• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/arm/mach-davinci/
1/*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20#include <linux/kernel.h>
21#include <linux/init.h>
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/platform_device.h>
25#include <linux/io.h>
26#include <linux/slab.h>
27
28#include <mach/edma.h>
29
30/* Offsets matching "struct edmacc_param" */
31#define PARM_OPT		0x00
32#define PARM_SRC		0x04
33#define PARM_A_B_CNT		0x08
34#define PARM_DST		0x0c
35#define PARM_SRC_DST_BIDX	0x10
36#define PARM_LINK_BCNTRLD	0x14
37#define PARM_SRC_DST_CIDX	0x18
38#define PARM_CCNT		0x1c
39
40#define PARM_SIZE		0x20
41
42/* Offsets for EDMA CC global channel registers and their shadows */
43#define SH_ER		0x00	/* 64 bits */
44#define SH_ECR		0x08	/* 64 bits */
45#define SH_ESR		0x10	/* 64 bits */
46#define SH_CER		0x18	/* 64 bits */
47#define SH_EER		0x20	/* 64 bits */
48#define SH_EECR		0x28	/* 64 bits */
49#define SH_EESR		0x30	/* 64 bits */
50#define SH_SER		0x38	/* 64 bits */
51#define SH_SECR		0x40	/* 64 bits */
52#define SH_IER		0x50	/* 64 bits */
53#define SH_IECR		0x58	/* 64 bits */
54#define SH_IESR		0x60	/* 64 bits */
55#define SH_IPR		0x68	/* 64 bits */
56#define SH_ICR		0x70	/* 64 bits */
57#define SH_IEVAL	0x78
58#define SH_QER		0x80
59#define SH_QEER		0x84
60#define SH_QEECR	0x88
61#define SH_QEESR	0x8c
62#define SH_QSER		0x90
63#define SH_QSECR	0x94
64#define SH_SIZE		0x200
65
66/* Offsets for EDMA CC global registers */
67#define EDMA_REV	0x0000
68#define EDMA_CCCFG	0x0004
69#define EDMA_QCHMAP	0x0200	/* 8 registers */
70#define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
71#define EDMA_QDMAQNUM	0x0260
72#define EDMA_QUETCMAP	0x0280
73#define EDMA_QUEPRI	0x0284
74#define EDMA_EMR	0x0300	/* 64 bits */
75#define EDMA_EMCR	0x0308	/* 64 bits */
76#define EDMA_QEMR	0x0310
77#define EDMA_QEMCR	0x0314
78#define EDMA_CCERR	0x0318
79#define EDMA_CCERRCLR	0x031c
80#define EDMA_EEVAL	0x0320
81#define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
82#define EDMA_QRAE	0x0380	/* 4 registers */
83#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
84#define EDMA_QSTAT	0x0600	/* 2 registers */
85#define EDMA_QWMTHRA	0x0620
86#define EDMA_QWMTHRB	0x0624
87#define EDMA_CCSTAT	0x0640
88
89#define EDMA_M		0x1000	/* global channel registers */
90#define EDMA_ECR	0x1008
91#define EDMA_ECRH	0x100C
92#define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
93#define EDMA_PARM	0x4000	/* 128 param entries */
94
95#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
96
97#define EDMA_DCHMAP	0x0100  /* 64 registers */
98#define CHMAP_EXIST	BIT(24)
99
100#define EDMA_MAX_DMACH           64
101#define EDMA_MAX_PARAMENTRY     512
102
103/*****************************************************************************/
104
105static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
106
107static inline unsigned int edma_read(unsigned ctlr, int offset)
108{
109	return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
110}
111
112static inline void edma_write(unsigned ctlr, int offset, int val)
113{
114	__raw_writel(val, edmacc_regs_base[ctlr] + offset);
115}
116static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
117		unsigned or)
118{
119	unsigned val = edma_read(ctlr, offset);
120	val &= and;
121	val |= or;
122	edma_write(ctlr, offset, val);
123}
124static inline void edma_and(unsigned ctlr, int offset, unsigned and)
125{
126	unsigned val = edma_read(ctlr, offset);
127	val &= and;
128	edma_write(ctlr, offset, val);
129}
130static inline void edma_or(unsigned ctlr, int offset, unsigned or)
131{
132	unsigned val = edma_read(ctlr, offset);
133	val |= or;
134	edma_write(ctlr, offset, val);
135}
136static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
137{
138	return edma_read(ctlr, offset + (i << 2));
139}
140static inline void edma_write_array(unsigned ctlr, int offset, int i,
141		unsigned val)
142{
143	edma_write(ctlr, offset + (i << 2), val);
144}
145static inline void edma_modify_array(unsigned ctlr, int offset, int i,
146		unsigned and, unsigned or)
147{
148	edma_modify(ctlr, offset + (i << 2), and, or);
149}
150static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
151{
152	edma_or(ctlr, offset + (i << 2), or);
153}
154static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
155		unsigned or)
156{
157	edma_or(ctlr, offset + ((i*2 + j) << 2), or);
158}
159static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
160		unsigned val)
161{
162	edma_write(ctlr, offset + ((i*2 + j) << 2), val);
163}
164static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
165{
166	return edma_read(ctlr, EDMA_SHADOW0 + offset);
167}
168static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
169		int i)
170{
171	return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
172}
173static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
174{
175	edma_write(ctlr, EDMA_SHADOW0 + offset, val);
176}
177static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
178		unsigned val)
179{
180	edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
181}
182static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
183		int param_no)
184{
185	return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
186}
187static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
188		unsigned val)
189{
190	edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
191}
192static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
193		unsigned and, unsigned or)
194{
195	edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
196}
197static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
198		unsigned and)
199{
200	edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
201}
202static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
203		unsigned or)
204{
205	edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
206}
207
208static inline void set_bits(int offset, int len, unsigned long *p)
209{
210	for (; len > 0; len--)
211		set_bit(offset + (len - 1), p);
212}
213
214static inline void clear_bits(int offset, int len, unsigned long *p)
215{
216	for (; len > 0; len--)
217		clear_bit(offset + (len - 1), p);
218}
219
220/*****************************************************************************/
221
222/* actual number of DMA channels and slots on this silicon */
223struct edma {
224	/* how many dma resources of each type */
225	unsigned	num_channels;
226	unsigned	num_region;
227	unsigned	num_slots;
228	unsigned	num_tc;
229	unsigned	num_cc;
230	enum dma_event_q 	default_queue;
231
232	/* list of channels with no even trigger; terminated by "-1" */
233	const s8	*noevent;
234
235	/* The edma_inuse bit for each PaRAM slot is clear unless the
236	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
237	 */
238	DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
239
240	/* The edma_unused bit for each channel is clear unless
241	 * it is not being used on this platform. It uses a bit
242	 * of SOC-specific initialization code.
243	 */
244	DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
245
246	unsigned	irq_res_start;
247	unsigned	irq_res_end;
248
249	struct dma_interrupt_data {
250		void (*callback)(unsigned channel, unsigned short ch_status,
251				void *data);
252		void *data;
253	} intr_data[EDMA_MAX_DMACH];
254};
255
256static struct edma *edma_cc[EDMA_MAX_CC];
257static int arch_num_cc;
258
259/* dummy param set used to (re)initialize parameter RAM slots */
260static const struct edmacc_param dummy_paramset = {
261	.link_bcntrld = 0xffff,
262	.ccnt = 1,
263};
264
265/*****************************************************************************/
266
267static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
268		enum dma_event_q queue_no)
269{
270	int bit = (ch_no & 0x7) * 4;
271
272	/* default to low priority queue */
273	if (queue_no == EVENTQ_DEFAULT)
274		queue_no = edma_cc[ctlr]->default_queue;
275
276	queue_no &= 7;
277	edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
278			~(0x7 << bit), queue_no << bit);
279}
280
281static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
282{
283	int bit = queue_no * 4;
284	edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
285}
286
287static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
288		int priority)
289{
290	int bit = queue_no * 4;
291	edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
292			((priority & 0x7) << bit));
293}
294
295/**
296 * map_dmach_param - Maps channel number to param entry number
297 *
298 * This maps the dma channel number to param entry numberter. In
299 * other words using the DMA channel mapping registers a param entry
300 * can be mapped to any channel
301 *
302 * Callers are responsible for ensuring the channel mapping logic is
303 * included in that particular EDMA variant (Eg : dm646x)
304 *
305 */
306static void __init map_dmach_param(unsigned ctlr)
307{
308	int i;
309	for (i = 0; i < EDMA_MAX_DMACH; i++)
310		edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
311}
312
313static inline void
314setup_dma_interrupt(unsigned lch,
315	void (*callback)(unsigned channel, u16 ch_status, void *data),
316	void *data)
317{
318	unsigned ctlr;
319
320	ctlr = EDMA_CTLR(lch);
321	lch = EDMA_CHAN_SLOT(lch);
322
323	if (!callback)
324		edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
325				BIT(lch & 0x1f));
326
327	edma_cc[ctlr]->intr_data[lch].callback = callback;
328	edma_cc[ctlr]->intr_data[lch].data = data;
329
330	if (callback) {
331		edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
332				BIT(lch & 0x1f));
333		edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
334				BIT(lch & 0x1f));
335	}
336}
337
338static int irq2ctlr(int irq)
339{
340	if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
341		return 0;
342	else if (irq >= edma_cc[1]->irq_res_start &&
343		irq <= edma_cc[1]->irq_res_end)
344		return 1;
345
346	return -1;
347}
348
349/******************************************************************************
350 *
351 * DMA interrupt handler
352 *
353 *****************************************************************************/
354static irqreturn_t dma_irq_handler(int irq, void *data)
355{
356	int i;
357	unsigned ctlr;
358	unsigned int cnt = 0;
359
360	ctlr = irq2ctlr(irq);
361
362	dev_dbg(data, "dma_irq_handler\n");
363
364	if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
365	    (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
366		return IRQ_NONE;
367
368	while (1) {
369		int j;
370		if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
371				edma_shadow0_read_array(ctlr, SH_IER, 0))
372			j = 0;
373		else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
374				edma_shadow0_read_array(ctlr, SH_IER, 1))
375			j = 1;
376		else
377			break;
378		dev_dbg(data, "IPR%d %08x\n", j,
379				edma_shadow0_read_array(ctlr, SH_IPR, j));
380		for (i = 0; i < 32; i++) {
381			int k = (j << 5) + i;
382			if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
383					&& (edma_shadow0_read_array(ctlr,
384							SH_IER, j) & BIT(i))) {
385				/* Clear the corresponding IPR bits */
386				edma_shadow0_write_array(ctlr, SH_ICR, j,
387							BIT(i));
388				if (edma_cc[ctlr]->intr_data[k].callback)
389					edma_cc[ctlr]->intr_data[k].callback(
390						k, DMA_COMPLETE,
391						edma_cc[ctlr]->intr_data[k].
392						data);
393			}
394		}
395		cnt++;
396		if (cnt > 10)
397			break;
398	}
399	edma_shadow0_write(ctlr, SH_IEVAL, 1);
400	return IRQ_HANDLED;
401}
402
403/******************************************************************************
404 *
405 * DMA error interrupt handler
406 *
407 *****************************************************************************/
408static irqreturn_t dma_ccerr_handler(int irq, void *data)
409{
410	int i;
411	unsigned ctlr;
412	unsigned int cnt = 0;
413
414	ctlr = irq2ctlr(irq);
415
416	dev_dbg(data, "dma_ccerr_handler\n");
417
418	if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
419	    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
420	    (edma_read(ctlr, EDMA_QEMR) == 0) &&
421	    (edma_read(ctlr, EDMA_CCERR) == 0))
422		return IRQ_NONE;
423
424	while (1) {
425		int j = -1;
426		if (edma_read_array(ctlr, EDMA_EMR, 0))
427			j = 0;
428		else if (edma_read_array(ctlr, EDMA_EMR, 1))
429			j = 1;
430		if (j >= 0) {
431			dev_dbg(data, "EMR%d %08x\n", j,
432					edma_read_array(ctlr, EDMA_EMR, j));
433			for (i = 0; i < 32; i++) {
434				int k = (j << 5) + i;
435				if (edma_read_array(ctlr, EDMA_EMR, j) &
436							BIT(i)) {
437					/* Clear the corresponding EMR bits */
438					edma_write_array(ctlr, EDMA_EMCR, j,
439							BIT(i));
440					/* Clear any SER */
441					edma_shadow0_write_array(ctlr, SH_SECR,
442								j, BIT(i));
443					if (edma_cc[ctlr]->intr_data[k].
444								callback) {
445						edma_cc[ctlr]->intr_data[k].
446						callback(k,
447						DMA_CC_ERROR,
448						edma_cc[ctlr]->intr_data
449						[k].data);
450					}
451				}
452			}
453		} else if (edma_read(ctlr, EDMA_QEMR)) {
454			dev_dbg(data, "QEMR %02x\n",
455				edma_read(ctlr, EDMA_QEMR));
456			for (i = 0; i < 8; i++) {
457				if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
458					/* Clear the corresponding IPR bits */
459					edma_write(ctlr, EDMA_QEMCR, BIT(i));
460					edma_shadow0_write(ctlr, SH_QSECR,
461								BIT(i));
462
463					/* NOTE:  not reported!! */
464				}
465			}
466		} else if (edma_read(ctlr, EDMA_CCERR)) {
467			dev_dbg(data, "CCERR %08x\n",
468				edma_read(ctlr, EDMA_CCERR));
469			for (i = 0; i < 8; i++) {
470				if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
471					/* Clear the corresponding IPR bits */
472					edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
473
474					/* NOTE:  not reported!! */
475				}
476			}
477		}
478		if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
479		    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
480		    (edma_read(ctlr, EDMA_QEMR) == 0) &&
481		    (edma_read(ctlr, EDMA_CCERR) == 0))
482			break;
483		cnt++;
484		if (cnt > 10)
485			break;
486	}
487	edma_write(ctlr, EDMA_EEVAL, 1);
488	return IRQ_HANDLED;
489}
490
491/******************************************************************************
492 *
493 * Transfer controller error interrupt handlers
494 *
495 *****************************************************************************/
496
497#define tc_errs_handled	false	/* disabled as long as they're NOPs */
498
499static irqreturn_t dma_tc0err_handler(int irq, void *data)
500{
501	dev_dbg(data, "dma_tc0err_handler\n");
502	return IRQ_HANDLED;
503}
504
505static irqreturn_t dma_tc1err_handler(int irq, void *data)
506{
507	dev_dbg(data, "dma_tc1err_handler\n");
508	return IRQ_HANDLED;
509}
510
511static int reserve_contiguous_slots(int ctlr, unsigned int id,
512				     unsigned int num_slots,
513				     unsigned int start_slot)
514{
515	int i, j;
516	unsigned int count = num_slots;
517	int stop_slot = start_slot;
518	DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
519
520	for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
521		j = EDMA_CHAN_SLOT(i);
522		if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
523			/* Record our current beginning slot */
524			if (count == num_slots)
525				stop_slot = i;
526
527			count--;
528			set_bit(j, tmp_inuse);
529
530			if (count == 0)
531				break;
532		} else {
533			clear_bit(j, tmp_inuse);
534
535			if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
536				stop_slot = i;
537				break;
538			} else {
539				count = num_slots;
540			}
541		}
542	}
543
544	/*
545	 * We have to clear any bits that we set
546	 * if we run out parameter RAM slots, i.e we do find a set
547	 * of contiguous parameter RAM slots but do not find the exact number
548	 * requested as we may reach the total number of parameter RAM slots
549	 */
550	if (i == edma_cc[ctlr]->num_slots)
551		stop_slot = i;
552
553	for (j = start_slot; j < stop_slot; j++)
554		if (test_bit(j, tmp_inuse))
555			clear_bit(j, edma_cc[ctlr]->edma_inuse);
556
557	if (count)
558		return -EBUSY;
559
560	for (j = i - num_slots + 1; j <= i; ++j)
561		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
562			&dummy_paramset, PARM_SIZE);
563
564	return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
565}
566
567static int prepare_unused_channel_list(struct device *dev, void *data)
568{
569	struct platform_device *pdev = to_platform_device(dev);
570	int i, ctlr;
571
572	for (i = 0; i < pdev->num_resources; i++) {
573		if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
574				(int)pdev->resource[i].start >= 0) {
575			ctlr = EDMA_CTLR(pdev->resource[i].start);
576			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
577					edma_cc[ctlr]->edma_unused);
578		}
579	}
580
581	return 0;
582}
583
584/*-----------------------------------------------------------------------*/
585
586static bool unused_chan_list_done;
587
588/* Resource alloc/free:  dma channels, parameter RAM slots */
589
590/**
591 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
592 * @channel: specific channel to allocate; negative for "any unmapped channel"
593 * @callback: optional; to be issued on DMA completion or errors
594 * @data: passed to callback
595 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
596 *	Controller (TC) executes requests using this channel.  Use
597 *	EVENTQ_DEFAULT unless you really need a high priority queue.
598 *
599 * This allocates a DMA channel and its associated parameter RAM slot.
600 * The parameter RAM is initialized to hold a dummy transfer.
601 *
602 * Normal use is to pass a specific channel number as @channel, to make
603 * use of hardware events mapped to that channel.  When the channel will
604 * be used only for software triggering or event chaining, channels not
605 * mapped to hardware events (or mapped to unused events) are preferable.
606 *
607 * DMA transfers start from a channel using edma_start(), or by
608 * chaining.  When the transfer described in that channel's parameter RAM
609 * slot completes, that slot's data may be reloaded through a link.
610 *
611 * DMA errors are only reported to the @callback associated with the
612 * channel driving that transfer, but transfer completion callbacks can
613 * be sent to another channel under control of the TCC field in
614 * the option word of the transfer's parameter RAM set.  Drivers must not
615 * use DMA transfer completion callbacks for channels they did not allocate.
616 * (The same applies to TCC codes used in transfer chaining.)
617 *
618 * Returns the number of the channel, else negative errno.
619 */
620int edma_alloc_channel(int channel,
621		void (*callback)(unsigned channel, u16 ch_status, void *data),
622		void *data,
623		enum dma_event_q eventq_no)
624{
625	unsigned i, done = 0, ctlr = 0;
626	int ret = 0;
627
628	if (!unused_chan_list_done) {
629		/*
630		 * Scan all the platform devices to find out the EDMA channels
631		 * used and clear them in the unused list, making the rest
632		 * available for ARM usage.
633		 */
634		ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
635				prepare_unused_channel_list);
636		if (ret < 0)
637			return ret;
638
639		unused_chan_list_done = true;
640	}
641
642	if (channel >= 0) {
643		ctlr = EDMA_CTLR(channel);
644		channel = EDMA_CHAN_SLOT(channel);
645	}
646
647	if (channel < 0) {
648		for (i = 0; i < arch_num_cc; i++) {
649			channel = 0;
650			for (;;) {
651				channel = find_next_bit(edma_cc[i]->edma_unused,
652						edma_cc[i]->num_channels,
653						channel);
654				if (channel == edma_cc[i]->num_channels)
655					break;
656				if (!test_and_set_bit(channel,
657						edma_cc[i]->edma_inuse)) {
658					done = 1;
659					ctlr = i;
660					break;
661				}
662				channel++;
663			}
664			if (done)
665				break;
666		}
667		if (!done)
668			return -ENOMEM;
669	} else if (channel >= edma_cc[ctlr]->num_channels) {
670		return -EINVAL;
671	} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
672		return -EBUSY;
673	}
674
675	/* ensure access through shadow region 0 */
676	edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
677
678	/* ensure no events are pending */
679	edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
680	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
681			&dummy_paramset, PARM_SIZE);
682
683	if (callback)
684		setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
685					callback, data);
686
687	map_dmach_queue(ctlr, channel, eventq_no);
688
689	return EDMA_CTLR_CHAN(ctlr, channel);
690}
691EXPORT_SYMBOL(edma_alloc_channel);
692
693
694/**
695 * edma_free_channel - deallocate DMA channel
696 * @channel: dma channel returned from edma_alloc_channel()
697 *
698 * This deallocates the DMA channel and associated parameter RAM slot
699 * allocated by edma_alloc_channel().
700 *
701 * Callers are responsible for ensuring the channel is inactive, and
702 * will not be reactivated by linking, chaining, or software calls to
703 * edma_start().
704 */
705void edma_free_channel(unsigned channel)
706{
707	unsigned ctlr;
708
709	ctlr = EDMA_CTLR(channel);
710	channel = EDMA_CHAN_SLOT(channel);
711
712	if (channel >= edma_cc[ctlr]->num_channels)
713		return;
714
715	setup_dma_interrupt(channel, NULL, NULL);
716	/* REVISIT should probably take out of shadow region 0 */
717
718	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
719			&dummy_paramset, PARM_SIZE);
720	clear_bit(channel, edma_cc[ctlr]->edma_inuse);
721}
722EXPORT_SYMBOL(edma_free_channel);
723
724/**
725 * edma_alloc_slot - allocate DMA parameter RAM
726 * @slot: specific slot to allocate; negative for "any unused slot"
727 *
728 * This allocates a parameter RAM slot, initializing it to hold a
729 * dummy transfer.  Slots allocated using this routine have not been
730 * mapped to a hardware DMA channel, and will normally be used by
731 * linking to them from a slot associated with a DMA channel.
732 *
733 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
734 * slots may be allocated on behalf of DSP firmware.
735 *
736 * Returns the number of the slot, else negative errno.
737 */
738int edma_alloc_slot(unsigned ctlr, int slot)
739{
740	if (slot >= 0)
741		slot = EDMA_CHAN_SLOT(slot);
742
743	if (slot < 0) {
744		slot = edma_cc[ctlr]->num_channels;
745		for (;;) {
746			slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
747					edma_cc[ctlr]->num_slots, slot);
748			if (slot == edma_cc[ctlr]->num_slots)
749				return -ENOMEM;
750			if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
751				break;
752		}
753	} else if (slot < edma_cc[ctlr]->num_channels ||
754			slot >= edma_cc[ctlr]->num_slots) {
755		return -EINVAL;
756	} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
757		return -EBUSY;
758	}
759
760	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
761			&dummy_paramset, PARM_SIZE);
762
763	return EDMA_CTLR_CHAN(ctlr, slot);
764}
765EXPORT_SYMBOL(edma_alloc_slot);
766
767/**
768 * edma_free_slot - deallocate DMA parameter RAM
769 * @slot: parameter RAM slot returned from edma_alloc_slot()
770 *
771 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
772 * Callers are responsible for ensuring the slot is inactive, and will
773 * not be activated.
774 */
775void edma_free_slot(unsigned slot)
776{
777	unsigned ctlr;
778
779	ctlr = EDMA_CTLR(slot);
780	slot = EDMA_CHAN_SLOT(slot);
781
782	if (slot < edma_cc[ctlr]->num_channels ||
783		slot >= edma_cc[ctlr]->num_slots)
784		return;
785
786	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
787			&dummy_paramset, PARM_SIZE);
788	clear_bit(slot, edma_cc[ctlr]->edma_inuse);
789}
790EXPORT_SYMBOL(edma_free_slot);
791
792
793/**
794 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
795 * The API will return the starting point of a set of
796 * contiguous parameter RAM slots that have been requested
797 *
798 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
799 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
800 * @count: number of contiguous Paramter RAM slots
801 * @slot  - the start value of Parameter RAM slot that should be passed if id
802 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
803 *
804 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
805 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
806 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
807 *
808 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
809 * set of contiguous parameter RAM slots from the "slot" that is passed as an
810 * argument to the API.
811 *
812 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
813 * starts looking for a set of contiguous parameter RAMs from the "slot"
814 * that is passed as an argument to the API. On failure the API will try to
815 * find a set of contiguous Parameter RAM slots from the remaining Parameter
816 * RAM slots
817 */
818int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
819{
820	/*
821	 * The start slot requested should be greater than
822	 * the number of channels and lesser than the total number
823	 * of slots
824	 */
825	if ((id != EDMA_CONT_PARAMS_ANY) &&
826		(slot < edma_cc[ctlr]->num_channels ||
827		slot >= edma_cc[ctlr]->num_slots))
828		return -EINVAL;
829
830	/*
831	 * The number of parameter RAM slots requested cannot be less than 1
832	 * and cannot be more than the number of slots minus the number of
833	 * channels
834	 */
835	if (count < 1 || count >
836		(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
837		return -EINVAL;
838
839	switch (id) {
840	case EDMA_CONT_PARAMS_ANY:
841		return reserve_contiguous_slots(ctlr, id, count,
842						 edma_cc[ctlr]->num_channels);
843	case EDMA_CONT_PARAMS_FIXED_EXACT:
844	case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
845		return reserve_contiguous_slots(ctlr, id, count, slot);
846	default:
847		return -EINVAL;
848	}
849
850}
851EXPORT_SYMBOL(edma_alloc_cont_slots);
852
853/**
854 * edma_free_cont_slots - deallocate DMA parameter RAM slots
855 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
856 * @count: the number of contiguous parameter RAM slots to be freed
857 *
858 * This deallocates the parameter RAM slots allocated by
859 * edma_alloc_cont_slots.
860 * Callers/applications need to keep track of sets of contiguous
861 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
862 * API.
863 * Callers are responsible for ensuring the slots are inactive, and will
864 * not be activated.
865 */
866int edma_free_cont_slots(unsigned slot, int count)
867{
868	unsigned ctlr, slot_to_free;
869	int i;
870
871	ctlr = EDMA_CTLR(slot);
872	slot = EDMA_CHAN_SLOT(slot);
873
874	if (slot < edma_cc[ctlr]->num_channels ||
875		slot >= edma_cc[ctlr]->num_slots ||
876		count < 1)
877		return -EINVAL;
878
879	for (i = slot; i < slot + count; ++i) {
880		ctlr = EDMA_CTLR(i);
881		slot_to_free = EDMA_CHAN_SLOT(i);
882
883		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
884			&dummy_paramset, PARM_SIZE);
885		clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
886	}
887
888	return 0;
889}
890EXPORT_SYMBOL(edma_free_cont_slots);
891
892/*-----------------------------------------------------------------------*/
893
894/* Parameter RAM operations (i) -- read/write partial slots */
895
896/**
897 * edma_set_src - set initial DMA source address in parameter RAM slot
898 * @slot: parameter RAM slot being configured
899 * @src_port: physical address of source (memory, controller FIFO, etc)
900 * @addressMode: INCR, except in very rare cases
901 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
902 *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
903 *
904 * Note that the source address is modified during the DMA transfer
905 * according to edma_set_src_index().
906 */
907void edma_set_src(unsigned slot, dma_addr_t src_port,
908				enum address_mode mode, enum fifo_width width)
909{
910	unsigned ctlr;
911
912	ctlr = EDMA_CTLR(slot);
913	slot = EDMA_CHAN_SLOT(slot);
914
915	if (slot < edma_cc[ctlr]->num_slots) {
916		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
917
918		if (mode) {
919			/* set SAM and program FWID */
920			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
921		} else {
922			/* clear SAM */
923			i &= ~SAM;
924		}
925		edma_parm_write(ctlr, PARM_OPT, slot, i);
926
927		/* set the source port address
928		   in source register of param structure */
929		edma_parm_write(ctlr, PARM_SRC, slot, src_port);
930	}
931}
932EXPORT_SYMBOL(edma_set_src);
933
934/**
935 * edma_set_dest - set initial DMA destination address in parameter RAM slot
936 * @slot: parameter RAM slot being configured
937 * @dest_port: physical address of destination (memory, controller FIFO, etc)
938 * @addressMode: INCR, except in very rare cases
939 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
940 *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
941 *
942 * Note that the destination address is modified during the DMA transfer
943 * according to edma_set_dest_index().
944 */
945void edma_set_dest(unsigned slot, dma_addr_t dest_port,
946				 enum address_mode mode, enum fifo_width width)
947{
948	unsigned ctlr;
949
950	ctlr = EDMA_CTLR(slot);
951	slot = EDMA_CHAN_SLOT(slot);
952
953	if (slot < edma_cc[ctlr]->num_slots) {
954		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
955
956		if (mode) {
957			/* set DAM and program FWID */
958			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
959		} else {
960			/* clear DAM */
961			i &= ~DAM;
962		}
963		edma_parm_write(ctlr, PARM_OPT, slot, i);
964		/* set the destination port address
965		   in dest register of param structure */
966		edma_parm_write(ctlr, PARM_DST, slot, dest_port);
967	}
968}
969EXPORT_SYMBOL(edma_set_dest);
970
971/**
972 * edma_get_position - returns the current transfer points
973 * @slot: parameter RAM slot being examined
974 * @src: pointer to source port position
975 * @dst: pointer to destination port position
976 *
977 * Returns current source and destination addresses for a particular
978 * parameter RAM slot.  Its channel should not be active when this is called.
979 */
980void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
981{
982	struct edmacc_param temp;
983	unsigned ctlr;
984
985	ctlr = EDMA_CTLR(slot);
986	slot = EDMA_CHAN_SLOT(slot);
987
988	edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
989	if (src != NULL)
990		*src = temp.src;
991	if (dst != NULL)
992		*dst = temp.dst;
993}
994EXPORT_SYMBOL(edma_get_position);
995
996/**
997 * edma_set_src_index - configure DMA source address indexing
998 * @slot: parameter RAM slot being configured
999 * @src_bidx: byte offset between source arrays in a frame
1000 * @src_cidx: byte offset between source frames in a block
1001 *
1002 * Offsets are specified to support either contiguous or discontiguous
1003 * memory transfers, or repeated access to a hardware register, as needed.
1004 * When accessing hardware registers, both offsets are normally zero.
1005 */
1006void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1007{
1008	unsigned ctlr;
1009
1010	ctlr = EDMA_CTLR(slot);
1011	slot = EDMA_CHAN_SLOT(slot);
1012
1013	if (slot < edma_cc[ctlr]->num_slots) {
1014		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1015				0xffff0000, src_bidx);
1016		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1017				0xffff0000, src_cidx);
1018	}
1019}
1020EXPORT_SYMBOL(edma_set_src_index);
1021
1022/**
1023 * edma_set_dest_index - configure DMA destination address indexing
1024 * @slot: parameter RAM slot being configured
1025 * @dest_bidx: byte offset between destination arrays in a frame
1026 * @dest_cidx: byte offset between destination frames in a block
1027 *
1028 * Offsets are specified to support either contiguous or discontiguous
1029 * memory transfers, or repeated access to a hardware register, as needed.
1030 * When accessing hardware registers, both offsets are normally zero.
1031 */
1032void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1033{
1034	unsigned ctlr;
1035
1036	ctlr = EDMA_CTLR(slot);
1037	slot = EDMA_CHAN_SLOT(slot);
1038
1039	if (slot < edma_cc[ctlr]->num_slots) {
1040		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1041				0x0000ffff, dest_bidx << 16);
1042		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1043				0x0000ffff, dest_cidx << 16);
1044	}
1045}
1046EXPORT_SYMBOL(edma_set_dest_index);
1047
1048/**
1049 * edma_set_transfer_params - configure DMA transfer parameters
1050 * @slot: parameter RAM slot being configured
1051 * @acnt: how many bytes per array (at least one)
1052 * @bcnt: how many arrays per frame (at least one)
1053 * @ccnt: how many frames per block (at least one)
1054 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1055 *	the value to reload into bcnt when it decrements to zero
1056 * @sync_mode: ASYNC or ABSYNC
1057 *
1058 * See the EDMA3 documentation to understand how to configure and link
1059 * transfers using the fields in PaRAM slots.  If you are not doing it
1060 * all at once with edma_write_slot(), you will use this routine
1061 * plus two calls each for source and destination, setting the initial
1062 * address and saying how to index that address.
1063 *
1064 * An example of an A-Synchronized transfer is a serial link using a
1065 * single word shift register.  In that case, @acnt would be equal to
1066 * that word size; the serial controller issues a DMA synchronization
1067 * event to transfer each word, and memory access by the DMA transfer
1068 * controller will be word-at-a-time.
1069 *
1070 * An example of an AB-Synchronized transfer is a device using a FIFO.
1071 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1072 * The controller with the FIFO issues DMA synchronization events when
1073 * the FIFO threshold is reached, and the DMA transfer controller will
1074 * transfer one frame to (or from) the FIFO.  It will probably use
1075 * efficient burst modes to access memory.
1076 */
1077void edma_set_transfer_params(unsigned slot,
1078		u16 acnt, u16 bcnt, u16 ccnt,
1079		u16 bcnt_rld, enum sync_dimension sync_mode)
1080{
1081	unsigned ctlr;
1082
1083	ctlr = EDMA_CTLR(slot);
1084	slot = EDMA_CHAN_SLOT(slot);
1085
1086	if (slot < edma_cc[ctlr]->num_slots) {
1087		edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1088				0x0000ffff, bcnt_rld << 16);
1089		if (sync_mode == ASYNC)
1090			edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1091		else
1092			edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1093		/* Set the acount, bcount, ccount registers */
1094		edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1095		edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1096	}
1097}
1098EXPORT_SYMBOL(edma_set_transfer_params);
1099
1100/**
1101 * edma_link - link one parameter RAM slot to another
1102 * @from: parameter RAM slot originating the link
1103 * @to: parameter RAM slot which is the link target
1104 *
1105 * The originating slot should not be part of any active DMA transfer.
1106 */
1107void edma_link(unsigned from, unsigned to)
1108{
1109	unsigned ctlr_from, ctlr_to;
1110
1111	ctlr_from = EDMA_CTLR(from);
1112	from = EDMA_CHAN_SLOT(from);
1113	ctlr_to = EDMA_CTLR(to);
1114	to = EDMA_CHAN_SLOT(to);
1115
1116	if (from >= edma_cc[ctlr_from]->num_slots)
1117		return;
1118	if (to >= edma_cc[ctlr_to]->num_slots)
1119		return;
1120	edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1121				PARM_OFFSET(to));
1122}
1123EXPORT_SYMBOL(edma_link);
1124
1125/**
1126 * edma_unlink - cut link from one parameter RAM slot
1127 * @from: parameter RAM slot originating the link
1128 *
1129 * The originating slot should not be part of any active DMA transfer.
1130 * Its link is set to 0xffff.
1131 */
1132void edma_unlink(unsigned from)
1133{
1134	unsigned ctlr;
1135
1136	ctlr = EDMA_CTLR(from);
1137	from = EDMA_CHAN_SLOT(from);
1138
1139	if (from >= edma_cc[ctlr]->num_slots)
1140		return;
1141	edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1142}
1143EXPORT_SYMBOL(edma_unlink);
1144
1145/*-----------------------------------------------------------------------*/
1146
1147/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1148
1149/**
1150 * edma_write_slot - write parameter RAM data for slot
1151 * @slot: number of parameter RAM slot being modified
1152 * @param: data to be written into parameter RAM slot
1153 *
1154 * Use this to assign all parameters of a transfer at once.  This
1155 * allows more efficient setup of transfers than issuing multiple
1156 * calls to set up those parameters in small pieces, and provides
1157 * complete control over all transfer options.
1158 */
1159void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1160{
1161	unsigned ctlr;
1162
1163	ctlr = EDMA_CTLR(slot);
1164	slot = EDMA_CHAN_SLOT(slot);
1165
1166	if (slot >= edma_cc[ctlr]->num_slots)
1167		return;
1168	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1169			PARM_SIZE);
1170}
1171EXPORT_SYMBOL(edma_write_slot);
1172
1173/**
1174 * edma_read_slot - read parameter RAM data from slot
1175 * @slot: number of parameter RAM slot being copied
1176 * @param: where to store copy of parameter RAM data
1177 *
1178 * Use this to read data from a parameter RAM slot, perhaps to
1179 * save them as a template for later reuse.
1180 */
1181void edma_read_slot(unsigned slot, struct edmacc_param *param)
1182{
1183	unsigned ctlr;
1184
1185	ctlr = EDMA_CTLR(slot);
1186	slot = EDMA_CHAN_SLOT(slot);
1187
1188	if (slot >= edma_cc[ctlr]->num_slots)
1189		return;
1190	memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1191			PARM_SIZE);
1192}
1193EXPORT_SYMBOL(edma_read_slot);
1194
1195/*-----------------------------------------------------------------------*/
1196
1197/* Various EDMA channel control operations */
1198
1199/**
1200 * edma_pause - pause dma on a channel
1201 * @channel: on which edma_start() has been called
1202 *
1203 * This temporarily disables EDMA hardware events on the specified channel,
1204 * preventing them from triggering new transfers on its behalf
1205 */
1206void edma_pause(unsigned channel)
1207{
1208	unsigned ctlr;
1209
1210	ctlr = EDMA_CTLR(channel);
1211	channel = EDMA_CHAN_SLOT(channel);
1212
1213	if (channel < edma_cc[ctlr]->num_channels) {
1214		unsigned int mask = BIT(channel & 0x1f);
1215
1216		edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1217	}
1218}
1219EXPORT_SYMBOL(edma_pause);
1220
1221/**
1222 * edma_resume - resumes dma on a paused channel
1223 * @channel: on which edma_pause() has been called
1224 *
1225 * This re-enables EDMA hardware events on the specified channel.
1226 */
1227void edma_resume(unsigned channel)
1228{
1229	unsigned ctlr;
1230
1231	ctlr = EDMA_CTLR(channel);
1232	channel = EDMA_CHAN_SLOT(channel);
1233
1234	if (channel < edma_cc[ctlr]->num_channels) {
1235		unsigned int mask = BIT(channel & 0x1f);
1236
1237		edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1238	}
1239}
1240EXPORT_SYMBOL(edma_resume);
1241
1242/**
1243 * edma_start - start dma on a channel
1244 * @channel: channel being activated
1245 *
1246 * Channels with event associations will be triggered by their hardware
1247 * events, and channels without such associations will be triggered by
1248 * software.  (At this writing there is no interface for using software
1249 * triggers except with channels that don't support hardware triggers.)
1250 *
1251 * Returns zero on success, else negative errno.
1252 */
1253int edma_start(unsigned channel)
1254{
1255	unsigned ctlr;
1256
1257	ctlr = EDMA_CTLR(channel);
1258	channel = EDMA_CHAN_SLOT(channel);
1259
1260	if (channel < edma_cc[ctlr]->num_channels) {
1261		int j = channel >> 5;
1262		unsigned int mask = BIT(channel & 0x1f);
1263
1264		/* EDMA channels without event association */
1265		if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1266			pr_debug("EDMA: ESR%d %08x\n", j,
1267				edma_shadow0_read_array(ctlr, SH_ESR, j));
1268			edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1269			return 0;
1270		}
1271
1272		/* EDMA channel with event association */
1273		pr_debug("EDMA: ER%d %08x\n", j,
1274			edma_shadow0_read_array(ctlr, SH_ER, j));
1275		/* Clear any pending event or error */
1276		edma_write_array(ctlr, EDMA_ECR, j, mask);
1277		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1278		/* Clear any SER */
1279		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1280		edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1281		pr_debug("EDMA: EER%d %08x\n", j,
1282			edma_shadow0_read_array(ctlr, SH_EER, j));
1283		return 0;
1284	}
1285
1286	return -EINVAL;
1287}
1288EXPORT_SYMBOL(edma_start);
1289
1290/**
1291 * edma_stop - stops dma on the channel passed
1292 * @channel: channel being deactivated
1293 *
1294 * When @lch is a channel, any active transfer is paused and
1295 * all pending hardware events are cleared.  The current transfer
1296 * may not be resumed, and the channel's Parameter RAM should be
1297 * reinitialized before being reused.
1298 */
1299void edma_stop(unsigned channel)
1300{
1301	unsigned ctlr;
1302
1303	ctlr = EDMA_CTLR(channel);
1304	channel = EDMA_CHAN_SLOT(channel);
1305
1306	if (channel < edma_cc[ctlr]->num_channels) {
1307		int j = channel >> 5;
1308		unsigned int mask = BIT(channel & 0x1f);
1309
1310		edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1311		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1312		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1313		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1314
1315		pr_debug("EDMA: EER%d %08x\n", j,
1316				edma_shadow0_read_array(ctlr, SH_EER, j));
1317
1318		/* REVISIT:  consider guarding against inappropriate event
1319		 * chaining by overwriting with dummy_paramset.
1320		 */
1321	}
1322}
1323EXPORT_SYMBOL(edma_stop);
1324
1325
1326void edma_clean_channel(unsigned channel)
1327{
1328	unsigned ctlr;
1329
1330	ctlr = EDMA_CTLR(channel);
1331	channel = EDMA_CHAN_SLOT(channel);
1332
1333	if (channel < edma_cc[ctlr]->num_channels) {
1334		int j = (channel >> 5);
1335		unsigned int mask = BIT(channel & 0x1f);
1336
1337		pr_debug("EDMA: EMR%d %08x\n", j,
1338				edma_read_array(ctlr, EDMA_EMR, j));
1339		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1340		/* Clear the corresponding EMR bits */
1341		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1342		/* Clear any SER */
1343		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1344		edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1345	}
1346}
1347EXPORT_SYMBOL(edma_clean_channel);
1348
1349/*
1350 * edma_clear_event - clear an outstanding event on the DMA channel
1351 * Arguments:
1352 *	channel - channel number
1353 */
1354void edma_clear_event(unsigned channel)
1355{
1356	unsigned ctlr;
1357
1358	ctlr = EDMA_CTLR(channel);
1359	channel = EDMA_CHAN_SLOT(channel);
1360
1361	if (channel >= edma_cc[ctlr]->num_channels)
1362		return;
1363	if (channel < 32)
1364		edma_write(ctlr, EDMA_ECR, BIT(channel));
1365	else
1366		edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1367}
1368EXPORT_SYMBOL(edma_clear_event);
1369
1370/*-----------------------------------------------------------------------*/
1371
1372static int __init edma_probe(struct platform_device *pdev)
1373{
1374	struct edma_soc_info	**info = pdev->dev.platform_data;
1375	const s8		(*queue_priority_mapping)[2];
1376	const s8		(*queue_tc_mapping)[2];
1377	int			i, j, off, ln, found = 0;
1378	int			status = -1;
1379	const s16		(*rsv_chans)[2];
1380	const s16		(*rsv_slots)[2];
1381	int			irq[EDMA_MAX_CC] = {0, 0};
1382	int			err_irq[EDMA_MAX_CC] = {0, 0};
1383	struct resource		*r[EDMA_MAX_CC] = {NULL};
1384	resource_size_t		len[EDMA_MAX_CC];
1385	char			res_name[10];
1386	char			irq_name[10];
1387
1388	if (!info)
1389		return -ENODEV;
1390
1391	for (j = 0; j < EDMA_MAX_CC; j++) {
1392		sprintf(res_name, "edma_cc%d", j);
1393		r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1394						res_name);
1395		if (!r[j] || !info[j]) {
1396			if (found)
1397				break;
1398			else
1399				return -ENODEV;
1400		} else {
1401			found = 1;
1402		}
1403
1404		len[j] = resource_size(r[j]);
1405
1406		r[j] = request_mem_region(r[j]->start, len[j],
1407			dev_name(&pdev->dev));
1408		if (!r[j]) {
1409			status = -EBUSY;
1410			goto fail1;
1411		}
1412
1413		edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1414		if (!edmacc_regs_base[j]) {
1415			status = -EBUSY;
1416			goto fail1;
1417		}
1418
1419		edma_cc[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1420		if (!edma_cc[j]) {
1421			status = -ENOMEM;
1422			goto fail1;
1423		}
1424		memset(edma_cc[j], 0, sizeof(struct edma));
1425
1426		edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1427							EDMA_MAX_DMACH);
1428		edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1429							EDMA_MAX_PARAMENTRY);
1430		edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1431							EDMA_MAX_CC);
1432
1433		edma_cc[j]->default_queue = info[j]->default_queue;
1434		if (!edma_cc[j]->default_queue)
1435			edma_cc[j]->default_queue = EVENTQ_1;
1436
1437		dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1438			edmacc_regs_base[j]);
1439
1440		for (i = 0; i < edma_cc[j]->num_slots; i++)
1441			memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1442					&dummy_paramset, PARM_SIZE);
1443
1444		/* Mark all channels as unused */
1445		memset(edma_cc[j]->edma_unused, 0xff,
1446			sizeof(edma_cc[j]->edma_unused));
1447
1448		if (info[j]->rsv) {
1449
1450			/* Clear the reserved channels in unused list */
1451			rsv_chans = info[j]->rsv->rsv_chans;
1452			if (rsv_chans) {
1453				for (i = 0; rsv_chans[i][0] != -1; i++) {
1454					off = rsv_chans[i][0];
1455					ln = rsv_chans[i][1];
1456					clear_bits(off, ln,
1457						edma_cc[j]->edma_unused);
1458				}
1459			}
1460
1461			/* Set the reserved slots in inuse list */
1462			rsv_slots = info[j]->rsv->rsv_slots;
1463			if (rsv_slots) {
1464				for (i = 0; rsv_slots[i][0] != -1; i++) {
1465					off = rsv_slots[i][0];
1466					ln = rsv_slots[i][1];
1467					set_bits(off, ln,
1468						edma_cc[j]->edma_inuse);
1469				}
1470			}
1471		}
1472
1473		sprintf(irq_name, "edma%d", j);
1474		irq[j] = platform_get_irq_byname(pdev, irq_name);
1475		edma_cc[j]->irq_res_start = irq[j];
1476		status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1477					&pdev->dev);
1478		if (status < 0) {
1479			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1480				irq[j], status);
1481			goto fail;
1482		}
1483
1484		sprintf(irq_name, "edma%d_err", j);
1485		err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1486		edma_cc[j]->irq_res_end = err_irq[j];
1487		status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1488					"edma_error", &pdev->dev);
1489		if (status < 0) {
1490			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1491				err_irq[j], status);
1492			goto fail;
1493		}
1494
1495		/* Everything lives on transfer controller 1 until otherwise
1496		 * specified. This way, long transfers on the low priority queue
1497		 * started by the codec engine will not cause audio defects.
1498		 */
1499		for (i = 0; i < edma_cc[j]->num_channels; i++)
1500			map_dmach_queue(j, i, EVENTQ_1);
1501
1502		queue_tc_mapping = info[j]->queue_tc_mapping;
1503		queue_priority_mapping = info[j]->queue_priority_mapping;
1504
1505		/* Event queue to TC mapping */
1506		for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1507			map_queue_tc(j, queue_tc_mapping[i][0],
1508					queue_tc_mapping[i][1]);
1509
1510		/* Event queue priority mapping */
1511		for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1512			assign_priority_to_queue(j,
1513						queue_priority_mapping[i][0],
1514						queue_priority_mapping[i][1]);
1515
1516		/* Map the channel to param entry if channel mapping logic
1517		 * exist
1518		 */
1519		if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1520			map_dmach_param(j);
1521
1522		for (i = 0; i < info[j]->n_region; i++) {
1523			edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1524			edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1525			edma_write_array(j, EDMA_QRAE, i, 0x0);
1526		}
1527		arch_num_cc++;
1528	}
1529
1530	if (tc_errs_handled) {
1531		status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1532					"edma_tc0", &pdev->dev);
1533		if (status < 0) {
1534			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1535				IRQ_TCERRINT0, status);
1536			return status;
1537		}
1538		status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1539					"edma_tc1", &pdev->dev);
1540		if (status < 0) {
1541			dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1542				IRQ_TCERRINT, status);
1543			return status;
1544		}
1545	}
1546
1547	return 0;
1548
1549fail:
1550	for (i = 0; i < EDMA_MAX_CC; i++) {
1551		if (err_irq[i])
1552			free_irq(err_irq[i], &pdev->dev);
1553		if (irq[i])
1554			free_irq(irq[i], &pdev->dev);
1555	}
1556fail1:
1557	for (i = 0; i < EDMA_MAX_CC; i++) {
1558		if (r[i])
1559			release_mem_region(r[i]->start, len[i]);
1560		if (edmacc_regs_base[i])
1561			iounmap(edmacc_regs_base[i]);
1562		kfree(edma_cc[i]);
1563	}
1564	return status;
1565}
1566
1567
1568static struct platform_driver edma_driver = {
1569	.driver.name	= "edma",
1570};
1571
1572static int __init edma_init(void)
1573{
1574	return platform_driver_probe(&edma_driver, edma_probe);
1575}
1576arch_initcall(edma_init);
1577