I2SCLK1_EN,
671	.get_rate	= local_return_parent_rate,
672};
673
674static struct clk clk_net = {
675	.parent		= &clk_hclk,
676	.enable		= local_onoff_enable,
677	.enable_reg	= LPC32XX_CLKPWR_MACCLK_CTRL,
678	.enable_mask	= (LPC32XX_CLKPWR_MACCTRL_DMACLK_EN |
679		LPC32XX_CLKPWR_MACCTRL_MMIOCLK_EN |
680		LPC32XX_CLKPWR_MACCTRL_HRCCLK_EN),
681	.get_rate	= local_return_parent_rate,
682};
683
684static struct clk clk_rtc = {
685	.parent		= &osc_32KHz,
686	.rate		= 1, /* 1 Hz */
687	.get_rate	= local_return_parent_rate,
688};
689
690static struct clk clk_usbd = {
691	.parent		= &clk_usbpll,
692	.enable		= local_onoff_enable,
693	.enable_reg	= LPC32XX_CLKPWR_USB_CTRL,
694	.enable_mask	= LPC32XX_CLKPWR_USBCTRL_HCLK_EN,
695	.get_rate	= local_return_parent_rate,
696};
697
698static int tsc_onoff_enable(struct clk *clk, int enable)
699{
700	u32 tmp;
701
702	/* Make sure 32KHz clock is the selected clock */
703	tmp = __raw_readl(LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
704	tmp &= ~LPC32XX_CLKPWR_ADCCTRL1_PCLK_SEL;
705	__raw_writel(tmp, LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
706
707	if (enable == 0)
708		__raw_writel(0, clk->enable_reg);
709	else
710		__raw_writel(clk->enable_mask, clk->enable_reg);
711
712	return 0;
713}
714
715static struct clk clk_tsc = {
716	.parent		= &osc_32KHz,
717	.enable		= tsc_onoff_enable,
718	.enable_reg	= LPC32XX_CLKPWR_ADC_CLK_CTRL,
719	.enable_mask	= LPC32XX_CLKPWR_ADC32CLKCTRL_CLK_EN,
720	.get_rate	= local_return_parent_rate,
721};
722
723static int mmc_onoff_enable(struct clk *clk, int enable)
724{
725	u32 tmp;
726
727	tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
728		~LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
729
730	/* If rate is 0, disable clock */
731	if (enable != 0)
732		tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
733
734	__raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
735
736	return 0;
737}
738
739static unsigned long mmc_get_rate(struct clk *clk)
740{
741	u32 div, rate, oldclk;
742
743	/* The MMC clock must be on when accessing an MMC register */
744	oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
745	__raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
746		LPC32XX_CLKPWR_MS_CTRL);
747	div = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
748	__raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL);
749
750	/* Get the parent clock rate */
751	rate = clk->parent->get_rate(clk->parent);
752
753	/* Get the MMC controller clock divider value */
754	div = div & LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
755
756	if (!div)
757		div = 1;
758
759	return rate / div;
760}
761
762static unsigned long mmc_round_rate(struct clk *clk, unsigned long rate)
763{
764	unsigned long div, prate;
765
766	/* Get the parent clock rate */
767	prate = clk->parent->get_rate(clk->parent);
768
769	if (rate >= prate)
770		return prate;
771
772	div = prate / rate;
773	if (div > 0xf)
774		div = 0xf;
775
776	return prate / div;
777}
778
779static int mmc_set_rate(struct clk *clk, unsigned long rate)
780{
781	u32 oldclk, tmp;
782	unsigned long prate, div, crate = mmc_round_rate(clk, rate);
783
784	prate = clk->parent->get_rate(clk->parent);
785
786	div = prate / crate;
787
788	/* The MMC clock must be on when accessing an MMC register */
789	oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
790	__raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
791		LPC32XX_CLKPWR_MS_CTRL);
792	tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
793		~LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
794	tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(div);
795	__raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
796
797	__raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL);
798
799	return 0;
800}
801
802static struct clk clk_mmc = {
803	.parent		= &clk_armpll,
804	.set_rate	= mmc_set_rate,
805	.get_rate	= mmc_get_rate,
806	.round_rate	= mmc_round_rate,
807	.enable		= mmc_onoff_enable,
808	.enable_reg	= LPC32XX_CLKPWR_MS_CTRL,
809	.enable_mask	= LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
810};
811
812static unsigned long clcd_get_rate(struct clk *clk)
813{
814	u32 tmp, div, rate, oldclk;
815
816	/* The LCD clock must be on when accessing an LCD register */
817	oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
818	__raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
819		LPC32XX_CLKPWR_LCDCLK_CTRL);
820	tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
821	__raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
822
823	rate = clk->parent->get_rate(clk->parent);
824
825	/* Only supports internal clocking */
826	if (tmp & TIM2_BCD)
827		return rate;
828
829	div = (tmp & 0x1F) | ((tmp & 0xF8) >> 22);
830	tmp = rate / (2 + div);
831
832	return tmp;
833}
834
835static int clcd_set_rate(struct clk *clk, unsigned long rate)
836{
837	u32 tmp, prate, div, oldclk;
838
839	/* The LCD clock must be on when accessing an LCD register */
840	oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
841	__raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
842		LPC32XX_CLKPWR_LCDCLK_CTRL);
843
844	tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2)) | TIM2_BCD;
845	prate = clk->parent->get_rate(clk->parent);
846
847	if (rate < prate) {
848		/* Find closest divider */
849		div = prate / rate;
850		if (div >= 2) {
851			div -= 2;
852			tmp &= ~TIM2_BCD;
853		}
854
855		tmp &= ~(0xF800001F);
856		tmp |= (div & 0x1F);
857		tmp |= (((div >> 5) & 0x1F) << 27);
858	}
859
860	__raw_writel(tmp, io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
861	__raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
862
863	return 0;
864}
865
866static unsigned long clcd_round_rate(struct clk *clk, unsigned long rate)
867{
868	u32 prate, div;
869
870	prate = clk->parent->get_rate(clk->parent);
871
872	if (rate >= prate)
873		rate = prate;
874	else {
875		div = prate / rate;
876		if (div > 0x3ff)
877			div = 0x3ff;
878
879		rate = prate / div;
880	}
881
882	return rate;
883}
884
885static struct clk clk_lcd = {
886	.parent		= &clk_hclk,
887	.set_rate	= clcd_set_rate,
888	.get_rate	= clcd_get_rate,
889	.round_rate	= clcd_round_rate,
890	.enable		= local_onoff_enable,
891	.enable_reg	= LPC32XX_CLKPWR_LCDCLK_CTRL,
892	.enable_mask	= LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
893};
894
895static inline void clk_lock(void)
896{
897	mutex_lock(&clkm_lock);
898}
899
900static inline void clk_unlock(void)
901{
902	mutex_unlock(&clkm_lock);
903}
904
905static void local_clk_disable(struct clk *clk)
906{
907	WARN_ON(clk->usecount == 0);
908
909	/* Don't attempt to disable clock if it has no users */
910	if (clk->usecount > 0) {
911		clk->usecount--;
912
913		/* Only disable clock when it has no more users */
914		if ((clk->usecount == 0) && (clk->enable))
915			clk->enable(clk, 0);
916
917		/* Check parent clocks, they may need to be disabled too */
918		if (clk->parent)
919			local_clk_disable(clk->parent);
920	}
921}
922
923static int local_clk_enable(struct clk *clk)
924{
925	int ret = 0;
926
927	/* Enable parent clocks first and update use counts */
928	if (clk->parent)
929		ret = local_clk_enable(clk->parent);
930
931	if (!ret) {
932		/* Only enable clock if it's currently disabled */
933		if ((clk->usecount == 0) && (clk->enable))
934			ret = clk->enable(clk, 1);
935
936		if (!ret)
937			clk->usecount++;
938		else if (clk->parent)
939			local_clk_disable(clk->parent);
940	}
941
942	return ret;
943}
944
945/*
946 * clk_enable - inform the system when the clock source should be running.
947 */
948int clk_enable(struct clk *clk)
949{
950	int ret;
951
952	clk_lock();
953	ret = local_clk_enable(clk);
954	clk_unlock();
955
956	return ret;
957}
958EXPORT_SYMBOL(clk_enable);
959
960/*
961 * clk_disable - inform the system when the clock source is no longer required
962 */
963void clk_disable(struct clk *clk)
964{
965	clk_lock();
966	local_clk_disable(clk);
967	clk_unlock();
968}
969EXPORT_SYMBOL(clk_disable);
970
971/*
972 * clk_get_rate - obtain the current clock rate (in Hz) for a clock source
973 */
974unsigned long clk_get_rate(struct clk *clk)
975{
976	unsigned long rate;
977
978	clk_lock();
979	rate = clk->get_rate(clk);
980	clk_unlock();
981
982	return rate;
983}
984EXPORT_SYMBOL(clk_get_rate);
985
986/*
987 * clk_set_rate - set the clock rate for a clock source
988 */
989int clk_set_rate(struct clk *clk, unsigned long rate)
990{
991	int ret = -EINVAL;
992
993	/*
994	 * Most system clocks can only be enabled or disabled, with
995	 * the actual rate set as part of the peripheral dividers
996	 * instead of high level clock control
997	 */
998	if (clk->set_rate) {
999		clk_lock();
1000		ret = clk->set_rate(clk, rate);
1001		clk_unlock();
1002	}
1003
1004	return ret;
1005}
1006EXPORT_SYMBOL(clk_set_rate);
1007
1008/*
1009 * clk_round_rate - adjust a rate to the exact rate a clock can provide
1010 */
1011long clk_round_rate(struct clk *clk, unsigned long rate)
1012{
1013	clk_lock();
1014
1015	if (clk->round_rate)
1016		rate = clk->round_rate(clk, rate);
1017	else
1018		rate = clk->get_rate(clk);
1019
1020	clk_unlock();
1021
1022	return rate;
1023}
1024EXPORT_SYMBOL(clk_round_rate);
1025
1026/*
1027 * clk_set_parent - set the parent clock source for this clock
1028 */
1029int clk_set_parent(struct clk *clk, struct clk *parent)
1030{
1031	/* Clock re-parenting is not supported */
1032	return -EINVAL;
1033}
1034EXPORT_SYMBOL(clk_set_parent);
1035
1036/*
1037 * clk_get_parent - get the parent clock source for this clock
1038 */
1039struct clk *clk_get_parent(struct clk *clk)
1040{
1041	return clk->parent;
1042}
1043EXPORT_SYMBOL(clk_get_parent);
1044
1045#define _REGISTER_CLOCK(d, n, c) \
1046	{ \
1047		.dev_id = (d), \
1048		.con_id = (n), \
1049		.clk = &(c), \
1050	},
1051
1052static struct clk_lookup lookups[] = {
1053	_REGISTER_CLOCK(NULL, "osc_32KHz", osc_32KHz)
1054	_REGISTER_CLOCK(NULL, "osc_pll397", osc_pll397)
1055	_REGISTER_CLOCK(NULL, "osc_main", osc_main)
1056	_REGISTER_CLOCK(NULL, "sys_ck", clk_sys)
1057	_REGISTER_CLOCK(NULL, "arm_pll_ck", clk_armpll)
1058	_REGISTER_CLOCK(NULL, "ck_pll5", clk_usbpll)
1059	_REGISTER_CLOCK(NULL, "hclk_ck", clk_hclk)
1060	_REGISTER_CLOCK(NULL, "pclk_ck", clk_pclk)
1061	_REGISTER_CLOCK(NULL, "timer0_ck", clk_timer0)
1062	_REGISTER_CLOCK(NULL, "timer1_ck", clk_timer1)
1063	_REGISTER_CLOCK(NULL, "timer2_ck", clk_timer2)
1064	_REGISTER_CLOCK(NULL, "timer3_ck", clk_timer3)
1065	_REGISTER_CLOCK(NULL, "vfp9_ck", clk_vfp9)
1066	_REGISTER_CLOCK(NULL, "clk_dmac", clk_dma)
1067	_REGISTER_CLOCK("pnx4008-watchdog", NULL, clk_wdt)
1068	_REGISTER_CLOCK(NULL, "uart3_ck", clk_uart3)
1069	_REGISTER_CLOCK(NULL, "uart4_ck", clk_uart4)
1070	_REGISTER_CLOCK(NULL, "uart5_ck", clk_uart5)
1071	_REGISTER_CLOCK(NULL, "uart6_ck", clk_uart6)
1072	_REGISTER_CLOCK("pnx-i2c.0", NULL, clk_i2c0)
1073	_REGISTER_CLOCK("pnx-i2c.1", NULL, clk_i2c1)
1074	_REGISTER_CLOCK("pnx-i2c.2", NULL, clk_i2c2)
1075	_REGISTER_CLOCK("dev:ssp0", NULL, clk_ssp0)
1076	_REGISTER_CLOCK("dev:ssp1", NULL, clk_ssp1)
1077	_REGISTER_CLOCK("lpc32xx_keys.0", NULL, clk_kscan)
1078	_REGISTER_CLOCK("lpc32xx-nand.0", "nand_ck", clk_nand)
1079	_REGISTER_CLOCK("tbd", "i2s0_ck", clk_i2s0)
1080	_REGISTER_CLOCK("tbd", "i2s1_ck", clk_i2s1)
1081	_REGISTER_CLOCK("lpc32xx-ts", NULL, clk_tsc)
1082	_REGISTER_CLOCK("dev:mmc0", "MCLK", clk_mmc)
1083	_REGISTER_CLOCK("lpc-net.0", NULL, clk_net)
1084	_REGISTER_CLOCK("dev:clcd", NULL, clk_lcd)
1085	_REGISTER_CLOCK("lpc32xx_udc", "ck_usbd", clk_usbd)
1086	_REGISTER_CLOCK("lpc32xx_rtc", NULL, clk_rtc)
1087};
1088
1089static int __init clk_init(void)
1090{
1091	int i;
1092
1093	for (i = 0; i < ARRAY_SIZE(lookups); i++)
1094		clkdev_add(&lookups[i]);
1095
1096	/*
1097	 * Setup muxed SYSCLK for HCLK PLL base -this selects the
1098	 * parent clock used for the ARM PLL and is used to derive
1099	 * the many system clock rates in the device.
1100	 */
1101	if (clk_is_sysclk_mainosc() != 0)
1102		clk_sys.parent = &osc_main;
1103	else
1104		clk_sys.parent = &osc_pll397;
1105
1106	clk_sys.rate = clk_sys.parent->rate;
1107
1108	/* Compute the current ARM PLL and USB PLL frequencies */
1109	local_update_armpll_rate();
1110
1111	/* Compute HCLK and PCLK bus rates */
1112	clk_hclk.rate = clk_hclk.parent->rate / clk_get_hclk_div();
1113	clk_pclk.rate = clk_pclk.parent->rate / clk_get_pclk_div();
1114
1115	/*
1116	 * Enable system clocks - this step is somewhat formal, as the
1117	 * clocks are already running, but it does get the clock data
1118	 * inline with the actual system state. Never disable these
1119	 * clocks as they will only stop if the system is going to sleep.
1120	 * In that case, the chip/system power management functions will
1121	 * handle clock gating.
1122	 */
1123	if (clk_enable(&clk_hclk) || clk_enable(&clk_pclk))
1124		printk(KERN_ERR "Error enabling system HCLK and PCLK\n");
1125
1126	/*
1127	 * Timers 0 and 1 were enabled and are being used by the high
1128	 * resolution tick function prior to this driver being initialized.
1129	 * Tag them now as used.
1130	 */
1131	if (clk_enable(&clk_timer0) || clk_enable(&clk_timer1))
1132		printk(KERN_ERR "Error enabling timer tick clocks\n");
1133
1134	return 0;
1135}
1136core_initcall(clk_init);
1137